首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
长爪沙鼠的代谢率与器官的关系   总被引:17,自引:0,他引:17  
宋志刚  王德华 《动物学报》2002,48(4):445-451
我们测定了野生长爪沙鼠(Meriones unguiculatus)的基础代谢率和冷诱导的最大代谢率,分析了动物体内11种器官或组织的大小与代谢率的关系。长爪沙鼠的基础代谢率为118.10mlO2/h,最大代谢率为659.83mlO2/h。经过残差分析表明,基础代谢率并不与任何一种器官或组织相关,而最大代谢率与小肠湿重(n=20,r=-0.478,P=0.033)和消化道全长(n=20,r=-0.487,P=0.030)显著相关,表明体内器官重量的差别并不是造成种内基础代谢率差别的原因;体内存在着与最大代谢率相关的“代谢机器”,消化系统(特别是小肠)是这一代谢机器的重要组成部分,但代谢机器的大小并不能通过基础代谢率反映出来。基础代谢率与最大代谢率不相关,因此不支持“较高的基础代谢率能够产生较高的非基础代谢率(最大代谢率等)”的假设。  相似文献   

2.
Basal metabolic rate (BMR) is probably the most studied aspect of energy metabolism in vertebrate endotherms. Numerous papers have explored its mass allometry, phylogenetic and ecological relationships, and ontogeny. Implicit in many of these studies (and explicit in some) is the view that BMR responds to selection, which requires repeatability and heritability. However, BMR is highly plastic in response to numerous behavioral and environmental factors and there are surprisingly few data on its repeatability. Moreover, the mechanistic underpinnings of variation in BMR are unclear, despite considerable research. We studied BMR repeatability in deer mice (Peromyscus maniculatus) across intervals of 30–60 days, and also examined the influence of birth altitude (3,800 m versus 340 m) and temperature acclimation (to ∼5 or ∼20°C) on BMR, and the relationship between BMR and organ size. Neither acclimation temperature nor natal altitude alone influenced BMR, but the combination of birth at high altitude and cold acclimation significantly increased BMR. Few visceral organ masses were correlated to BMR and most were inconsistent across natal altitudes and acclimation temperatures, indicating that no single organ ‘controls’ variation in BMR. In several treatment groups, the mass of the ‘running motor’ (combined musculoskeletal mass) was negatively correlated to BMR and the summed mass of visceral organs was positively correlated to BMR. We found no repeatability of BMR in any treatment group. That finding—in sharp contrast to high repeatability of BMR in several other small endotherms—suggests little potential for direct selection to drive BMR evolution in deer mice.  相似文献   

3.

Phenotypic flexibility in avian metabolic rates and body composition have been well-studied in high-latitude species, which typically increase basal metabolic rate (BMR) and summit metabolism (Msum) when acclimatized to winter conditions. Patterns of seasonal metabolic acclimatization are more variable in lower-latitude birds that experience milder winters, with fewer studies investigating adjustments in avian organ and muscle masses in the context of metabolic flexibility in these regions. We quantified seasonal variation (summer vs winter) in the masses of organs and muscles frequently associated with changes in BMR (gizzard, intestines and liver) and Msum (heart and pectoral muscles), in white-browed sparrow-weavers (Plocepasser mahali). We also measured pectoral muscle thickness using a portable ultrasound system to determine whether we could non-lethally estimate muscle size. A concurrent study measured seasonal changes in BMR and Msum in the same population of sparrow-weavers, but different individuals. There was no seasonal variation in the dry masses of the gizzard, intestines or liver of sparrow-weavers, and during the same period, BMR did not vary seasonally. We found significantly higher heart (~ 18% higher) and pectoral muscle (~ 9% higher) dry mass during winter, although ultrasound measurements did not detect seasonal changes in pectoral muscle size. Despite winter increases in pectoral muscle mass, Msum was ~ 26% lower in winter compared to summer. To the best of our knowledge, this is the first study to report an increase in avian pectoral muscle mass but a concomitant decrease in thermogenic capacity.

