首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The goal of this study was to investigate the contribution of increased activity of individual non-regulated enzymes in the Calvin cycle to improve photosynthetic yield. Two non-regulated enzymes, rice fructose-1,6-bisphosphate aldolase (FBA) and spinach triosephosphate isomerase (TPI), were individually cloned and overexpressed in the cyanobacterium Anabaena sp. strain PCC 7120 cells. The enzyme activity and the photosynthetic yield, as reflected by the cell growth rate, photosynthetic oxygen evolution and dry cellular weight, were measured and compared between the wild-type and transgenic cells harboring either FBA or TPI. Though the activity of these two individual non-regulated enzymes was similarly increased in the corresponding transgenic cells, the contributions of each enzyme on the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), reflected by the levels of Rubisco large subunit, and the photosynthetic yield were different. Transgenic cells, carrying FBA, showed an evident increase in Rubisco amount and photosynthetic yield, while there was no increase in cells harboring TPI. This indicates that the contributions of non-regulated enzymes in the Calvin cycle on photosynthetic yield differed and firstly reveals that increased activity of only a single non-regulated enzyme in transgenic cells markedly improves the photosynthetic yield via stimulating the amount of Rubisco and consequently accelerating the ribulose-1,5-bisphosphate (RuBP) regeneration rate.  相似文献   

2.
Non-regulated enzymes in the Calvin cycle are generally presumed to be less important for the regulation of photosynthetic yield. Here, to investigate the relationship between the activity of non-regulated enzymes and photosynthetic yield, two non-regulated enzymes in the Calvin cycle—a rice cytosolic fructose-1,6-bisphosphate aldolase (FBA) and a spinach chloroplast triosephosphate isomerase (TPI)—were cloned and co-expressed in cells of the cyanobacterium Anabaena sp. strain PCC 7120. The activity of FBA and TPI and the photosynthetic yield reflected by photosynthetic O2 evolution and cell dry weight were measured and compared between wild-type and transgenic cells. Our results demonstrated that the activity of FBA and TPI were increased in transgenic cells relative to wild-type cells, and that activity was further increased in a transgenic strain harboring two sets of FBA-TPI tandem genes relative to cells containing one copy of the FBA-TPI tandem gene. The increased activity of FBA and TPI in Anabaena sp. strain PCC 7120 increased photosynthetic yield, with increased activity levels correlating closely with the degree of changes in photosynthetic yield. This implies that the photosynthetic yield is limited by the activity of the non-regulated enzymes FBA and TPI, and that the endogenous activity of non-regulated enzymes is not sufficient to increase photosynthetic yield. We discuss the various roles of FBA and TPI, and regulated and non-regulated enzymes, in modulating photosynthetic yield. W. Ma and L. Wei contributed equally to this work.  相似文献   

3.
To clarify the contributions of fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) separately to the carbon flux in the Calvin cycle, we generated transgenic tobacco plants expressing cyanobacterial FBPase-II in chloroplasts (TpF) or Chlamydomonas SBPase in chloroplasts (TpS). In TpF-11 plants with 2.3-fold higher FBPase activity and in TpS-11 and TpS-10 plants with 1.6- and 4.3-fold higher SBPase activity in chloroplasts compared with the wild-type plants, the amount of final dry matter was approximately 1.3-, 1.5- and 1.5-fold higher, respectively, than that of the wild-type plants. At 1,500 micromol m(-2) s(-1), the photosynthetic activities of TpF-11, TpS-11 and TpS-10 were 1.15-, 1.27- and 1.23-fold higher, respectively, than that of the wild-type plants. The in vivo activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the level of ribulose-1,5-bisphosphate (RuBP) in TpF-11, TpS-10 and TpS-11 were significantly higher than those in the wild-type plants. However, the transgenic plant TpF-9 which had a 1.7-fold higher level of FBPase activity showed the same phenotype as the wild-type plant, except for the increase of starch content in the source leaves. TpS-11 and TpS-10 plants with 1.6- and 4.3-fold higher SBPase activity, respectively, showed an increase in the photosynthetic CO(2) fixation, growth rate, RuBP contents and Rubisco activation state, while TpS-2 plants with 1.3-fold higher SBPase showed the same phenotype as the wild-type plants. These data indicated that the enhancement of either a >1.7-fold increase of FBPase or a 1.3-fold increase of SBPase in the chloroplasts had a marked positive effect on photosynthesis, that SBPase is the most important factor for the RuBP regeneration in the Calvin cycle and that FBPase contributes to the partitioning of the fixed carbon for RuBP regeneration or starch synthesis.  相似文献   

