首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The relationship between energy metabolism and ageing is of great interest because aerobic metabolism is the primary source of reactive oxygen species which is believed to be of major importance in the ageing process. We conducted a longitudinal study on captive zebra finches where we tested the effect of age on basal metabolic rate (BMR), as well as the effect of BMR on the rate of metabolic ageing (decline in BMR with age) and survival. Basal metabolic rate declined with age in both sexes after controlling for the effect of body mass, indicating a loss of functionality with age. This loss of functionality could be due to accumulated oxidative damage, believed to increase with increasing metabolic rate, c.f. the free radical theory of ageing. If so, we would expect the rate of metabolic ageing to increase and survival to decrease with increasing BMR. However, we found no effect of BMR on the rate of metabolic ageing. Furthermore, survival was not affected by BMR in the males. In female zebra finches there was a tendency for survival to decrease with increasing BMR, but the effect did not reach significance (P<0.1). Thus, the effect of BMR on the rate of functional deterioration with age, if any, was not strong enough to influence neither the rate of metabolic ageing nor survival in the zebra finches.  相似文献   

2.
Oxidative stress is suggested as a contributor to the ageing process. Knowledge of the relationship between age and energy expenditure may contribute to our understanding of ageing patterns, due to the link between oxygen consumption and free radical production. However, studies on basal metabolic rate (BMR) and age have generally been cross-sectional, which may confound estimates of the age effect due to disproportionate mortality (also known as 'selective disappearance'). We therefore performed a longitudinal study of BMR using captive zebra finches (Taeniopygia guttata) up to 5 years of age. BMR declined with age in individuals of both sexes when body mass was controlled for. Males gained mass with age while females did not. There was no evidence for disproportionate mortality with respect to BMR in either sex. To our knowledge, this is the first longitudinal study of avian BMR over such a long proportion of the lifespan of the study species.  相似文献   

3.
Laboratory strains of house mice (Mus domesticus) are increasingly used as model organisms in evolutionary physiology, so information on levels of genetic variation is important. For example, are levels of genetic variation comparable to those found in populations of wild house mice? We studied allozymes to estimate genetic variation in outbred Hsd:ICR mice, which have been used in several studies with evolutionary emphasis. The physiological significance of allozyme variation remains obscure. Several workers have reported relationships between multi-locus heterozygosity and metabolic traits, but endotherms have not been studied. Therefore, we also measured mice for basal metabolic rate (BMR), maximal oxygen consumption during forced treadmill exercise (VO2max), and 12 other traits related to locomotor physiology, before genotyping them for 10 allozyme loci. Four of these loci were polymorphic, all were in Hardy-Weinberg equilibrium, and inbreeding coefficients were not significantly different from zero. Average heterozygosities were 11%, similar to values reported for wild populations of house mice. Fourteen percent of the associations between single-locus genotype and physiological traits were statistically significant. Multi-locus heterozygosity was not significantly related to VO2max, but was positively correlated with BMR, a result opposite to the negative correlation between standard metabolic rate and heterozygosity reported in many ectotherms. Therefore, the proposed mechanisms for the effect of multi-locus heterozygosity on metabolic rate in ectotherms may not apply to endotherms.  相似文献   

4.
Apparent changes in breeding performance with age measured at the population level can be due to changes in individual capacity at different ages, or to the differential survival of individuals with different capabilities. Estimating the relative importance of the two is important for understanding ageing patterns in natural populations, but there are few studies of such populations in which these effects have been disentangled. We analysed laying date and clutch size as measures of individual performance in a population of mute swans (Cygnus olor) studied over 25 years at Abbotsbury, UK. On both measures of breeding performance, individuals tended to improve up to the age of 6 or 7, and to decline after about the age of 12. Individuals with longer lifespans performed better at all ages (earlier laying, larger clutches) than animals that ceased breeding earlier. We conclude that the apparent mean increase in performance with age in mute swans is due to both individual improvement and differential survival of individuals who perform well, while the decline in older age groups is due to individual loss of function. Our results underline the need to take individual differences into account when testing hypotheses about life histories in wild populations.  相似文献   