  相似文献   

4.
The aerobic capacity model postulates that high basal metabolic rates (BMR) associated with endothermy evolved as a correlated response to the selection on maximum, peak metabolic rate Vo2max. Furthermore, the model assumes that BMR and Vo2max are causally linked, and therefore, evolutionary changes in their levels cannot occur independently. To test this, we compared metabolic and anatomical correlates of selection for high and low body mass-corrected BMR in males of laboratory mice of F18 and F19 selected generations. Divergent selection resulted in between-line difference in BMR equivalent to 2.3 phenotypic standard deviation units. Vo2max elicited by forced swimming in 20 degrees C water was higher in the low BMR than high BMR line and did not differ between the lines when elicited by exposure to heliox at -2.5 degrees C. Moreover, the magnitude of swim- and heliox-induced hypothermia was significantly smaller in low BMR mice, whereas their interscapular brown adipose tissue was larger than in high BMR mice. Our results are therefore at variance with the predictions of aerobic capacity model. The selection also resulted in correlated response in food consumption (C) and masses of metabolically active internal organs: kidneys, liver, small intestine, and heart, which fuel maximum, sustained metabolic rate (SusMR) rather than Vo2max. These correlated responses were strong enough to claim the existence of positive, genetic correlations between BMR and the mass of viscera as well as C. Thus, our findings support the suggestion that BMR evolved as a correlated response to selection for SusMR, not Vo2max. In functional terms BMR should therefore be interpreted as a measure of energetic costs of maintenance of metabolic machinery necessary to sustain high levels of energy assimilation rate.  相似文献   

5.
Body composition in vertebrates is known to show phenotypic plasticity, and changes in organ masses are usually rapid and reversible. One of the most rapid and reversible changes is the transformation of the female avian reproductive organs before breeding. This provides an excellent system to investigate the effects of plasticity in organ size on basal metabolic rate (BMR) through relationships between organ masses and BMR. We compared body composition of female European starlings (Sturnus vulgaris) during various reproductive stages over 3 yr and investigated the pattern of changes in reproductive and nonreproductive organ mass during follicular development and ovulation. Furthermore, we analyzed the relationship between organ mass and resting metabolic rate (RMR) in nonbreeding, laying, and chick-rearing females. Our analysis revealed marked variation in organ masses between breeding stages but no consistent pattern among years except for kidney and pectoralis muscle. Furthermore, changes in nonreproductive organs did not parallel the cycle of growth and regression of the reproductive organs. The oviduct gained 62% of its 22-fold increase in mass in only 3 d, and oviduct regression was just as rapid and began even before the final egg of the clutch was laid, with 42% of the oviduct mass lost before laying of the final egg. In laying females, 18% of variation in mass-corrected RMR was explained by the mass of the oviduct (r2=0.18, n=80, P<0.0005), while pectoralis muscle mass in nonbreeding individuals and liver and gizzard mass in chick-rearing females were the only organs significantly related to RMR (r2=0.31-0.44). We suggest that the nonreproductive organs are affected more by changes in local ecological conditions than the reproductive state itself and that the activity and maintenance cost of the oviduct is high enough that selection has led to a very tight size-function relationship for this organ.  相似文献   

6.
The obligatory cost of living for endotherms is measured by basal metabolic rate (BMR), a variable that is known to change after thermal acclimation. However, the relative timing between variation in ambient temperature and BMR is not well understood. In this study, we addressed this problem in the sparrow Zonotrichia capensis, studying whether previous thermal history affects the response of BMR to a new acclimation temperature. We found that after 4 weeks of acclimation either to 30 or 15 °C birds exhibited significant differences in BMR from pre-acclimation levels. Nevertheless, after a re-acclimation to the opposite treatment for six additional weeks, in the group previously acclimated to warm conditions the change in BMR was significantly greater than in the group previously acclimated to cold. We also found differences in the mass of the small intestine between groups but constancy in the mass of liver, kidney and heart masses at the end of the experiments. Our results indicate that the thermal history affects metabolic adjustments and highlights the importance of considering this when evaluating the plasticity of metabolic traits in small birds.  相似文献   