4.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

5.
The effect of pH and of Mg2+ concentration on the light activated form of stromal fructose-1,6-bisphosphatase (FBPase) was studied using the enzyme rapidly extracted from illuminated spinach chloroplasts. The (fructose-1,6-bisphosphate4-)(Mg2+) complex has been identified as the substrate of the enzyme. Therefore, changes of pH and Mg2+ concentrations have an immediate effect on the activity of FBPase by shifting the pH and Mg2+ dependent equilibrium concentration of the substrate. In addition, changes of pH and Mg2+ concentration in the assay medium have a delayed effect on FBPase activity. A correlation of the activities observed using different pH and Mg2+ concentrations indicates, that the effect is not a consequence of the pH and Mg2+ concentration as such, but is caused by a shift in the equilibrium concentration of a hypothetical inhibitor fructose-1,6-bisphosphate3- (uncomplexed), resulting in a change of the activation state of the enzyme. The interplay between a rapid effect on the concentration of the substrate and a delayed effect on the activation state enables a rigid control of stromal FBPase by stromal Mg2+ concentrations and pH. Fructose-1,6-bisphosphatase is allosterically inhibited by fructose-6-phosphate in a sigmoidal fashion, allowing a fine control of the enzyme by its product.Abbreviations Fru1,6 bis P fructose-1,6-bisphosphate - Fru6P fructose-6-phosphate - FBPase fructose-1,6-bisphosphatase Some of these results have been included in a preliminary report (Heldt et al. 1984)  相似文献   

6.
An immunological method for quantitative determination of photosynthetic fructose-1,6-bisphosphatase in crude extracts of leaves is proposed. It is based on the ELISA technique, and offers two modifications. A non-competitive technique has a higher sensitivity and is the right option for samples of low fructose-1,6-bisphosphatase content. However, this method is not sufficiently specific when the total protein is higher than 5 g/cm3; so, despite its lower sensitivity, in these circumstances a competitive technique is more suitable. Thus photosynthetic fructose-1,6-bisphosphatase can be measured without interferences from the gluconeogenic cytosolic enzyme of the photosynthetic cell or from a non-specific phosphatase present in the chloroplast.Abbreviations FBP Fructose-1,6-bisphosphate - FBPase Fructose-1,6-bisphosphatase  相似文献   

7.
8.
Full-size cDNAs encoding the precursors of chloroplast fructose-1,6-bisphosphatase (FBP), sedoheptulose-1,7-bisphosphatase (SBP), and the small subunit of Rubisco (RbcS) from spinach were cloned. These cDNAs complete the set of homologous probes for all nuclear-encoded enzymes of the Calvin cycle from spinach (Spinacia oleracea L.). FBP enzymes not only of higher plants but also of non-photosynthetic eukaryotes are found to be unexpectedly similar to eubacterial homologues, suggesting a eubacterial origin of these eukaryotic nuclear genes. Chloroplast and cytosolic FBP isoenzymes of higher plants arose through a gene duplication event which occurred early in eukaryotic evolution. Both FBP and SBP of higher plant chloroplasts have acquired substrate specificity, i.e. have undergone functional specialization since their divergence from bifunctional FBP/SBP enzymes of free-living eubacteria.Abbreviations FBP fructose-1,6-bisphosphatase - SBP sedoheptulose-1,7-bisphosphatase - FBA fructose-1,6-bisphosphate aldolase  相似文献   

