首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
佐剂对于增强疫苗的免疫效果以及改变免疫应答类型发挥着非常重要的作用。然而,在人用疫苗中可使用的佐剂数量有限,尤其是有效的黏膜免疫佐剂缺乏。黏膜免疫佐剂能有效提高抗原的免疫原性,减少抗原用量或免疫接种次数,促进抗原提呈细胞的提呈作用,从而增强特异性免疫应答;但黏膜免疫佐剂安全性、有效性、免疫效力仍未达到理想的效果,需进一步深入研究。就目前常用的几种黏膜免疫佐剂的研究进展作一综述。  相似文献   

2.
近年来,亚单位疫苗、DNA重组疫苗、合成肽疫苗等新型疫苗不断涌现,这些疫苗纯度高、特异性强。但其分子小,免疫原性较差,难以诱导机体产生有效的免疫应答,需添加佐剂来增强其免疫原性或增强宿主对抗原的保护性应答。免疫学的研究阐明了固有免疫如何调节适应性免疫。随着固有免疫学的发展和生化技术的提高,开发特异性更强、生物安全性更高的免疫佐剂越来越受到重视。对佐剂的分类、作用机理,固有免疫学的研究进展进行了综述,并就未来发展趋势提出自己的观点,为临床应用和进一步研制高效、低毒的免疫佐剂提供了参考。  相似文献   

3.
DNA疫苗免疫佐剂的研究进展   总被引:6,自引:0,他引:6  
DNA疫苗是最近几年从基因治疗研究领域发展起来的一种新型疫苗,它能诱导机体产生持久的体液免疫和细胞免疫应答,能够抗病毒,细菌和寄生虫的感染,对自身免疫性疾病和过敏性疾病有一定的疗效作用。但与传统的灭活疫苗相比,其免疫效价还比较低,最近的研究表明:联合使用DNA疫苗和疫苗佐剂如细胞因子,协同刺激分子等有助于提高DNA疫苗的免疫效价,这一发现有利于研制更有效的DNA疫苗,本文就通过使用免疫佐剂提高DNA免疫效价的最新进展做一综述。  相似文献   

4.
通过现代生物技术制成的DNA疫苗、重组疫苗和亚单位疫苗等新型疫苗,虽然安全性较传统疫苗有所提高,但其免疫原性不及传统疫苗,需要通过佐剂增强疫苗的免疫效力。随着对佐剂研究的不断深入,铝佐剂、油乳佐剂、微生物类佐剂、蜂胶佐剂、左旋咪唑佐剂、脂质体佐剂、中药佐剂及小肽类佐剂等相继问世,其作用机制也随研究的不断深入逐渐清晰。通过动物免疫实验结果发现,小肽类免疫佐剂不仅可以增强特异性免疫反应,具备免疫增强剂的功效,而且获取简单,便于运输保存,安全性高,可能是未来佐剂研究的一个主要方向。  相似文献   

5.
人用疫苗佐剂研究的新趋向   总被引:8,自引:0,他引:8  
随着免疫机制的进一步阐明及生物学技术的进步 ,疫苗的研究已逐渐从以往盲目筛选及混合物形式 ,向靶向和表位抗原分子设计及人工合成方向发展 ,疫苗作用的特异性与安全性均有提高。但由于绝大多数新型疫苗的免疫原性较差 ,因此对佐剂的研究提出了新的挑战 ,要求从过去单一追求诱导抗体的传统佐剂研究逐渐转向致力于细胞免疫的新型佐剂研究。新型佐剂的研究不仅对于预防性疫苗的应用具有重要意义 ,而且将有力地推动新一代粘膜疫苗、治疗性疫苗和联合疫苗的研制。人用疫苗佐剂的安全性与有效性是不可或缺的两个方面 ,目前最常见的人用疫苗佐剂…  相似文献   