5.
Estimates of a trait heritability and repeatability can get at an idea of its usefulness for being an individual characteristic and its ability to change under selection pressure. Heritability and repeatability of energetic parameters still poorly studied in birds. The most important physiological characteristic of homoiotherms is resting metabolic rate (RMR), which, in the absence of productive processes, does not exceed basal metabolic rate (BMR). We estimated BMR repeatability in free-living pied flycatchers in Moscow Region (55 degrees 44' N, 36 degrees 51' E; 1992-2008) and Tomsk (56 degrees 20' N, 84 degrees 56' E; 2008-2009) populations over intervals from 40 days to 3 years. In Moscow Region population, BMR repeatability amounted to tau = 0.34 +/- 0.10 (n=80) if measured over 1 year interval, tau = 0.60 +/- 0.15 (n=19) if measured over 2 years interval, and tau = 0.85 +/- 0.13 (n=6) if measured over 3 years interval providing that consecutive BMR measurements were done in the same period of reproductive season. In Tomsk population, BMR repeatability, measured over 1 year interval, amounted to tau = 0.49 +/- 0.11 (n=50). Repeatability is a measure of a trait constancy and sets the upper limit of its heritability. To estimate RMR heritability, cross-fostering experiments have been conducted in 2003-2005 with flycatchers of Moscow Region population. RMR of chicks positively correlated with BMR of their biological fathers, whereas such correlation in metabolic rates between chicks and their foster fathers was absent. The RMR heritability estimate turned out to be h2 = 0.43 +/- 0.17 (n=210). The obtained estimates of heritability and repeatability of fundamental energetic traits are rather high for physiological features. This suggests the existence of a potential for direct selection on BMR and evolutionary stable diversity of avian populations with regard to basal metabolic rate.  相似文献   

6.
This study aimed to assess the relationship between basal metabolic rate (BMR) and metabolic heat production, and to clarify the involvement of BMR in determining the phenotype of cold tolerance. Measurements of BMR, maximum oxygen uptake, and cold exposure test were conducted on ten males. In the cold exposure test, rectal (T(rec)) and mean skin temperatures (T(ms)), oxygen uptake, and blood flow at forearm (BF(arm)) were measured during exposure to cold (10 degrees C) for 90 min. Significant correlations were observed between BMR and increasing rate of oxygen uptake, as well as between decreasing rate of BF(arm) and increasing rate of oxygen uptake at the end of cold exposure. These findings suggested that individuals with a lower BMR were required to increase their metabolic heat production during cold exposure, and that those with a higher BMR were able to moderate increased metabolic heat production during cold exposure because they were able to reduce heat loss. This study showed that BMR is an important factor in determining the phenotype of cold tolerance, and that individuals with a low BMR showed calorigenic-type cold adaptation, whereas subjects with a high BMR exhibited adiabatic-type cold adaptation by peripheral vasoconstriction.  相似文献   

7.
Quantitative genetic analyses of basal metabolic rate (BMR) can inform us about the evolvability of the trait by providing estimates of heritability, and also of genetic correlations with other traits that may constrain the ability of BMR to respond to selection. Here, we studied a captive population of zebra finches (Taeniopygia guttata) in which selection lines for male courtship rate have been established. We measure BMR in these lines to see whether selection on male sexual activity would change BMR as a potentially correlated trait. We find that the genetic correlation between courtship rate and BMR is practically zero, indicating that the two traits can evolve independently of each other. Interestingly, we find that the heritability of BMR in our population (h2=0.45) is markedly higher than was previously reported for a captive zebra finch population from Norway. A comparison of the two studies shows that additive genetic variance in BMR has been largely depleted in the Norwegian population, especially the genetic variance in BMR that is independent of body mass. In our population, the slope of BMR increase with body mass differs not only between the sexes but also between the six selection lines, which we tentatively attribute to genetic drift and/or founder effects being strong in small populations. Our study therefore highlights two things. First, the evolvability of BMR may be less constrained by genetic correlations and lack of independent genetic variation than previously described. Second, genetic drift in small populations can rapidly lead to different evolvabilities across populations.  相似文献   