9.
Thioredoxin (Td) f from pea (Pisum sativum L.) leaves was purified by a simple method, which provided a high yield of homogeneous Td f. Purified Td f had an isoelectric point of 5.4 and a relative molecular mass (Mr) of 12 kilodaltons (kDa) when determined by filtration through Superose 12, but an Mr of 15.8 kDa when determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified protein remained fully active for several months when conserved frozen at — 20° C. The pea protein was able to activate fructose1,6-bisphosphatase (FBPase; EC 3.1.3.11), but in contrast to other higher-plant Td f proteins, was not functional in the modulation of NADP+-malate dehydrogenase activity. In spite of the absence of immunological cross-reactions of pea and spinach Td f proteins with the corresponding antibodies, pea Td f activated not only the homologous FBPase, but also the spinach enzyme. The saturation curves for pea FBPase, either with fructose-1,6-bisphosphate in the presence of different concentrations of homologous Td f, or with pea Td f in the presence of excess substrate, showed sigmoid kinetics; this can be explained on the basis of a random distribution of fructose-1,6-bisphosphate, and of the oxidized and reduced forms of the activator, among the four Td f- and substrate-binding sites of this tetrameric enzyme. From the saturation curves of pea and spinach Td f proteins against pea FBPase, a 4:1 stoichiometry was determined for the Td f-enzyme binding. This is in contrast to the 2:1 stoichiometry found for the spinach FBPase. The UV spectrum of pea Td f had a maximum at 277 nm, which shifted to 281 nm after reduction with dithiothreitol (s at 280 nm for 15.8-kDa Mr = 6324 M–1 · cm–1). The fluorescence emission spectrum after 280-nm excitation had a maximum at 334 nm, related to tyrosine residues; after denaturation with guanidine isothiocyanate an additional maximum appeared at 350 nm, which is concerned with tryptophan groups. Neither the native nor the denatured form showed a significant increase in fluorescence after reduction by dithiothreitol, which means that the tyrosine and tryptophan groups in the reduced Td f are similarly exposed. Pea Td f appears to have one cysteine residue more than the three cysteines earlier described for spinach and Scenedesmus Td f proteins.Abbreviations DDT dithiothreitol - ELISA enzyme-linked immunosorbent assay - FBPase fructose- 1,6-bisphosphatase - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Td thioredoxin The authors are grateful to Mrs. Francisca Castro and Mr. Narciso Algaba for skilful technical assistance. This work was supported by grant PB87-0431 of Dirección General de Investigación Cientifica y Técnica (DGICYT, Spain).  相似文献   

10.
Mark Stitt  Hans W. Heldt 《Planta》1985,164(2):179-188
The metabolite levels in the mesophyll of leaves of Zea mays L. have been compared with the regulatory properties of the cytosolic fructose-1,6-bisphosphatase from the mesophyll to show how withdrawal of triose phosphate for sucrose synthesis is reconciled with generation of the high concentrations of triose phosphate which are needed to allow intercellular diffusion of carbon during photosynthesis. i) A new technique is presented for measuring the intercellular distribution of metabolites in maize. The bundle-sheath and mesophyll tissues are partially separated by differential homogenization and filtration through nylon nets under liquid nitrogen. ii) considerable gradients of 3-phosphoglycerate, triose phosphate, malate and phosphoenolpyruvate exist between the mesophyll and bundle sheath which would allow intercellular shuttles to be driven by diffusion. These gradients could result from the distribution of electron transport and the Calvin cycle in maize leaves. iii) consequently, the mesophyll contains high concentrations of triose phosphate and fructose-1,6-bisphosphate. iv) Most of the regulator metabolite fructose-2,6-bisphosphate, is present in the mesophyll. v) The cytosolic fructose-1,6-bisphosphatase has a lower substrate affinity than that found for the enzyme from C3 species, especially in the presence of inhibitors like fructose-2,6-bisphosphate. vi) This lowered affinity for substrate makes it possible to reconcile use of triose phosphate for sucrose synthesis with the maintenance of the high concentration of triose phosphate in the mesophyll needed for operation of photosynthesis in this species.Abbreviations DHAP Dihydroxyacetonephosphate - Fru1,6-bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - PEP(Case) phosphoenolpyruvate (carboxylase) - PGA 3-phosphoglycerate - Rubisco ribulose-1,5-bisphosphate carboxylase  相似文献   

11.