6.
免疫疗法是预防和治疗疾病的有效手段之一。近年来,肿瘤免疫疗法已成为一种新型治疗方法,相关肿瘤疫苗已在多种肿瘤的治疗中被证明有效。然而,在肿瘤疫苗的设计中,肿瘤抗原免疫原性弱、应答率低等问题是目前面对的一大挑战,佐剂的加入为问题的解决提供了一种新的方法和思路。免疫佐剂在提高肿瘤抗原免疫原性、激活机体适应性免疫应答等方面起着十分重要的作用。为了解近几年免疫佐剂的发展及其研究现状,针对目前常用的抗肿瘤佐剂进行综述,并总结了其对免疫系统的作用机制,为后续的疫苗设计策略提供帮助。  相似文献   

7.
近年来,核酸疫苗、基因工程疫苗、合成肽疫苗等新型疫苗的研究取得快速的发展,但这些疫苗与传统的灭活或活体疫苗相比,往往存在免疫原性差等问题,因此需要佐剂来增强其作用。佐剂已被证明是疫苗中的关键成分,佐剂种类众多,尚无统一的分类方法,目前应用最多的佐剂是铝佐剂和弗氏佐剂,但随着新型疫苗的开发,新型佐剂的开发必不可少。根据目前佐剂的研究现状,主要从免疫调节分子类佐剂、抗原递送类佐剂、复合佐剂3个方面进行分析阐述,以期对佐剂的研制提供参考。  相似文献   

8.
免疫疗法是预防和治疗疾病的有效手段之一.近年来,肿瘤免疫疗法已成为一种新型治疗方法,相关肿瘤疫苗已在多种肿瘤的治疗中被证明有效.然而,在肿瘤疫苗的设计中,肿瘤抗原免疫原性弱,应答率低等问题是目前面对的一大挑战,佐剂的加入为问题的解决提供了一种新的方法和思路.免疫佐剂在提高肿瘤抗原免疫原性,激活机体适应性免疫应答等方面起着十分重要的作用.为了解近几年免疫佐剂的发展及其研究现状,针对目前常用的抗肿瘤佐剂进行综述,并总结了其对免疫系统的作用机制,为后续的疫苗设计策略提供帮助.  相似文献   

9.
本研究在前期工作基础上,用CHO细胞表达的含PreS1+S融合抗原的新型基因工程HBV颗粒疫苗(HBSS1)与Al(OH)3、CpG及CpG+Al(OH)3等佐剂配伍,在Balb/C小鼠模型上研究不同佐剂对HBV颗粒疫苗肌肉注射后免疫应答的影响,主要包括抗体滴度、抗体亚型分类及特异性细胞免疫(γ-IFNELISpot检测)。结果表明:CpG佐剂结合HBSS1颗粒疫苗可快速诱导(单针免疫)高水平的抗PreS1及S抗体,IgG2a/IgG1比率1,同时可诱导较高抗原特异的细胞免疫应答;Al(OH)3+CpG双佐剂组一次免疫后可诱导产生最高的抗S抗体滴度(1:105),其产生的抗体亚类包括IgG1、IgG2a与IgG2b;在S抗原N端(13~49aa)存在优势CTL表位。结论:CpG佐剂结合HBSS1颗粒疫苗应是发展新型治疗性乙肝疫苗的较佳选项。  相似文献   

10.
比较不同佐剂配伍的效果,探讨常规剂量(5μg)钙调磷酸酶B亚单位(Calcineurin subunit B,CnB)佐剂对含PreS1+S融合抗原的乙型肝炎病毒新型疫苗(HBSS1)免疫效果的影响。采用Al(OH)3、常规剂量(5μg)CnB及CnB+Al(OH)3等佐剂与HBV颗粒疫苗配伍初次免疫,重组腺病毒载体疫苗加强免疫的策略,在C57BL/6小鼠模型上研究不同佐剂对HBV颗粒疫苗肌肉注射后免疫应答的影响,主要包括抗体滴度、抗体亚型分类及特异性细胞免疫(γ-IFN ELISpot检测)。研究结果显示Al(OH)3佐剂存在明显免疫增强作用,而单独加入5μg CnB佐剂或CnB与Al(OH)3佐剂联合应用对Anti-PreS1抗体无明显的增强作用,但可显著降低anti-HBs抗体水平;各免疫组在重组腺病毒载体疫苗加强后,其抗体亚类包括IgG1、IgG2a和IgG2b;并可诱导高水平的细胞免疫应答反应。因而常规剂量(5μg)CnB单独或联合Al(OH)3佐剂对新型HBV疫苗无明显的免疫增强作用。  相似文献   