8.
Basal metabolic rate (BMR) constitutes the minimal metabolic rate in the zone of thermo‐neutrality, where heat production is not elevated for temperature regulation. BMR thus constitutes the minimum metabolic rate that is required for maintenance. Interspecific variation in BMR in birds is correlated with food habits, climate, habitat, flight activity, torpor, altitude, and migration, although the selective forces involved in the evolution of these presumed adaptations are not always obvious. I suggest that BMR constitutes the minimum level required for maintenance, and that variation in this minimum level reflects the fitness costs and benefits in terms of ability to respond to selective agents like predators, implying that an elevated level of BMR is a cost of wariness towards predators. This hypothesis predicts a positive relationship between BMR and measures of risk taking such as flight initiation distance (FID) of individuals approached by a potential predator. Consistent with this suggestion, I show in a comparative analysis of 76 bird species that species with higher BMR for their body mass have longer FID when approached by a potential predator. This effect was independent of potentially confounding variables and similarity among species due to common phylogenetic descent. These results imply that BMR is positively related to risk‐taking behaviour, and that predation constitutes a neglected factor in the evolution of BMR.  相似文献   

9.
长爪沙鼠的代谢率与器官的关系   总被引:17,自引:0,他引:17  
宋志刚  王德华 《动物学报》2002,48(4):445-451
我们测定了野生长爪沙鼠(Meriones unguiculatus)的基础代谢率和冷诱导的最大代谢率,分析了动物体内11种器官或组织的大小与代谢率的关系。长爪沙鼠的基础代谢率为118.10mlO2/h,最大代谢率为659.83mlO2/h。经过残差分析表明,基础代谢率并不与任何一种器官或组织相关,而最大代谢率与小肠湿重(n=20,r=-0.478,P=0.033)和消化道全长(n=20,r=-0.487,P=0.030)显著相关,表明体内器官重量的差别并不是造成种内基础代谢率差别的原因;体内存在着与最大代谢率相关的“代谢机器”,消化系统(特别是小肠)是这一代谢机器的重要组成部分,但代谢机器的大小并不能通过基础代谢率反映出来。基础代谢率与最大代谢率不相关,因此不支持“较高的基础代谢率能够产生较高的非基础代谢率(最大代谢率等)”的假设。  相似文献   

10.
Phenotypic flexibility in metabolic rates allows organisms to reversibly adjust their energy flow to meet challenges imposed by a variable environment. In turn, the food habits hypothesis (FHH) predicts that species or populations adjust their basal metabolic rate (BMR) according to the diet attributes such as food abundance or predictability. Desert ecosystems represent a temporally heterogeneous environment because of low rain pulse predictability, which is also associated with temporal variation in food resources. In the present study, we investigated the relationship between the magnitude of BMR flexibility in response to dietary acclimation and the inter-annual rainfall variability in three populations of rufous-collared sparrows. Specifically we addressed the question of whether birds from a desert environment are more flexible in BMR than those from non-desert habitats. We found a positive trend between BMR flexibility and the inter-annual rainfall variability. In fact, dietary treatments had a significant effect only in desert birds, a result that also supported the FHH. Our study confirms the existence of phenotypic variation in response to environmental conditions among populations, and also highlights the importance of considering the circumstances in which phenotypic flexibility evolves and the specific environmental cues that induce their expression.  相似文献   

11.
An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus). We obtained measurements of BMR and body mass (Mb) from 911 house sparrows on the islands of Leka and Vega along the coast of Norway. These two populations were the source populations for translocations to create an additional third, admixed ‘common garden’ population in 2012. With the use of a novel genetic group animal model concomitant with a genetically determined pedigree, we differentiate genetic and environmental sources of variation, thereby providing insight into the effects of spatial population structure on evolutionary potential. We found that the evolutionary potential of BMR was similar in the two source populations, whereas the Vega population had a somewhat higher evolutionary potential of Mb than the Leka population. BMR was genetically correlated with Mb in both populations, and the conditional evolutionary potential of BMR (independent of body mass) was 41% (Leka) and 53% (Vega) lower than unconditional estimates. Overall, our results show that there is potential for BMR to evolve independently of Mb, but that selection on BMR and/or Mb may have different evolutionary consequences in different populations of the same species.  相似文献   