Background

In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP) and sedoheptulose-1, 7-bisphosphate (SBP) are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase), while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase) and sedoheptulose-1, 7-bisphosphatase (SBPase), respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario.

Results

Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II). Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations.

Conclusions

There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins: SBPase share a common ancestor with the gluconeogenesis-specific Class I FBPase of epsilon-proteobacteria (or probably originated from that of the ancestor of epsilon-proteobacteria), while FBPase arise from Class I FBPase of an unknown kind of eubacteria. During the evolution of SBPase from eubacterial Class I FBPase, the SBP-dephosphorylation activity was acquired through the transition ??from specialist to generalist??. The evolutionary substitution of the endosymbiotic-origin cyanobacterial bifunctional F/SBPase by the two light-regulated substrate-specific enzymes made the regulation of the Calvin cycle more delicate, which contributed to the evolution of eukaryotic photosynthesis and even the entire photosynthetic eukaryotes.  相似文献   

12.
Sedoheptulose-1,7-bisphosphatase (SBPase) is a Calvin Cycle enzyme exclusive to chloroplasts and is involved in photosynthetic carbon fixation. The two cysteine residues involved in its redox regulation have been identified by site-directed mutagenesis. They are four residues apart in a predicted loop between two alpha helices and probably form a disulphide bond when oxidised. Three-dimensional modelling of SBPase has been performed using crystallographic data from the structurally homologous pig fructose-1,6-bisphosphatase (FBPase). The results suggest that formation of the disulphide bridge in SBPase is directly analogous to the allosteric regulation of pig FBPase by AMP in terms of the resulting structural changes. Similar changes are thought to occur in chloroplast FBPase, which like SBPase, is also redox regulated and involved in carbon fixation. From the results presented here it appears that the same basic mechanism for the allosteric regulation of enzymic activity operates in the FBPases and SBPase but that the sites at which the regulatory ligands (AMP or thioredoxin) exert their effects are different in each  相似文献   

13.
Chloroplast fructose-1,6-bisphosphatase (D-fructose 1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) isolated from spinach leaves, was activated by preincubation with fructose 1,6-bisphosphate. The rate of activation was slower than the rate of catalysis, and dependent upon the temperature and the concentration of fructose 1,6-bisphosphate. The addition of other sugar diphosphates, sugar monophosphates or intermediates of the reductive pentose phosphate cycle neither replaced fructose 1,6-bisphosphate nor modified the activation process. Upon activation with the effector the enzyme was less sensitive to trypsin digestion and insensitive to mercurials. The activity of chloroplast fructose-1,6-bisphosphatase, preincubated with fructose 1,6-bisphosphate, returned to its basal activity after the concentration of the effector was lowered in the preincubation mixture. The results provide evidence that fructose-1,6-bisphosphatase resembles other regulatory enzymes involved in photosynthetic CO2 assimilation in its activation by chloroplast metabolites.  相似文献   

