首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maihuenia and Pereskia, constitute Pereskioideae, the subfamily of Cactaceae with the greatest number of relictual features, but the two genera differ strongly in habit and ecological adaptations. Plants of Maihuenia occur in extremely xeric regions of Patagonia and are small cushion plants with reduced, terete leaves and soft, slightly succulent trunks. Plants of Pereskia occur only in mesic or slightly arid regions and are leafy trees with hard, woody trunks and thin, broad leaves. Maihuenias have many more anatomical adaptations to arid conditions than do pereskias: maihuenias lack sclerenchyma in their phloem and cortex (M. poeppigii also lacks xylem sclerenchyma and can contract during drought); their wood consists of vessels, axial parenchyma, and wide-band tracheids and can store water as well as minimize embolism damage; one species channelizes water flow by producing intraxylary bark; and at least some stem-based photosynthesis occurs because maihuenias have small patches of persistent stem epidermis that bears stomata and overlies a small amount of aerenchymatous chlorenchyma. Pereskias lack all these features. Although closely related, maihuenias have fewer relictual features than do pereskias, and plants of Pereskia probably are more similar to the ancestral cacti. Received 8 March 1999/ Accepted in revised form 29 May 1999  相似文献   

2.
The stem anatomy of Turbinicarpus s.l. was studied with the aims of finding characters to support the three clades (Rapicactus, Kadenicarpus, and Turbinicarpus) in which Turbinicarpus s.l. was recovered in the most recent phylogeny of the Cacteae tribe. Thirty-five taxa were prepared, and their tissues were compared. Substantial variation was found in the epidermal surface. The hypodermis has concentric druses (Rapicactus clade) or prismatic crystals (Kadenicarpus and Turbinicarpus clades) in the cell lumina. There are abundant collateral cortical bundles, but they are amphicribal in a few taxa, and xylary fibers occur in the Kadenicarpus clade. All members of Turbinicarpus s.l. have phloem without sclerenchyma and nonfibrous wood, except for T. subterraneus, which has wood with few fibers. The periderm has an epidermal origin, and the phellem may have thin-walled cells or alternating thin- to thick-walled layers. Our results support the three clades. The Kadenicarpus clade comprises the species with xylary fibers in cortical bundles, but it shares prismatic crystals in the hypodermis, thin-walled phellem cells and partially dilated rays with the Turbinicarpus clade. The members of the Rapicactus clade have concentric druses in the hypodermis. The anatomical features proved to be valuable to support the recognition of monophyletic clades.  相似文献   

3.
该研究以云南箭竹不同年龄段的假鞭为实验材料,采用滑动切片法并利用光学显微镜观察,分析云南箭竹假鞭的解剖结构特征及其随年龄的动态变化,为假鞭结构研究提供新的解剖学数据信息。结果显示:(1)云南箭竹假鞭节间的表皮层只有1层细胞,皮下层由3~4层细胞壁加厚的纤维细胞组成,皮层一般有20~25层不规则的薄壁细胞,成熟的皮层细胞会形成皮层气道,髓实心不具髓腔。(2)云南箭竹假鞭纤维壁厚随鞭龄增加而增加,且同一年龄假鞭的内侧韧皮部面积大于外侧;纤维腔径随鞭龄增加而逐渐减小,但同一年龄假鞭内侧纤维腔径大于外侧;韧皮部的面积、维管束和导管的直径均随着鞭龄的增加而增大。(3)假鞭维管束一般不具有原生导管,外部维管通常有2个较大的后生导管,在假鞭中部及内部通常只有1个后生导管,另1个后生导管不发育或发育不全。(4)在0.5年生到2年生的云南箭竹假鞭中,被染成紫红色的木质素在纤维细胞壁、薄壁细胞壁、导管细胞壁中都有分布,且随着假鞭年龄的增加染色逐渐加深,表明云南箭竹假鞭木质素含量随着鞭龄的增长而不断增加,木质化程度随鞭龄的增长逐渐提高。  相似文献   