11.
Vaccine adjuvants: current state and future trends   总被引:14,自引:0,他引:14  
The problem with pure recombinant or synthetic antigens used in modern day vaccines is that they are generally far less immunogenic than older style live or killed whole organism vaccines. This has created a major need for improved and more powerful adjuvants for use in these vaccines. With few exceptions, alum remains the sole adjuvant approved for human use in the majority of countries worldwide. Although alum is able to induce a good antibody (Th2) response, it has little capacity to stimulate cellular (Th1) immune responses which are so important for protection against many pathogens. In addition, alum has the potential to cause severe local and systemic side-effects including sterile abscesses, eosinophilia and myofascitis, although fortunately most of the more serious side-effects are relatively rare. There is also community concern regarding the possible role of aluminium in neurodegenerative diseases such as Alzheimer's disease. Consequently, there is a major unmet need for safer and more effective adjuvants suitable for human use. In particular, there is demand for safe and non-toxic adjuvants able to stimulate cellular (Th1) immunity. Other needs in light of new vaccine technologies are adjuvants suitable for use with mucosally-delivered vaccines, DNA vaccines, cancer and autoimmunity vaccines. Each of these areas are highly specialized with their own unique needs in respect of suitable adjuvant technology. This paper reviews the state of the art in the adjuvant field, explores future directions of adjuvant development and finally examines some of the impediments and barriers to development and registration of new human adjuvants.  相似文献   

12.
There has been a recent resurgence of interest into new and improved vaccine adjuvants. This interest has been stimulated by the need for new vaccines to combat problematic pathogens such as SARS and HIV, and to counter potential bioterrorist attacks. A major bottleneck in vaccine development is the low immunogenicity of purified subunit or recombinant proteins, creating the need for safe human adjuvants with high potency. A major problem in the search for the ideal adjuvant is that adjuvants that promote cell-mediated (Th1) immunity (e.g. Freund's complete adjuvant) generally have unacceptable local or systemic toxicity that precludes their use in human vaccines. There is a need for a safe, non-toxic adjuvant that is able to stimulate both cell-mediated and humoral immunity. Inulin-derived adjuvants that principally stimulate the innate immune system through their ability to activate the alternative complement pathway have proven ability to induce both cellular and humoral immunity. With their excellent tolerability, long shelf-life, low cost and easy manufacture, they offer great potential for use in a broad range of prophylactic and therapeutic vaccines. Based on successful animal studies in a broad range of species, human trials are about to get underway to validate the use of inulin-based adjuvants in prophylactic vaccines against hepatitis B, malaria and other pathogens. If such trials are successful, then it is possible that inulin-derived adjuvants will one day replace alum as the adjuvant of choice in most human prophylactic vaccines.  相似文献   

13.
Advances in vaccine adjuvants.   总被引:21,自引:0,他引:21  
M Singh  D O'Hagan 《Nature biotechnology》1999,17(11):1075-1081
Currently, aluminum salts and MF59 are the only vaccine adjuvants approved for human use. With the development of new-generation vaccines (including recombinant subunit and mucosal vaccines) that are less immunogenic, the search for more potent vaccine adjuvants has intensified. Of the novel compounds recently evaluated in human trials, immunostimulatory molecules such as the lipopolysaccharide derived MPL and the saponin derivative QS21 appear most promising, although doubts have been raised as to their safety in humans. Preclinical work with particulate adjuvants, such as the MF59 microemulsion and lipid-particle immune-stimulating complexes (Iscoms), suggest that these molecules are also potent elicitors of humoral and cellular immune responses. In addition, preclinical data on CpG oligonucleotides appear to be encouraging, particularly with respect to their ability to selectively manipulate immune responses. While all these adjuvants show promise, further work is needed to better define the mechanisms of adjuvant action. Ultimately, the development of more potent adjuvants may allow vaccines to be used as therapeutic, rather than prophylactic, agents.  相似文献   