14.
Inositol monophosphatase is an enzyme in the biosynthesis of myo-inostiol, a crucial substrate for the synthesis of phosphatidylinositol, which has been demonstrated to be an essential component of mycobacteria. In this study, the Rv2131c gene from Mycobacterium tuberculosis H37Rv was cloned into the pET28a vector and the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) strain, allowing the expression of the enzyme in fusion with a histidine-rich peptide on the N-terminal. The fusion protein was purified from the soluble fraction of the lysed cells under native conditions by immobilized metal affinity chromatography (IMAC). The purified Rv2131c gene product showed inositol monophosphatase activity but with substrate specificity that was broader than those of several bacterial and eukaryotic inositol monophosphatases, and it also acted as fructose-1,6-bisphosphatase. The dimeric enzyme exhibited dual activities of IMPase and FBPase, with K(m) of 0.22+/-0.03mM for inositol-1-phosphate and K(m) of 0.45+/-0.05mM for fructose-1,6-bisphosphatase. To better understand the relationship between the function and structure of the Rv2131c enzyme, we constructed D40N, L71A, and D94N mutants and purified these corresponding proteins. Mutations of D40N and D94N caused the proteins to almost completely lose both the inositol monophosphatase and fructose-1,6-bisphosphatase activities. However, L71A mutant did not cause loss either of the activities, but the activity toward the inositol was 12-fold more resistant to inhibition by lithium (IC(50) approximately 60mM). Based on the substrate specificity and presence of conserved sequence motifs of the M. tuberculosis Rv2131c, we proposed that the enzyme belonged to class IV fructose-1,6-bisphosphatase (FBPase IV).  相似文献   

15.
In chloroplasts, the light-modulated fructose-1,6-bisphosphatase catalyzes the formation of fructose 6-bisphosphate for the photosynthetic assimilation of CO2 and the biosynthesis of starch. We report here the construction of a plasmid for the production of chloroplast fructose-1,6-bisphosphatase in a bacterial system and the subsequent purification to homogeneity of the genetically engineered enzyme. To this end, a DNA sequence that coded for chloroplast fructose-1,6-bisphosphatase of rapeseed (Brassica napus) leaves was successively amplified by PCR, ligated into the Ndel/EcoRI restriction site of the expression vector pET22b, and introduced into Escherichia coli cells. When gene expression was induced by isopropyl--d-thiogalactopyranoside, supernatants of cell lysates were extremely active in the hydrolysis of fructose 1,6-bisphosphate. Partitioning bacterial soluble proteins by ammonium sulfate followed by anion exchange chromatography yielded 10 mg of homogeneous enzyme per 1 of culture. Congruent with a preparation devoid of contaminating proteins, the Edman degradation evinced an unique N-terminal amino acid sequence [A-V-A-A-D-A-T-A-E-T-K-P-]. Gel filtration experiments and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the (recombinant) rapeseed chloroplast fructose-1,6-bisphosphatases was a tetramer [160 kDa] comprised of four identical subunits. Like other chloroplast fructose-1,6-bisphosphatases, the recombinant enzyme was inactive at 1 mM fructose 1,6-bisphosphate and 1 mM Mg2+ but became fully active after an incubation in the presence of either 10 mM dithiothreitol or 1 mM dithiothreitol and chloroplast thioredoxin. However, at variance with counterparts isolated from higher plant leaves, the low activity observed in absence of reductants was not greatly enhanced by high concentrations of fructose 1,6-bisphosphate (3 mM) and Mg2+ (10 mM). In the catalytic process, all chloroplast fructose-1,6-bisphosphatases had identical features; viz., the requirement of Mg2+ as cofactor and the inhibition by Ca2+. Thus, the procedure described here should prove useful for the structural and kinetic analysis of rapeseed chloroplast fructose-1,6-bisphosphatase in view that this enzyme was not isolated from leaves.Abbreviation DTT dithiothreitol - PCR polymerase chain reaction - EDTA (ethylenedinitrilo)tetraacetic  相似文献   

16.
It was recently established that fructose-1,6-bisphosphate (FBP) aldolase (FBA) and tagatose-1,6-bisphosphate (TBP) aldolase (TBA), two class II aldolases, are highly specific for the diastereoselective synthesis of FBP and TBP from glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP), respectively. In this paper, we report on a FBA from the thermophile Thermus caldophilus GK24 (Tca) that produces both FBP and TBP from C(3) substrates. Moreover, the FBP:TBP ratio could be adjusted by manipulating the concentrations of G3P and DHAP. This is the first native FBA known to show dual diastereoselectivity among the FBAs and TBAs characterized thus far. To explain the behavior of this enzyme, the X-ray crystal structure of the Tca FBA in complex with DHAP was determined at 2.2A resolution. It appears that as a result of alteration of five G3P binding residues, the substrate binding cavity of Tca FBA has a greater volume than those in the Escherichia coli FBA-phosphoglycolohydroxamate (PGH) and TBA-PGH complexes. We suggest that this steric difference underlies the difference in the diastereoselectivities of these class II aldolases.  相似文献   

