首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex sets of cues can be important in recognizing and responding to conspecific mating competitors and avoiding potentially costly heterospecific competitive interactions. Within Drosophila melanogaster, males can detect sensory inputs from conspecifics to assess the level of competition. They respond to rivals by significantly extending mating duration and gain significant fitness benefits from doing so. Here, we tested the idea that the multiple sensory cues used by D. melanogaster males to detect conspecifics also function to minimize “off‐target” responses to heterospecific males that they might encounter (Drosophila simulans, Drosophila yakuba, Drosophila pseudoobscura, or Drosophila virilis). Focal D. melanogaster males exposed to D. simulans or D. pseudoobscura subsequently increased mating duration, but to a lesser extent than following exposure to conspecific rivals. The magnitude of rivals’ responses expressed by D. melanogaster males did not align with genetic distance between species, and none of the sensory manipulations caused D. melanogaster to respond to males of all other species tested. However, when we removed or provided “false” sensory cues, D. melanogaster males became more likely to show increased mating duration responses to heterospecific males. We suggest that benefits of avoiding inaccurate assessment of the competitive environment may shape the evolution of recognition cues.  相似文献   

2.
Across many species, males exhibit plastic responses when they encounter mating rivals. The ability to tailor responses to the presence of rivals allows males to increase investment in reproduction only when necessary. This is important given that reproduction imposes costs that limit male reproductive capacity, particularly when sperm competition occurs. Fruitfly (Drosophila melanogaster) males exposed to rivals subsequently mate for longer and thus accrue fitness benefits under increased competition, in line with theory. Here, we show that male D. melanogaster detect rivals by using a suite of cues and that the resulting responses lead directly to significant fitness benefits. We used multiple techniques to systematically remove auditory, olfactory, tactile, and visual cues, first singly and then in all possible combinations. No single cue alone was sufficient to allow males to detect rivals. However, the perception of any two cues from sound, smell, or touch permitted males to detect and respond adaptively to rivals through increased offspring production. Vision was only of marginal importance in this context. The findings indicate adaptive redundancy through the use of multiple, but interchangeable, cues. We reveal the robust mechanisms by which males assess their socio-sexual environment to precisely attune responses via the expression of plastic behavior.  相似文献   

3.
We investigated the role of Drosophila larva olfactory system in identification of congeners and aliens. We discuss the importance of these activities in larva navigation across substrates, and the implications for allocation of space and food among species of similar ecologies. Wild type larvae of cosmopolitan D. melanogaster and endemic D. pavani, which cohabit the same breeding sites, used species-specific volatiles to identify conspecifics and aliens moving toward larvae of their species. D. gaucha larvae, a sibling species of D. pavani that is ecologically isolated from D. melanogaster, did not respond to melanogaster odor cues. Similar to D. pavani larvae, the navigation of pavani female x gaucha male hybrids was influenced by conspecific and alien odors, whereas gaucha female x pavani male hybrid larvae exhibited behavior similar to the D. gaucha parent. The two sibling species exhibited substantial evolutionary divergence in processing the odor inputs necessary to identify conspecifics. Orco (Or83b) mutant larvae of D. melanogaster, which exhibit a loss of sense of smell, did not distinguish conspecific from alien larvae, instead moving across the substrate. Syn 97CS and rut larvae of D. melanogaster, which are unable to learn but can smell, moved across the substrate as well. The Orco (Or83b), Syn 97CS and rut loci are necessary to orient navigation by D. melanogaster larvae. Individuals of the Trana strain of D. melanogaster did not respond to conspecific and alien larval volatiles and therefore navigated randomly across the substrate. By contrast, larvae of the Til-Til strain used larval volatiles to orient their movement. Natural populations of D. melanogaster may exhibit differences in identification of conspecific and alien larvae. Larval locomotion was not affected by the volatiles.  相似文献   

4.
Phenotypic plasticity can allow animals to adapt their behavior, such as their mating effort, to their social and sexual environment. However, this relies on the individual receiving accurate and reliable cues of the environmental conditions. This can be achieved via the receipt of multimodal cues, which may provide redundancy and robustness. Male Drosophila melanogaster detect presence of rivals via combinations of any two or more redundant cue components (sound, smell, and touch) and respond by extending their subsequent mating duration, which is associated with higher reproductive success. Although alternative combinations of cues of rival presence have previously been found to elicit equivalent increases in mating duration and offspring production, their redundancy in securing success under sperm competition has not previously been tested. Here, we explicitly test this by exposing male D. melanogaster to alternative combinations of rival cues, and examine reproductive success in both the presence and absence of sperm competition. The results supported previous findings of redundancy of cues in terms of behavioral responses. However, there was no evidence of reproductive benefits accrued by extending mating duration in response to rivals. The lack of identifiable fitness benefits of longer mating under these conditions, both in the presence and absence of sperm competition, contrasted with some previous results, but could be explained by (a) damage sustained from aggressive interactions with rivals leading to reduced ability to increase ejaculate investment, (b) presence of features of the social environment, such as male and female mating status, that obscured the fitness benefits of longer mating, and (c) decoupling of behavioral investment with fitness benefits.  相似文献   