14.
An adjuvant is defined as a product that increases or modulates the immune response against an antigen (Ag). Based on this general definition many authors have postulated that the ideal adjuvant should increase the potency of the immune response, while being non-toxic and safe. Although dozens of different adjuvants have been shown to be effective in preclinical and clinical studies, only aluminium-based salts (Alum) and squalene-oil-water emulsion (MF59) have been approved for human use. However, for the development of therapeutic vaccines to treat cancer patients, the prerequisites for an ideal cancer adjuvant differ from conventional adjuvants for many reasons. First, the patients that will receive the vaccines are immuno-compromised because of, for example, impaired mechanisms of antigen presentation, non-responsiveness of activated T cells and enhanced inhibition of self-reactivity by regulatory T cells. Second, the tumour Ag are usually self-derived and are, therefore, poorly immunogenic. Third, tumours develop escape mechanisms to avoid the immune system, such as tumour editing, low or non-expression of MHC class I molecules or secretion of suppressive cytokines. Thus, adjuvants for cancer vaccines need to be more potent than for prophylactic vaccines and consequently may be more toxic and may even induce autoimmune reactions. In summary, the ideal cancer adjuvant should rescue and increase the immune response against tumours in immuno-compromised patients, with acceptable profiles of toxicity and safety. The present review discusses the role of cancer adjuvants at the different phases of the generation of antitumour immunity following vaccination.  相似文献   

15.
Cytokines as potential vaccine adjuvants   总被引:3,自引:0,他引:3  
There is a compelling clinical need for adjuvants suitable for human use to enhance the efficacy of vaccines in the prevention of life-threatening infection. Candidate populations for such vaccine-adjuvant strategies include normal individuals at the two extremes of life, as well as the ever increasing population of immunocompromised individuals. In addition, adjuvants that would increase the efficiency of vaccination with such vaccines as those directed against hepatitis B andStreptococcus pneumoniae would have an even greater general use. Cytokines, as natural peptides intimately involved in the normal immune response, have great appeal as potential adjuvants. An increasing body of work utilizing recombinant versions of interleukin-1, -2, -3, -6, -12, gamma-interferon, tumor necrosis factor, and granulocyte-monocyte-colony stimulating factor has shown that cytokines do have vaccine adjuvant activity. However, in order to optimize adjuvant effect and minimize systemic toxicity, strategies in which the cytokine is fused to the antigen, or the cytokine is presented within liposomes or microspheres appear to be necessary to make this a practical approach suitable for human use. There is much promise in this approach, but there is much work to be accomplished in order to optimize the pharmacokinetics of cytokine administration as well as its side effect profile.Abbreviations IL interleukin - TNF tumor necrosis factor - NK natural killer - pIL-1 interleukin-1 peptide - LPS lipopolysaccharide - r recombinant - HSV-2 herpes simplex virus 2 - gamma  相似文献   

16.
Traditional vaccines consisting of whole attenuated micro-organisms, or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection, adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity, and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic, and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system, incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore, mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.  相似文献   

17.
An effective protein-based vaccine for tuberculosis will require a safe and effective adjuvant. There are few adjuvants in approved human vaccines, including alum and the oil-in-water-based emulsions MF59 (Novartis Vaccines and Diagnostics), AS03 and AS04 (GlaxoSmithKline Biologics), AF03 (Sanofi), and liposomes (Crucell). When used with pure, defined proteins, both alum and emulsion adjuvants are effective at inducing primarily humoral responses. One of the newest adjuvants in approved products is AS04, which combines monophosphoryl lipid A, a TLR-4 agonist, with alum. In this study, we compared two adjuvants: a stable oil-in-water emulsion (SE) and a stable oil-in-water emulsion incorporating glucopyranosyl lipid adjuvant, a synthetic TLR-4 agonist (GLA-SE), each together with a recombinant protein, ID93. Both the emulsion SE and GLA-SE adjuvants induce potent cellular responses in combination with ID93 in mice. ID93/SE induced Th2-biased immune responses, whereas ID93/GLA-SE induced multifunctional CD4(+) Th1 cell responses (IFN-γ, TNF-α, and IL-2). The ID93/GLA-SE vaccine candidate induced significant protection in mice and guinea pigs, whereas no protection was observed with ID93/SE, as assessed by reductions in bacterial burden, survival, and pathology. These results highlight the importance of properly formulating subunit vaccines with effective adjuvants for use against tuberculosis.  相似文献   