17.
18.
Fructose-1,6-bisphosphatase (FBPase), which is mainly used to supply NADPH, has an important role in increasing L-lysine production by Corynebacterium glutamicum. However, C. glutamicum FBPase is negatively regulated at the metabolic level. Strains that overexpressed Escherichia coli fructose-1,6-bisphosphatase in C. glutamicum were constructed, and the effects of heterologous FBPase on cell growth and L-lysine production during growth on glucose, fructose, and sucrose were evaluated. The heterologous fructose-1,6-bisphosphatase is insensitive to fructose 1-phosphate and fructose 2,6-bisphosphate, whereas the homologous fructose-1,6-bisphosphatase is inhibited by fructose 1-phosphate and fructose 2,6-bisphosphate. The relative enzyme activity of heterologous fructose-1,6-bisphosphatase is 90.8% and 89.1% during supplement with 3 mM fructose 1-phosphate and fructose 2,6-bisphosphate, respectively. Phosphoenolpyruvate is an activator of heterologous fructose-1,6-bisphosphatase, whereas the homologous fructose-1,6-bisphosphatase is very sensitive to phosphoenolpyruvate. Overexpression of the heterologous fbp in wild-type C. glutamicum has no effect on L-lysine production, but fructose-1,6-bisphosphatase activities are increased 9- to 13-fold. Overexpression of the heterologous fructose-1,6-bisphosphatase increases L-lysine production in C. glutamicum lysC T311I by 57.3% on fructose, 48.7% on sucrose, and 43% on glucose. The dry cell weight (DCW) and maximal specific growth rate (μ) are increased by overexpression of heterologous fbp. A “funnel-cask” diagram is first proposed to explain the synergy between precursors supply and NADPH supply. These results lay a definite theoretical foundation for breeding high L-lysine producers via molecular target.  相似文献   

19.
This work was done to test claims (Sangwan and Singh, Physiol. Plant. 73: 21–26) that the developing endosperm of wheat ( Triticum aestivum L.) contains a cytosolic and a plastidic fructose- 1,6-bisphosphatase (EC 3.1.3.11; FBPase). Repetition of the procedure of Sangwan and Singh with extracts of developing endosperm of Triticum aestivum cv. Mercia produced two peaks of apparent FBPase activity on elution from DEAE-cellulose. Both peaks showed high activity of pyrophosphate:fructose-6-phos-phate 1-phosphotransferase [EC 2.7.1.90; PFK(PPi)]. The apparent FBPase activity in both peaks was stimulated by 20 μ M fructose-2,6-bisphosphate and inhibited by antibodies to PFK(PPi). Antibody to plastidic FBPase did not react positively in an immunoblot analysis with any protein of Mr comparable to that of known FBPase in either peak. It is argued that the ability of each peak to convert fructose-1,6-bisphosphate to fructose-6-phosphate was due to PFK(PPi). and that there remains no substantiated evidence for the presence of a plastidic FBPase in the developing endosperm of wheat.  相似文献   

20.
以转高等植物ALD和TPI基因的鱼腥藻 7120为对象 ,研究了ALD和TPI两个酶表达量对细胞光合固碳效率的影响。考察了初始pH、NaHCO3浓度和CO2浓度对转基因藻和野生藻生长、光合活性及无机碳亲和力的影响。结果表明 ,转基因藻在较高碳源浓度下 ,其生长速率和光合放氧活性比野生藻有显著的提高 ,并且可以比野生藻耐受更高的pH。在含有2%CO2的空气中 ,转基因藻对外源无机碳的亲和力比野生藻提高了4.06倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号