4.
Comparative vegetative anatomy and systematics of Vanilla (Orchidaceae)   总被引:1,自引:0,他引:1  
Vanilla is a pantropical genus of green-stemmed vines bearing clasping (aerial) and absorbing (terrestrial) roots. Most vanillas bear normal, thick foliage leaves; others produce fugacious bracts. Seventeen species, including both types were studied. Foliage leaves of Vanilla are glabrous, have abaxial, tetracytic stomatal apparatuses, and a homogeneous mesophyll. Species may or may not have a uniseriate hypodermis. Crystals occur in the foliar epidermises of some species, but all species have crystalliferous idioblasts with raphides in the mesophyll. Vascular bundles in leaves are collateral and occur in a single series alternating large and small. Sclerenchyma may or may not be associated with the vascular bundles. Scale leaves may be crescent or C-shaped and usually have abaxial stomatal apparatuses. A hypodermis may or may not be present; the mesophyll contains raphide bundles in idioblasts. Vascular bundles are collateral and occur in a single row sometimes aligned close to the adaxial surface. They may or may not be associated with sclerenchyma. Stems of leafy vanillas show a sclerenchyma band separating cortex from ground tissue; stems of leafless vanillas do not show a sclerenchyma band. Ground tissue of the stem may consist solely of assimilatory cells or mixed assimilatory and water-storage cells. In some species centrally located assimilatory cells are surrounded by layers of water-storage cells. A uniseriate hypodermis is present in all stems. Sclerenchyma may completely surround the scattered collateral vascular bundles, occur only on the phloem side, or be absent. Both aerial and terrestrial roots are notable for their uniseriate velamen the cell walls of which may be unmarked or ornamented with anticlinal strips. Exodermis is uniseriate; the cells vary from barely thickened to strongly thickened. Only the outer and radial walls are thickened. Cortical cells of aerial roots generally have chloroplasts that are lacking from the same tissue of terrestrial roots. Raphide bundles occur in thin-walled cortical idioblasts. Endodermis and pericycle are uniseriate; pericycle cells are all ?-thickened opposite the phloem. Cells of the endodermis are either ?- or ∪-thickened opposite the phloem. Vascular tissue may be embedded in thin- or thick-walled sclerenchyma or in parenchyma. Metaxylem cells are always wider in terrestrial than in aerial roots of the same species. Pith cells are generally parenchymatous but sclerotic in a few species.  相似文献   

5.
Wide-band tracheids are a specialized tracheid type in which an annular or helical secondary wall projects deeply into the cell lumen. They are short, wide and spindle-shaped, and their bandlike secondary walls cover little of the primary wall, leaving most of it available for water diffusion. Wide-band tracheids appear to store and conduct water while preventing the spread of embolisms. They may be the most abundant tracheary element in the xylem, but they are always accompanied by at least a few vessels. Typically, fibers are absent wherever wide-band tracheids are present. Wide-band tracheids occur in the primary and secondary xylem of succulent stems, leaves and roots in genera of all three subfamilies of Cactaceae but were not found in the relictual genusPereskia, which lacks succulent tissues. In the large subfamily Cactoideae, wide-band tracheids occur only in derived members, and wide-band tracheids of North American Cactoideae are narrower and are aligned in a more orderly radial pattern than those of South American Cactoideae. Wide-band tracheids probably arose at least three times in Cactaceae.  相似文献   

6.
Roni Aloni  John R. Barnett 《Planta》1996,198(4):595-603
The differentiation of phloem anastomoses linking the longitudinal vascular bundles has been studied in stem internodes of Cucurbita maxima Duchesne, C. pepo L. and Dahlia pinnata Cav. These anastomoses comprise naturally occurring regenerative sieve tubes which redifferentiate from interfascicular parenchyma cells in the young internodes. In all three species, severing a vascular bundle in a young internode resulted in regeneration of xylem to form a curved by-pass immediately around the wound. The numerous phloem anastomoses in these young internodes were not involved in this process, the regenerated vessels originating from interfascicular parenchyma alone. Conversely, in mature internodes of Dahlia, the regenerated vessels originated from initials of the interfascicular cambia, and their phloem anastomoses did not influence the pattern of xylogenesis. On the other hand, in old internodes of Cucurbita, in which an interfascicular cambium was not yet developed, the parenchyma cells between the bundles had lost the ability to redifferentiate into vessel elements, and instead, regenerated vessels were produced in the phloem anastomoses. Thus, the wounded region of the vascular bundle was not bypassed via the shortest, curved pathway, but by more circuitous routes further away from the wound. Some of the regenerated vessels produced in the phloem anastomoses were extremely wide, and presumably efficient conductors of water. It is proposed that the dense network of phloem anastomoses developed during evolution as a mechanism of adaptation to possible damage in mature internodes by providing flexible alternative pathways for efficient xylem regeneration in plants with limited or no interfascicular cambium.This paper is dedicated to the memory of the late Isaac Blachmann (deceased 19 November 1995), father-in-law of the senior author, for encouragement and advice throughout the yearsThis research was supported by an International Scientific Exchange Award to R.A. from the Israel Academy of Sciences and The Royal Society.  相似文献   