5.
Female Xiphophorus montezumae were attracted to olfactory cues from conspecific and heterospecific (X. cortezi and X. nigrensis) males when given a choice between the stimulus and water. When given a choice between conspecific and heterospecific cues, females only demonstrated a strong preference for the conspecific stimulus when it was matched against X. nigrensis. Female X. nigrensis were attracted to olfactory cues from their close relative, X. cortezi, but did not respond to cues from the more distantly related X. montezumae. They preferred the scent of their own males to the olfactory cues of both heterospecific species. Our results indicate that X. cortezi and X. nigrensis share an apomorphic change in some aspect of their olfactory cue-receiver system that is not shared with X. montezumae. We also uncovered an asymmetry in response based on olfactory stimuli in these fishes: X. montezumae is moderately attracted to the cue from X. nigrensis, whereas X. nigrensis does not respond to the cue from X. montezumae at all.  相似文献   

6.
7.
Many species of Drosophila form conspecific pupa aggregations across the breeding sites. These aggregations could result from species-specific larval odor recognition. To test this hypothesis we used larval odors of D. melanogaster and D. pavani, two species that coexist in the nature. When stimulated by those odors, wild type and vestigial (vg) third-instar larvae of D. melanogaster pupated on conspecific larval odors, but individuals deficient in the expression of the odor co-receptor Orco randomly pupated across the substrate, indicating that in this species, olfaction plays a role in pupation site selection. Larvae are unable to learn but can smell, the Syn97CS and rut strains of D. melanogaster, did not respond to conspecific odors or D. pavani larval cues, and they randomly pupated across the substrate, suggesting that larval odor-based learning could influence the pupation site selection. Thus, Orco, Syn97CS and rut loci participated in the pupation site selection. When stimulated by conspecific and D. melanogaster larval cues, D. pavani larvae also pupated on conspecific odors. The larvae of D. gaucha, a sibling species of D. pavani, did not respond to D. melanogaster larval cues, pupating randomly across the substrate. In nature, D. gaucha is isolated from D. melanogaster. Interspecific hybrids, which result from crossing pavani female with gaucha males clumped their pupae similarly to D. pavani, but the behavior of gaucha female x pavani male hybrids was similar to D. gaucha parent. The two sibling species show substantial evolutionary divergence in organization and functioning of larval nervous system. D. melanogaster and D. pavani larvae extracted information about odor identities and the spatial location of congener and alien larvae to select pupation sites. We hypothesize that larval recognition contributes to the cohabitation of species with similar ecologies, thus aiding the organization and persistence of Drosophila species guilds in the wild.  相似文献   

8.
We analyzed a functional homologue of the swallow gene from Drosophila pseudoobscura. The swallow gene of D. melanogaster plays an essential role in localizing bicoid mRNA in oocytes, and swallow mutant embryos show anterior pattern defects that result from the lack of localization of the bicoid morphogen. The pseudoobscura homologue rescues the function of swallow mutants when introduced into the genome of D. melanogaster, and its expression is similar to that of the melanogaster gene. The predicted pseudoobscura and melanogaster proteins are 49% identical and 69% conserved. The coiled-coil domain previously identified in the melanogaster swallow protein is strongly conserved in the pseudoobscura homologue, but the weak similarity of the melanogaster swallow protein to the RNP class of RNA-binding proteins is not conserved in the pseudoobscura homologue. These and other observations suggest a structural role for swallow in localizing bicoid mRNA, perhaps as part of the egg cytoskeleton. Received: 3 August 1999 / Accepted: 29 September 1999  相似文献   

9.
Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24–48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored.  相似文献   