12.
Basal metabolic rate (BMR) was established as a common reference point allowing comparable measures across different individuals and species. BMR is often regarded as a minimal rate of metabolism compatible with basic processes necessary to sustain life. One confusing aspect, however, is that BMR is highly variable, both within and between species. A potential explanation for this variability is that while individuals with high BMRs may suffer the disadvantage of having to feed for longer to cover the extra energy demands, this may be offset by advantages that accrue because of the high metabolic rate. One suggested advantage is that high levels of BMR are a consequence of maintaining a morphology that permits high rates of the maximal sustained rate of metabolism (SusMR)--the rate of metabolism that can be sustained for days or weeks. We have been studying the energetics of MF1 laboratory mice during peak lactation to investigate this idea. In this article, we review some of our work in connection with three particular predictions that derive from the hypothesised links among morphology, basal metabolism, and sustained metabolic rate. By comparing groups of individuals, for example, lactating and nonlactating individuals, the patterns that emerge are broadly consistent with the hypothesis that BMR and SusMR are linked by morphology. Lactating mice have bigger organs connected with energy acquisition and utilisation, greater resting metabolic rates in the thermoneutral zone, called RMRt (approximately equivalent to BMR), and high sustainable rates of maximal energy intake. However, when attempts are made to establish these relationships across individuals within lactating mice, the associations that are anticipated are either absent or very weak and depend on shared variation due to body mass. At this level there is very little support for the suggestion that variation in RMRt (and thus BMR) is sustained by associations with SusMR.  相似文献   

13.
Animal species of similar body mass vary widely in basal metabolic rate (BMR). A central problem of evolutionary physiology concerns the anatomical/physiological origin and functional significance of that variation. It has been hypothesized that such interspecific differences in wild animals evolved adaptively from differences in relative sizes of metabolically active organs. In order to minimize confounding phenotypic effects and maximize relevant genetic variation, we tested for intraspecific correlations between body-mass-corrected BMR and masses of four organs (heart, kidney, liver, and small intestine) among six inbred strains of mice. We found significant differences between strains in BMR and in masses of all four organs. Strains with exceptionally high (or low) BMR tended to have disproportionately large (or small) organs. The mass of each organ was correlated with the masses of each of the other three organs. Variation in organ masses accounted for 52% of the observed variation in BMR, of which 42% represented between-strain variation, and 10% represented within-strain variation. This conclusion is supported by published measurements of metabolic rates of tissue slices from the four organs. The correlation between BMR and intestine or heart mass arose exclusively from differences between strains, while the correlation between BMR and liver or kidney mass also appeared in comparing individual mice within the same strain. Thus, even though the masses of the four examined organs account for no more than 17% of total body mass, their high metabolic activities or correlated factors account for much of the variation in BMR among mice. We suggest that large masses of metabolically active organs are subject to natural selection through evolutionary trade-offs. On the one hand, they make possible high-energy budgets (advantageous under some conditions), but on the other hand they are energetically expensive to maintain.  相似文献   

14.
Several competing hypotheses attempt to explain how environmental conditions affect mass-independent basal metabolic rate (BMR) in mammals. One of the most inclusive is the hypothesis that associates BMR with food habits, including habitat productivity. The effects of food habits have been widely investigated at the interspecific level, and variation between individuals and populations has been largely ignored. Intraspecific analysis of physiological traits has the potential to compensate for many pitfalls associated with interspecific analyses and serve as a useful approach for evaluating hypotheses regarding metabolic adaptation. Here we tested the effects of climatic variables (mean annual rainfall = PP, mean annual temperature = TA), net primary productivity (NPP) and the de Martonne index (DMi) of aridity on mass-independent BMR among four populations of the caviomorph rodent Octodon degus along a geographic gradient in Chile. BMR was measured on animals maintained in a common garden acclimation set-up, thus kept under the same environment and diet quality for at least 6 months. Mass-independent BMR was significantly different among degu populations showing a large intraspecific spread in metabolic rates. A very large fraction of interpopulational variability in mass-independent BMR was explained by NPP, PP and DMi. Our results were conclusive about the effects of habitat productivity on setting the level of mass-independent BMR at the intraspecific–interpopulational level.  相似文献   