7.
Medullary bundles are absent from the pith of the leafy, relictual cacti (genus Pereskia) but are present in most members of subfamily Cactoideae. They are absent only from tribes Hylocereeae, Rhipsalideae, and some members of Cacteae and Notocacteae. Presence of medullary bundles tends to be correlated with presence of a broad pith, but exceptions occur. Most medullary bundles are collateral, and in all genera phloem is produced and accumulates throughout the lifetime of the bundle. Xylem definitely accumulates as medullary bundles age in some groups, but it definitely does not accumulate in others, being produced only while the bundle is young. Pith can be broad (up to 75 mm in diameter), can constitute half the shoot volume, and is long-lived, remaining alive as long as the shoot is alive. Medullary bundles appear to be adaptive in allowing this large pith to be used for storage of water and starch. Medullary bundles have fewer, narrower tracheary elements than does the stele xylem in the same region; medullary bundles probably could not carry out significant longdistance transport if a major part of the stele becomes damaged.  相似文献   

8.
Comparative anatomical studies of the mature stems of two species each of Trichipteris and Cyathea (Cyatheaceae) are described. The outermost boundary of the stem is typically a two-layered hypodermis. Mucilage-sac cells are randomly distributed in all parenchymatous areas of the stem and form articulated laticifer systems. Localized areas of sclerenchyma tissue occur in the cortex of both T. microphylla and C. suprastrigosa. All species studied possess medullary bundles, whereas cortical bundles are found only in T. trichiata. Accessory bundles occasionally are associated with indentations in the internal stelar sheath of T. trichiata. The stelar pattern in each genus is a dictyostele and consists of individual meristeles. Distinctive cubical cells typically occur wherever sclerenchymatous fibers and parenchyma cells abut one another. Tangential cells occur within the primary phloem of each meristele, and occasionally within the larger accessory bundles. The primary xylem of the adventitious roots is typically diarch, although triarch and tetrarch xylem may occur. Leaf traces and petiole strands are similar anatomically to the accessory bundles. Based upon this study Trichipteris and Cyathea show striking anatomical similarities, and appear to be closely-related taxa.  相似文献   

9.
The lamina, main vein and peduncle anatomical properties of Centaurea sadleriana Janka plants from two populations, were examined using light and scanning electron microscopy. The indumentum was comprised of glandular and non-glandular trichomes of two types. The leaves were amphistomatic, isolateral, with strongly developed palisade tissue. Secretory ducts were observed along the phloem or sclerenchyma of large vascular bundles. Collenchyma alternated with chlorenchyma in the main vein and peduncle. Large groups of strongly lignified sclerenchyma were present along the phloem of peduncle vascular bundles. These features, together with thickened walls of epidermal cells and cuticle, numerous trichomes and thick-walled parenchyma in the perimedullar zone, were perceived as a xeromorphic peduncle structural adaptation. Non-enzymatic antioxidant compounds of phenolic origin were detected in small amounts and their respective content was higher in leaves compared to inflorescences. Compounds of phenolic orgin showed positive correlation with total potenial of antioxidant activity indicated by the DPPH assay. Greater total quantity of polyphenols and tannins was detected in leaves of plants from Zobnatica locality, while leaves of plants from Rimski Sanac were characterized by higher content of total flavonoids and proantocyanidins. Phytochemical analysis showed that dominant secondary biomolecules in inflorescences were phenolic pigments including anthocyanins and leucoanthocyanins, and free quinones in leaves.  相似文献   