18.
The use of adjuvants in vaccine production is an important aspect of potent vaccines. This investigation was concerned with finding the most efficient adjuvants for use in Mycoplasma vaccines produced in Nigeria. Four different vaccines were produced from the Gladysdale strain of Mycoplasma mycoides subspecies mycoides. They differed depending on the type of adjuvants used. Each vaccine was used to vaccinate eight cattle using a dose of 1 ml. Two other groups of eight cattle were used as controls. One of the two groups received 1 ml dose of inactivated Gladysdale vaccine without adjuvant while the second group received 1 ml dose of saline. The number of cattle that had the peak complement fixing (CF) antibody titres of 1/80 in each group of cattle was four for vaccine containing aluminium hydroxide gel, eight for vaccine containing liquid paraffin, one for vaccine containing sodium alginate and one for vaccine without adjuvant. Seven cattle from the group vaccinated with vaccine containing Freund's incomplete adjuvant had peak CF antibody titres of 1/80 or higher. The two groups vaccinated with vaccine containing liquid paraffin and Freund's incomplete adjuvant survived challenge at 6 months post vaccination. Freund's incomplete adjuvant and liquid paraffin containing 10% Arlacel A are the most efficient adjuvants.  相似文献   

19.
Adjuvant formulations and delivery systems for DNA vaccines   总被引:14,自引:0,他引:14  
DNA vaccines have become a reliable and major means to elicit immune responses in the past decade. We and others have attempted to obtain stronger, more long lasting, and optimized immune responses, subsequent to the pioneering works demonstrating the ability of plasmid DNA to raise specific immune responses. Advances in molecular biology and biotechnology allow the application of various adjuvants, immunologic agents that increase the antigenic response, in DNA vaccines. Adjuvants can be broadly separated into two classes based on their origin-genetic and conventional. Genetic adjuvants are expression vectors of cytokines or other molecules that can modulate immune responses when administered with a vaccine antigen. Conventional adjuvants are chemical compounds that enhance, prolong, or modulate antigen-specific immune responses. The use of an appropriate adjuvant is pivotal in optimizing the response to DNA vaccines. Moreover, DNA vaccines themselves possess their own adjuvant activity because of the presence of unmethylated CpG motifs in particular base contents. The route of inoculation is also a critical factor in determining the outcome of vaccination. It is well known that intramuscular injection preferentially induces Th1-type immunity, whereas particle bombardment by gene gun predominantly induces Th2-type response. This article focuses on providing the detailed procedure to construct genetic adjuvant plasmids and prepare DNA vaccines formulated with conventional adjuvants. We also offer a practical guide for the procedure of intramuscular DNA injection.  相似文献   

20.
The perfect mix: recent progress in adjuvant research   总被引:2,自引:0,他引:2  
Developing efficient and safe adjuvants for use in human vaccines remains both a challenge and a necessity. Past approaches have been largely empirical and generally used a single type of adjuvant, such as aluminium salts or emulsions. However, new vaccine targets often require the induction of well-defined cell-mediated responses in addition to antibodies, and thus new immunostimulants are required. Recent advances in basic immunology have elucidated how early innate immune signals can shape subsequent adaptive responses and this, coupled with improvements in biochemical techniques, has led to the design and development of more specific and focused adjuvants. In this Review, I discuss the research that has made it possible for vaccinologists to now be able to choose between a large panel of adjuvants, which potentially can act synergistically, and combine them in formulations that are specifically adapted to each target and to the relevant correlate(s) of protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号