15.
Investigators have rarely sought evidence for senescence in natural populations because it is assumed that relatively few individuals will survive long enough in the wild to exhibit the intrinsic increase in mortality with age expected from senescent individuals. Nevertheless, senescence has been documented in some natural populations, mostly in birds and mammals. Here we report on a comparative study of senescence in two natural populations of guppies (Poecilia reticulata). We document senescence as an age-specific increase in mortality rate, with use of mark-recapture studies and implementation of program MARK for analysis of such observations. Extrinsic mortality was controlled for by choosing populations that experience low rates of predation because they coexist with only a single piscine predator (Rivulus hartii). These populations differ in their evolutionary history because one was native to such a site whereas the other was introduced to a site that previously contained no guppies. The source of the introduced guppies was a high-predation population downstream below a barrier waterfall. Theory predicts that the guppies derived from a high-predation locality should experience senescence at an earlier age than the native low-predation population; however, the historical differences among these populations are also confounded with everything else that differs among the two localities. We found that females from a natural low-predation population have delayed senescence compared with the recently established population and hence that the differences among localities in senescence conform to theoretical predictions. The males from natural low-predation environments also had lower overall mortality rates, but contrary to predictions, the pattern of senescence for males did not differ between populations. The difference between the sexes is potentially attributable to two factors that lower the statistical power for distinguishing differences in the age-specific acceleration of mortality in males. One factor is that males have higher mortality rates, so fewer survive to advanced ages. A second is that we had a greater ability to discriminate among older age classes in females. We also found that the introduced population sustained a higher rate of disease than the native low-predation population. Such disease may represent a confounding factor in our comparison, but it may also reflect one of the trade-offs inherent in the life-history differences of these populations.  相似文献   

16.
Until recently it had been widely accepted that birds are energetically adapted to the latitude they inhabit, having an increased basal metabolic rate (BMR) at higher latitudes. Latterly, this general view has been questioned and the influence of phenotypic flexibility, due to factors such as habitat, life‐history or acclimatization has received increased attention. In particular, focus has been directed towards comparing species from arid and mesic habitats, but less attention has been given to species which breed in cold climates. We chose to study northern wheatears Oenanthe oenanthe from two populations at different latitudes (southern Norway, Iceland), but with similar life‐histories and habitat requirements throughout the year, in a common‐garden experiment. In order to assess true latitudinal trends in metabolic rate, we estimated the nocturnal resting metabolic rate (RMR) of northern wheatears from southern Norway and Iceland at different temperatures from 0° to 30°C. We found that Norwegian birds had overall lower metabolic rates than Icelandic birds, which were also slightly larger. This difference was not observed at 0°C, which might indicate that Icelandic birds might rely on better feather insulation reducing metabolic costs at very low temperatures. At temperatures above 10°C birds of both populations had constant metabolic values, indicating that their thermoneutral range almost completely covered the temperatures experienced during the breeding period. This study shows that the northern wheatear, which is one of only a few insectivorous long‐distance migratory songbirds occurring at such high latitudes, has evolved metabolic adaptations to life at cold temperatures which are endogenously determined.  相似文献   