10.
Summary Monoaminergic nerve fibers were studied in the pineal organ of the monkey, Macaca fuscata, by use of fluorescence and immunohistochemical procedures. Abundant formations of noradrenergic nerve fibers were observed in the pineal organ. They entered the parenchyma in the form of several coarse bundles via the capsule in the distal portion of the organ and spread throughout the organ after branching into smaller units. The density of the autonomic innervation decreased gradually toward the proximal portion of the organ. In the distal portion, numerous nerve fibers formed perivascular plexuses around the blood vessels and some fibers ran as bundles unrelated to the blood vessels in the stroma. Fine varicose fibers and bundles derived from these plexuses penetrated among the pinealocytes. However, only a few intraparenchymal fluorescent fibers were detected in the proximal third of the gland. With the use of serotonin antiserum serotonin-immunoreactive nerve fibers were clearly restricted to the ventroproximal part of the pineal organ. Although the somata of the pinealocytes showed intense immunoreactivity, their processes were not stained. In one exceptional case, clusters of pinealocytes displaying very intense immunoreactivity were found in an area extending from the distal margin of the ventral portion of the pineal stalk to the proximal portion of the pineal organ proper; these cells were bipolar or multipolar and endowed with well-stained processes.  相似文献   

11.
应用植物解剖学、组织化学及植物化学方法对白鲜营养器官根、茎、叶的结构及其生物碱的积累进行了研究。结果显示:(1)白鲜根的次生结构以及茎和叶的结构类似一般双子叶植物;白鲜多年生根主要由周皮、次生韧皮部、维管形成层以及次生木质部组成,根次生韧皮部中可见大量的淀粉、草酸钙簇晶、韧皮纤维以及油细胞;茎由表皮、皮层、维管组织和髓组成;叶由表皮、栅栏组织、海绵组织和叶脉组成;在茎和叶初生韧皮部的位置均分布有韧皮纤维,在叶表皮上分布有头状腺毛和非腺毛;在茎和叶紧贴表皮处分布有分泌囊。(2)组织化学分析结果显示:在白鲜多年生根中,生物碱类物质主要分布在周皮、次生韧皮部、维管形成层和木薄壁细胞中;在茎中,生物碱主要分布在表皮、皮层、韧皮部、木薄壁细胞及髓周围薄壁细胞中;在叶中,生物碱主要分布在表皮细胞、叶肉组织和维管组织的薄壁细胞;此外在分泌囊和头状腺毛中亦含有生物碱类物质。(3)植物化学结果显示,秦岭产白鲜根皮/白鲜皮、根木质部、茎和叶中白鲜碱含量分别为0.041%、0.012%、0.004%和0.002%,其中木质部中白鲜碱含量和其他部分地区白鲜皮中白鲜碱含量类似。研究表明,在秦岭产白鲜营养器官中,除根皮/白鲜皮外,在根木质部亦含有大量的白鲜碱,且在茎和叶中亦含有一定的白鲜碱,具有潜在的开发利用价值。  相似文献   

12.
Equisetum clarnoi is described from four silicified stem fragments and numerous small roots from the Eocene Clarno Chert of Jefferson County, Oregon. Stems are up to 8.0 mm in diam and have sunken stomata arranged vertically in a single line flanking each of the external biangulate stem ridges, features that clearly ally this species with the subgenus Hippochaete. External stem ridges are equal in number to the carinal hypodermal bands. The hypodermis is composed of fibers and has prominent carinal bands up to 0.75 mm long and shorter vallecular bands. Cortical parenchyma cells enclose prominent vallecular canals which are lined by specialized thick-walled parenchyma cells. The double, common endodermis has prominent casparian strips. Vascular bundles are composed of four to seven metaxylem tracheids flanking each side of the phloem and protoxylem tracheids which occur singly on the internal surface of the small carinal canals. Leaf sheaths in cross section have an adaxial fibrous layer and an external or near external fibrous bundle. Roots are up to 2.0 mm in diam and have paired cuboidal epidermal cells from which root hairs arise. The stele of the root is central and shows exarch primary xylem maturation. Equisetum clarnoi most closely resembles the extant Equisetum hyemale var. affine.  相似文献   

13.
为了揭示不同树龄银杏的根、茎、叶解剖结构以及内生菌分布情况,本研究采用石蜡切片法对银杏(Ginkgo biloba L.)根、茎、叶显微解剖结构进行了观察。结果显示:(1)一年生银杏幼根不含树脂道,内生菌含量低,而皮层中含有大量蛋白细胞;多年生银杏老根含有较多树脂道,皮层细胞中含有大量内生菌并有针晶物质分布,未发现蛋白细胞。(2)一年生银杏幼茎有明显的角质层,皮层分布有大量蛋白细胞,韧皮射线及髓部发达,其中髓由大量薄壁细胞构成并且有蛋白细胞分布,未观察到树脂道但有簇晶物质存在。(3)多年生银杏叶片海绵组织疏松,具有树脂道,叶肉细胞含有簇晶物质;气孔下陷并具有耐旱的结构特点。本结果可为研究不同树龄银杏对环境的适应性变化以及内生菌特点提供参考。  相似文献   