7.
We sought to identify associations of basal metabolic rate (BMR) with morphological traits in laboratory mice. In order to expand the body mass (BM) range at the intra-strain level, and to minimize relevant genetic variation, we used male and female wild type mice (C3HeB/FeJ) and previously unpublished ENU-induced dwarf mutant littermates (David mice), covering a body mass range from 13.5 g through 32.3 g. BMR was measured at 30°C, mice were killed by means of CO2 overdose, and body composition (fat mass and lean mass) was subsequently analyzed by dual X-ray absorptiometry (DEXA), after which mice were dissected into 12 (males) and 10 (females) components, respectively. Across the 44 individuals, 43% of the variation in the basal rates of metabolism was associated with BM. The latter explained 47% to 98% of the variability in morphology of the different tissues. Our results demonstrate that sex is a major determinant of body composition and BMR in mice: when adjusted for BM, females contained many larger organs, more fat mass, and less lean mass compared to males. This could be associated with a higher mass adjusted BMR in females. Once the dominant effects of sex and BM on BMR and tissue mass were removed, and after accounting for multiple comparisons, no further significant association between individual variation in BMR and tissue mass emerged. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

8.
I wanted to follow the correlation between level of basal metabolic rate (BMR) and maximum response to injection of noradrenaline (MMRNA) in two lines of laboratory mice subjected to divergent, artificial selection toward high BMR (HBMR) and low BMR (LBMR). HBMR animals had heavier visceral organs (heart, liver, kidney, intestine), but their regulatory NST (MMRNA–BMR) was lower and interscapular brown adipose tissue (IBAT) lighter than in LBMR mice. Obligatory part of nonshivering thermogenesis (NST) (in other words BMR) depended on visceral organ mass, whereas regulatory NST correlates with mass of IBAT. BMR was not correlated with total NST capacity, but phenotypic correlation between obligatory and regulatory NST was negative. This suggests possibility of substitution of obligatory NST to thermoregulation in a place of the regulatory NST. Then total thermoregulatory energy expenditures do not change.  相似文献   

9.
Winter requires physiological adjustments in northern resident passerines. Cold acclimatization is generally associated with an increase in physiological maintenance costs, measured as basal metabolic rate (BMR), and cold endurance, reflected by summit metabolic rate (M sum). However, several northern species also form social groups in winter and a bird’s hierarchical position may influence the size of its metabolically active organs as well as its BMR. Winter metabolic performance in these species may therefore reflect a complex set of adjustments to both seasonal climatic variations and social environment. We studied the effect of social status on parameters of cold acclimatization (body mass, size of fat reserves and pectoral muscles, BMR and M sum) in free-living black-capped chickadees (Poecile atricapillus). Birds that were structurally large and heavy for their body size, mostly dominant individuals, carried more fat reserves and had larger pectoral muscles. However, social status had little effect on metabolic performance in the cold. Indeed, M sum was independent of social rank while mass-corrected BMR was slightly lower in dominant individuals, likely due to a statistical dilution effect caused by large metabolically inactive fat reserves. BMR and M sum, whether considered in terms of whole-animal values, corrected for body mass or body size were nevertheless correlated, suggesting a functional link between these metabolic components. Our results therefore indicate that the energy cost of social dominance is not a generalized phenomenon in small wintering birds.  相似文献   