10.
Some insects use host and mate cues, including odor, color, and shape, to locate and recognize their preferred hosts and mates. Previous research has shown that the Asian longicorn beetle, Anoplophora glabripennis (Motschulsky), uses olfactory cues to locate host plants and differentiate them from non-host plants. However, whether A. glabripennis adults use visual cues or a combination of visual and olfactory cues remains unclear. In this study, we tested the host location and recognition behavior in A. glabripennis, which infests a number of hardwood species and causes considerable economic losses in North America, Europe and Asia. We determined the relative importance of visual and olfactory cues from Acer negundo in host plant location and recognition, as well as in the discrimination of non-host plants (Sabina chinensis and Pinus bungeana), by female and male A. glabripennis. Visual and olfactory cues from the host plants (A. negundo), alone and combined, attracted significantly more females and males than equivalent cues from non-host plants (S. chinensis and P. bungeana). Furthermore, the combination of visual and olfactory cues of host plants attracted more adults than either cue alone, and visual cues alone attracted significantly more adults than olfactory cues alone. This finding suggests that adult A. glabripennis has an innate preference for the visual and/or olfactory cues of its host plants (A. negundo) over those of the non-host plant and visual cues are initially more important than olfactory cues for orientation; furthermore, this finding also suggests that adults integrate visual and olfactory cues to find their host plants. Our results indicate that different modalities of host plant cues should be considered together to understand fully the communication between host plants and Asian longhorned beetles.  相似文献   

11.
Maternal pup retrieval by house mice (Mus musculus) was studied in an investigation of sensory processes in the discrimination of ‘own’ from ‘alien’ pups. In a control condition, mothers were able to discriminate their own from alien young. This ability seemed to be based on olfactory cues, while visual and auditory cues did not seem to be involved. Furthermore, it is suggested that retrieval consists of: elicitation (probably mediated by auditory cues); location of the pup (auditory and olfactory cues); and recognition of the pup (initially olfactory cues, with subsequent gustatory and tactile cues).  相似文献   

12.
Mating experiments using Drosophila have contributed greatly to the understanding of sexual selection and behavior. Experiments often require simple, easy and cheap methods to distinguish between individuals in a trial. A standard technique for this is CO2 anaesthesia and then labelling or wing clipping each fly. However, this is invasive and has been shown to affect behavior. Other techniques have used coloration to identify flies. This article presents a simple and non-invasive method for labelling Drosophila that allows them to be individually identified within experiments, using food coloring. This method is used in trials where two males compete to mate with a female. Dyeing allowed quick and easy identification. There was, however, some difference in the strength of the coloration across the three species tested. Data is presented showing the dye has a lower impact on mating behavior than CO2 in Drosophila melanogaster. The impact of CO2 anaesthesia is shown to depend on the species of Drosophila, with D. pseudoobscura and D. subobscura showing no impact, whereas D. melanogaster males had reduced mating success. The dye method presented is applicable to a wide range of experimental designs.  相似文献   

13.
In most animals that have X and Y sex chromosomes, chromosome-wide mechanisms are used to balance X-linked gene expression in males and females. In the fly Drosophila melanogaster, the dosage compensation mechanism also generally extends to X-linked transgenes. Over 70 transgenic lines of the Australian sheep blowfly Lucilia cuprina have been made as part of an effort to develop male-only strains for a genetic control program of this major pest of sheep. All lines carry a constitutively expressed fluorescent protein marker gene. In all 12 X-linked lines, female larvae show brighter fluorescence than male larvae, suggesting the marker gene is not dosage compensated. This has been confirmed by quantitative RT-PCR for selected lines. To determine if endogenous X-linked genes are dosage compensated, we isolated 8 genes that are orthologs of genes that are on the fourth chromosome in D. melanogaster. Recent evidence suggests that the D. melanogaster fourth chromosome, or Muller element F, is the ancestral X chromosome in Diptera that has reverted to an autosome in Drosophila species. We show by quantitative PCR of male and female DNA that 6 of the 8 linkage group F genes reside on the X chromosome in L. cuprina. The other two Muller element F genes were found to be autosomal in L. cuprina, whereas two Muller element B genes were found on the same region of the X chromosome as the L. cuprina orthologs of the D. melanogaster Ephrin and gawky genes. We find that the L. cuprina X chromosome genes are equally expressed in males and females (i.e., fully dosage compensated). Thus, unlike in Drosophila, it appears that the Lucilia dosage compensation system is specific for genes endogenous to the X chromosome and cannot be co-opted by recently arrived transgenes.  相似文献   

14.
Ludwig A  Loreto EL 《Genetica》2007,130(2):161-168
The gtwin retrotransposon was recently discovered in the Drosophila melanogaster genome and it is evolutionarily closer to gypsy endogenous retrovirus. This study has identified gtwin homologous sequences in the genome of D. simulans, D. sechellia, D. erecta and D. yakuba by performing homology searches against the public genome database of Drosophila species. The phylogenetic analyses of the gtwin env gene sequences of these species have shown some incongruities with the host species phylogeny, suggesting some horizontal transfer events for this retroelement. Moreover, we reported the existence of DNA sequences putatively encoding full-length Env proteins in the genomes of Drosophila species other than D. melanogaster. The results suggest that the gtwin element may be an infectious retrovirus able to invade the genome of new species, supporting the gtwin evolutionary picture shown in this work.  相似文献   

15.