14.
Stem anatomy and development of medullary phloem are studied in the dwarf subshrub Cressa cretica L. (Convolvulaceae). The family Convolvulaceae is dominated by vines or woody climbers, which are characterized by the presence of successive cambia, medullary- and included phloem, internal cambium and presence of fibriform vessels. The main stems of the not winding C. cretica shows presence of medullary (internal) phloem, internal cambium and fibriform vessels, whereas successive cambia and included phloem are lacking. However, presence of fibriform vessels is an unique feature which so far has been reported only in climbing members of the family. Medullary phloem develops from peri-medullary cells after the initiation of secondary growth and completely occupies the pith region in fully grown mature plants. In young stems, the cortex is wide and formed of radial files of tightly packed small and large cells without intercellular air spaces. In thick stems, cortical cells become compressed due to the pressure developed by the radial expansion of secondary xylem, a feature actually common to halophytes. The stem diameter increases by the activity of a single ring of vascular cambium. The secondary xylem is composed of vessels (both wide and fibriform), fibres, axial parenchyma cells and uni-seriate rays. The secondary phloem consists of sieve elements, companion cells, axial and ray parenchyma cells. In consequence, Cressa shares anatomical characteristics of both climbing and non-climbing members. The structure of the secondary xylem is correlated with the habit and comparable with that of other climbing members of Convolvulaceae.  相似文献   

15.
A anatomical characters of secondary phloem in Glyptostrobus pensilis (Staunt.)Koch were observed by means of both light and scanning electron microscopy(SEM). The secondary phloem is composed of axial and radial systems. In the axial systems, the phloem consists of sieve cells, phloem parenchyma cells, albuminous cell and phloem fibers. In the radial systems, it consists of phloem rays. The alternate arrangement of different cells in cross section results in tangential bands. The sequence of radial arrangement follows the pattern of sieve cells, phloem parenchyma cells, sieve cells and phloem fibers, sieve cells. Many crystals of calbium oxalate are embedded in the radial walls of seive cells. The phloem fibers are of only one type. The phloem rays are homogeneous, uniseriate. According to the anatomical characters of secondary phloem of Glyptostrobus pensilis (Staunt.)Koch and comparison with the other genera of Taxodiaceae, Glyptostrobus, Metasequoia and Taxodium have close relationships.  相似文献   

16.
水松的次生韧皮部解剖及其系统位置的讨论   总被引:3,自引:0,他引:3  
在光学显微镜和扫描电子显微镜下观察,水松茎次生韧皮部的主要特征为:韧皮部由轴向系统和径向系统组成。轴向系统由筛胞、韧皮薄壁组织细胞、蛋白细胞和韧皮纤维组成,径向系统由韧皮射线组成。在横切面上,轴向系统的各组成分子以单层切向带交替有规律的排列,其排列顺序为:筛胞-韧皮薄壁组织细胞-韧皮纤维-筛胞。筛胞的径向壁上嵌埋有草酸钙结晶,韧皮纤维仅一种类型,韧皮射线同型、单列。根据水松茎次生韧皮部的解剖研究,并与杉科其它各属的有关资料进行比较,我们认为:水松属与水杉属和落羽杉属有较近的亲缘关系。  相似文献   

17.
Narváez-Vásquez J  Ryan CA 《Planta》2004,218(3):360-369
The systemin precursor, prosystemin, has been previously shown to be sequestered in vascular bundles of tomato (Lycopersicon esculentum Mill.) plants, but its subcellular compartmentalization and association with a specific cell type has not been established. We present in situ hybridization and immunocytochemical evidence at the light, confocal, and transmission electron microscopy levels that wound-induced and methyl jasmonate-induced prosystemin mRNA and protein are exclusively found in vascular phloem parenchyma cells of minor veins and midribs of leaves, and in the bicollateral phloem bundles of petioles and stems of tomato. Prosystemin protein was also found constitutively in parenchyma cells of various floral organs, including sepals, petals and anthers. At the subcellular level, prosystemin was found compartmentalized in the cytosol and the nucleus of vascular parenchyma cells. The cumulative data indicate that vascular phloem parenchyma cells are the sites for the synthesis and processing of prosystemin as a first line of defense signaling in response to herbivore and pathogen attacks.Abbreviations IgG immunoglobulin - TEM transmission electron microscope  相似文献   