10.
Acclimatization to winter conditions is an essential prerequisite for survival of small passerines of the northern temperate zone. Changes in photoperiod, ambient temperature and food availability trigger seasonal acclimatization in physiology and behavior of many birds. In the present study, seasonal adjustments in several physiological, hormonal, and biochemical markers were examined in wild-captured Eurasian tree sparrows (Passer montanus) from the Heilongjiang Province in China. In winter sparrows had higher body mass and basal metabolic rate (BMR). Consistently, the dry mass of liver, heart, gizzard, small intestine, large intestine and total digestive tract were higher in winter than in that in summer. The contents of mitochondrial protein in liver, and state-4 respiration and cytochrome c oxidase (COX) activity in liver and muscle increased significantly in winter. Circulating level of serum triiodothyronine (T3) was significantly higher in winter than in summer. Together, these data suggest that tree sparrows mainly coped with cold by enhancing thermogenic capacities through increased organ masses and heightened activity of respiratory enzymes activities. The results support the view that prominent winter increases in BMR are manifestations of winter acclimatization in tree sparrows and that seasonal variation in metabolism in sparrows is similar to that in other small temperate-wintering birds.  相似文献   

11.
An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus). We obtained measurements of BMR and body mass (Mb) from 911 house sparrows on the islands of Leka and Vega along the coast of Norway. These two populations were the source populations for translocations to create an additional third, admixed ‘common garden’ population in 2012. With the use of a novel genetic group animal model concomitant with a genetically determined pedigree, we differentiate genetic and environmental sources of variation, thereby providing insight into the effects of spatial population structure on evolutionary potential. We found that the evolutionary potential of BMR was similar in the two source populations, whereas the Vega population had a somewhat higher evolutionary potential of Mb than the Leka population. BMR was genetically correlated with Mb in both populations, and the conditional evolutionary potential of BMR (independent of body mass) was 41% (Leka) and 53% (Vega) lower than unconditional estimates. Overall, our results show that there is potential for BMR to evolve independently of Mb, but that selection on BMR and/or Mb may have different evolutionary consequences in different populations of the same species.  相似文献   

12.
Pre-flight fuelling rates in free-living red knots Calidris canutus, a specialized long-distance migrating shorebird species, are positively correlated with latitude and negatively with temperature. The single published hypothesis to explain these relationships is the heat load hypothesis that states that in warm climates red knots may overheat during fuelling. To limit endogenous heat production (measurable as basal metabolic rate BMR), birds would minimize the growth of digestive organs at a time they need. This hypothesis makes the implicit assumption that BMR is mainly driven by digestive organ size variation during pre-flight fuelling. To test the validity of this assumption, we fed captive knots with trout pellet food, a diet previously shown to quickly lead to atrophied digestive organs, during a fuelling episode. Birds were exposed to two thermal treatments (6 and 24°C) previously shown to generate different fuelling rates in knots. We made two predictions. First, easily digested trout pellet food rather than hard-shelled prey removes the heat contribution of the gut and would therefore eliminate an ambient temperature effect on fuelling rate. Second, if digestive organs were the main contributors to variations in BMR but did not change in size during fuelling, we would expect no or little change in BMR in birds fed ad libitum with trout pellets. We show that cold-acclimated birds maintained higher body mass and food intake (8 and 51%) than warm-acclimated birds. Air temperature had no effect on fuelling rate, timing of fuelling, timing of peak body mass or BMR. During fuelling, average body mass increased by 32% while average BMR increased by 15% at peak of mass and 26% by the end of the experiment. Our results show that the small digestive organs characteristic of a trout pellet diet did not prevent BMR from increasing during premigratory fuelling. Our results are not consistent with the heat load hypothesis as currently formulated.  相似文献   

13.
To study whether dietary restriction (DR; 70% of ad lib. feeding)-elicited immunosuppression results from the trade-off between the costs of mounting an immune response and the metabolic costs of maintenance, we subjected mice from two divergent lines selected for high basal metabolic rate (H-BMR) and low BMR (L-BMR) to 4 wk of DR and then challenged them with keyhole limpet hemocyanin (KLH) antigen. Those line types differ genetically with respect to BMR and to the mass of metabolically expensive internal organs, which are larger in H-BMR mice. In mice of both line types, DR resulted in a significant reduction of body mass, an immune response, and the downsizing of spleen, lymph nodes, thymus, heart, and kidneys but not small intestines. DR resulted in a greater reduction of the spleen and lymph nodes in mice of the H-BMR line type, whereas the thymus was more affected in L-BMR line type. In contrast, immunization resulted in an increase of liver mass in DR mice of both line types. A comparison of the results of current and earlier studies on the same mouse line types suggests that metabolic trade-offs involving the costs of an immune response are more apparent when animals are forced to increase energy demands (e.g., by cold exposure) compared to when energy demands are decreased through DR. Our findings also suggest that divelrgent selection on BMR resulted in between-line-type differences in T-cell- and B-cell-mediated types of an immune response. More generally, our results indicate that production of a wide repertoire of antibodies is not correlated with high BMR.  相似文献   