17.
Immunosenescence, the deterioration of immune system capability with age, may play a key role in mediating age-related declines in whole-organism performance, but the mechanisms that underpin immunosenescence are poorly understood. Biomedical research on humans and laboratory models has documented age and disease related declines in the telomere lengths of leukocytes (‘immune cells’), stimulating interest their having a potentially general role in the emergence of immunosenescent phenotypes. However, it is unknown whether such observations generalise to the immune cell populations of wild vertebrates living under ecologically realistic conditions. Here we examine longitudinal changes in the mean telomere lengths of immune cells in wild European badgers (Meles meles). Our findings provide the first evidence of within-individual age-related declines in immune cell telomere lengths in a wild vertebrate. That the rate of age-related decline in telomere length appears to be steeper within individuals than at the overall population level raises the possibility that individuals with short immune cell telomeres and/or higher rates of immune cell telomere attrition may be selectively lost from this population. We also report evidence suggestive of associations between immune cell telomere length and bovine tuberculosis infection status, with individuals detected at the most advanced stage of infection tending to have shorter immune cell telomeres than disease positive individuals. While male European badgers are larger and show higher rates of annual mortality than females, we found no evidence of a sex difference in either mean telomere length or the average rate of within-individual telomere attrition with age. Our findings lend support to the view that age-related declines in the telomere lengths of immune cells may provide one potentially general mechanism underpinning age-related declines in immunocompetence in natural populations.  相似文献   

18.
Phenotypic variation in physiological traits, such as energy metabolism, is commonly subjected to adaptive interpretations, but little is known about the heritable basis or genetic correlations among physiological traits in non-domesticated species. Basal metabolic rate (BMR) and body mass are related in complex ways. We studied the quantitative genetics of BMR, residual BMR (on body mass), mass-specific BMR and body mass of stonechats originating from four different populations and bred in captivity. Heritabilities ranged from 0.2 to 0.7. The genetic variance–covariance structure implied that BMR, mass-specific BMR and body mass can in part evolve independently of each other, because we found genetic correlations deviating significantly from one and minus one. BMR, mass-specific BMR and body mass further differed among populations at the phenotypic level; differences in the genetic correlation among populations are discussed.  相似文献   

19.
Despite evidence that some individuals achieve both superiorreproductive performance and high survivorship, the factorsunderlying variation in individual quality are not well understood.The compensation and increased-intake hypotheses predict thatbasal metabolic rate (BMR) influences reproductive performance;if so, variation in BMR may be related to differences in individualquality. We evaluated whether BMR measured during the incubationperiod provides a proximate explanation for variation in individualquality by measuring the BMRs and reproductive performance ofLeach's storm-petrels (Oceanodroma leucorhoa) breeding on KentIsland, New Brunswick, Canada, during 2000 and 2001. We statisticallycontrolled for internal (body mass, breeding age, sex) and external(year, date, time of day) effects on BMR. We found that maleswith relatively low BMRs hatched their eggs earlier in the seasonand that their chicks' wing growth rates were faster comparedto males with relatively high BMRs. Conversely, BMR was notrelated to egg volume, hatching date, or chick growth rate forfemales or to lifetime (23 years) hatching success for eithersex. Thus, for males but not for females, our results supportthe compensation hypothesis. This hypothesis predicts that animalswith low BMRs will achieve better reproductive performance thananimals with high BMRs because they have lower self-maintenancecosts and therefore can apportion more energy to reproduction.These results provide evidence that intraspecific variationin reproductive performance is related to BMR and suggest thatBMR may influence individual quality in males.  相似文献   

20.
Basal metabolic rate (BMR) is the rate of metabolism of a resting, postabsorptive, non-reproductive, adult bird or mammal, measured during the inactive circadian phase at a thermoneutral temperature. BMR is one of the most widely measured physiological traits, and data are available for over 1,200 species. With data available for such a wide range of species, BMR is a benchmark measurement in ecological and evolutionary physiology, and is often used as a reference against which other levels of metabolism are compared. Implicit in such comparisons is the assumption that BMR is invariant for a given species and that it therefore represents a stable point of comparison. However, BMR shows substantial variation between individuals, populations and species. Investigation of the ultimate (evolutionary) explanations for these differences remains an active area of inquiry, and explanation of size-related trends remains a contentious area. Whereas explanations for the scaling of BMR are generally mechanistic and claim ties to the first principles of chemistry and physics, investigations of mass-independent variation typically take an evolutionary perspective and have demonstrated that BMR is ultimately linked with a range of extrinsic variables including diet, habitat temperature, and net primary productivity. Here we review explanations for size-related and mass-independent variation in the BMR of animals, and suggest ways that the various explanations can be evaluated and integrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号