Background

Systematic, large-scale RNA interference (RNAi) approaches are very valuable to systematically investigate biological processes in cell culture or in tissues of organisms such as Drosophila. A notorious pitfall of all RNAi technologies are potential false positives caused by unspecific knock-down of genes other than the intended target gene. The ultimate proof for RNAi specificity is a rescue by a construct immune to RNAi, typically originating from a related species.

Methodology/Principal Findings

We show that primary sequence divergence in areas targeted by Drosophila melanogaster RNAi hairpins in five non-melanogaster species is sufficient to identify orthologs for 81% of the genes that are predicted to be RNAi refractory. We use clones from a genomic fosmid library of Drosophila pseudoobscura to demonstrate the rescue of RNAi phenotypes in Drosophila melanogaster muscles. Four out of five fosmid clones we tested harbour cross-species functionality for the gene assayed, and three out of the four rescue a RNAi phenotype in Drosophila melanogaster.

Conclusions/Significance

The Drosophila pseudoobscura fosmid library is designed for seamless cross-species transgenesis and can be readily used to demonstrate specificity of RNAi phenotypes in a systematic manner.  相似文献   

16.
17.
Previous investigations into the evolution of the Drosophila opsin gene family are extended by inter- and intraspecific DNA sequence comparisons of the Rh3 locus in the melanogaster subgroup and D. pseudoobscura. Two separate statistical tests of the neutral-mutation hypothesis suggest that random genetic drift is responsible for virtually all of the observed amino acid replacement substitutions within the melanogaster subgroup. Analyses incorporating the D. pseudoobscura sequences are enigmatic due to the accumulation of multiple substitutions, because the McDonald-Kreitman test is not applicable to species comparisons that approach mutational saturation. However, the data from D. pseudoobscura are not inconsistent with selective neutrality. The ratio of amino acid polymorphisms within species to fixed differences between species imply that these are approximately 31 possible neutral single-step amino-acid-replacement substitutions at this locus. Synonymous substitutions are unevenly distributed among the structural domains of the Rh3 gene. Patterns of synonymous polymorphism are analyzed with respect to GC content and codon bias, and are compared to other loci from the same species.  相似文献   

18.
Of several species of Drosophila tested, only D. melanogaster was capable of ovipositing after decapitation. Two other species (D. tripunctata and D. pseudoobscura) were also capable of reflex oviposition during the operation but D. virilis and D. palustris were not. This divergence of neural control mechanisms suggests the existence of at least two alternate circuits for the control of insect oviposition.  相似文献   

19.
Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont—which is known to be protective against virus infections in Drosophila—we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host–virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.  相似文献   

20.
Under sex dissociated sperm transfer, females seek spermatophores and pick up sperm without male assistance. In several species males adjust spermatophore deposition rate to the presence of conspecifics. It is not known, however, which factors could favor such elasticity in non-pairing males. In this paper, we compare male response towards conspecifics between the sex dissociated eriophyoid mites Aculus fockeui (Nalepa and Trouessart) and Aculops allotrichus (Nalepa). The species differ significantly in male reproductive strategies and, consequently, the intensity of male–male-competition. Aculus fockeui males deposit spematophores all over the leaves and occasionally leave single spermatophores beside quiescent female nymphs (QFNs). In contrast, A. allotrichus males guard QFNs and encircle them with spermatophores. In this study, males of both species deposited spermatophores close to and apart from the rival spermatophores. Aculops allotrichus males had similar spermatophore output whether they were kept alone or in a group of seven males. They did not change spermatophore output in the presence of five rival spermatophores, a QFN or a QFN and varying number of rivals, either. In contrast, A. fockeui males increased spermatophore output in the presence of rival spermatophores or when on the arena with a QFN the male number increased to eight males. They did not respond, however, to the presence of a QFN and one rival or a QFN alone. The possible effect of the species-specific intensity of male–male competition, population density, the availability of receptive females and the rate of spermatophore output on the flexibility of eriophyoid spermatophore deposition is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号