18.
Cortical Bundles in the Persistent, Photosynthetic Stems of Cacti   总被引:2,自引:2,他引:0  
We examined 62 species in 45 genera of the cactus subfamilyCactoideae; all had collateral cortical bundles that permeatedthe broad, water-storing inner cortex and extended to the baseof the outer, photosynthetic palisade cortex. Mean distancebetween cortical bundles was 0.75 mm, similar to the mean spacing(0.74 mm) of veins in leaves of Pereskia, a genus of relictleaf-bearing cacti. In 16 species, both young and extremelyold stem cortex was available for study: in all of these, olderbundles had larger amounts of phloem than did younger bundles,indicating that phloem had been produced for many years. Inten species, older bundles also had more xylem than youngerbundles. In two genera (Rhipsalis and Selenicereus) there werecaps of primary phloem fibres, and in a single species (Pilosocereusmortensenii) cortical bundle xylem contained libriform fibres.All cortical bundle tracheary elements were narrow (radius range,0.91–8.2 µm; mode, 1.8–2.7 µm), similarto Pereskia leaf vein elements (radius range, 1.8–2.7µm); this was much narrower than stem wood vessels (radiusrange, 10–42 um; mode, 23–28 µm). Longitudinalconduction of water and nutrients probably occurs predominantlyin stem wood, with cortical bundles maintaining the broad, voluminouscortex, the outer part of which is the plant's photosynthetictissue and the inner part of which stores water and starch.The cortex of the Cactordeae contains numerous leaflike characters;homeotic genes may be involved in its morphogenesis. Cactaceae, cortical bundles, homeotic, xylem, phloem, evolution  相似文献   

19.
采用石蜡切片和光学显微技术对闽楠(Phoebe bournei(Hemsl.)Yang)营养器官的解剖结构及其生态适应性进行了研究。结果显示,闽楠为典型异面叶,叶片中脉发达,维管束呈扇形,导管径向排列,韧皮部外侧有大量韧皮纤维分布。上表皮外侧具角质层,下表皮外侧无角质层,下表皮细胞呈犬牙状向外凸起,有表皮毛和气孔分布,气孔为双环型、外凸;栅栏组织由1层细胞组成,海绵组织由3~4层细胞组成。茎的初生结构中,表皮轻微角质化,厚角细胞5~6层,薄壁细胞5~7层,维管束为外韧型;茎的次生结构中,表皮外部角质层加厚,木栓层细胞3~4层,木栓形成层细胞1层,栓内层细胞2~3层,维管束紧密排列连成环状,次生韧皮部和次生木质部发达,形成层细胞2~3层。根的次生结构中木栓层细胞5~6层,木栓层内侧具1层木栓形成层,栓内层细胞2层。闽楠营养器官的解剖结构特征一方面呈现出阴生植物的特点,另一方面也对阳生和旱生环境具有一定的适应性。  相似文献   

20.
《Flora》2007,202(4):281-292
The xylem and phloem of 88 Caryophyllaceae from subtropical and temperate regions mainly in Western Europe and the Canary Islands are described and analysed. They are compared with their taxonomic classification, and assigned to their ecological range. The xylem of different life forms (herbaceous plants, dwarf shrubs and shrubs) consists mainly of parenchyma and small vessels that are 20–50 μm in diameter in earlywood. They have simple perforations and pits are pseudosclariform and scalariform. The axial parenchyma is mostly pervasive or paratracheal, and the ray cells are exclusively upright or square. The anatomy of the subfamily Alsinoideae is homogeneous and characterised by the absence of libriform fibres, large rays, crystal druses and sclereids in the cortex. The subfamily Caryophylloideae is less homogeneous and mainly characterised by the presence of crystal druses on the xylem and phloem, as well as the presence of intra-annual fibre bands. The subfamily Paronychioideae is heterogeneous; included phloem is most characteristic. Ecological trends are clearly expressed by the age of plants and the average annual radial growth rates. Plants tend to grow older and slower at higher altitudes. The presence of intra-annual fibre bands in the xylem is characteristic of Caryophylloideae at lower altitudes. The study suggests that taxonomic and ecological classifications and large-scale ecological trend studies must be based on large and homogeneous datasets and well-defined anatomical features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号