14.
Proximal mechanisms describing the evolution of high levels of basal metabolic rate (BMR) in endotherms are one of the most intriguing problems of evolutionary physiology. Because BMR mostly reflects metabolic activity of internal organs, evolutionary increase in BMR could have been realized by an increase in relative organ size and/or mass-specific cellular metabolic rate. According to the "membrane pacemaker" theory of metabolism, the latter is mediated by an increase in the average number of double bonds (unsaturation index) in cell membrane fatty acids. To test this, we investigated the effect of divergent artificial selection for body-mass-corrected BMR on the mass of internal organs and the fatty acid composition of cell membranes in laboratory mice (Mus musculus). Mice from the high-BMR line had considerably larger liver, kidneys, heart, and intestines. In contrast, the unsaturation index of liver cell membranes was significantly higher in low-BMR mice, mainly because of the significantly higher content of highly polyunsaturated 22 : 6 docosahexanoic fatty acid. Thus, divergent selection for BMR did not affect fatty acyl composition of liver and kidney phospholipids in the direction predicted by the membrane pacemaker theory. We conclude that an intraspecific increase in BMR may rapidly evolve mainly as a result of the changes in size of internal organs, without simultaneous increase of the unsaturation index in cell membrane lipids.  相似文献   

15.
Marcel Klaassen 《Oecologia》1995,104(4):424-432
The circannual patterns in resting metabolic rate (RMR) of males of two subspecies of stonechats, the European Saxicola torquata rubicula and the East African S. t. axillaris, are compared. As the birds from the two subspecies were raised and kept under comparable laboratory conditions, differences in metabolic rate between the two subspecies had to be genetically determined. RMR peaked during moult in both subspecies. During the rest of the year RMR was fairly constant in both subspecies and assumed to reflect basal metabolic rate (BMR). African stonechats had a 22% lower mass specific BMR than European stonechats, which is thought to reflect a genetical physiological adaptation to the differences in environmental circumstances they experience in the field. A low BMR makes an animal more susceptible to cold. Hence, the relatively high plumage mass in the African compared to the European stonechat may be functionally linked to its relatively low BMR. Moult costs, calculated from the plumage masses and the differences in RMR inside and outside the moult period, tended to be higher in the European compared to the African stonechats. These data and an interspecific comparison of moult costs over various species of birds support the earlier notion by Lindström et al. (1993) that moult costs are more closely linked with BMR than with body mass or rate of moult. The relation between moult costs and BMR and the fact that the efficiency of moult is extremely low (3.8 and 6.4% for European and African stonechats, respectively) suggest that the maintenance of specific tissues necessary for moult is a large cost factor. Alternatively, impaired insulation during moult may necessitate an increased metabolic capacity which may be associated with an increased RMR.  相似文献   

16.
17.
为探讨高脂食物对小型哺乳动物能量代谢的影响及其与基础代谢率(Basal metabolic rate, BMR)的关系,将成年雌性黑线仓鼠(Cricetulus barabensis)分为高、低BMR组,每组再随机分为低脂、高脂食物组,驯化6周后,测定体重、摄入能和代谢率,以及消化酶活力、褐色脂肪组织(Brown adipose tissue, BAT)和主要内脏器官与肌肉的细胞色素c氧化酶(Cytochrome c oxidase, COX)活性、解偶联蛋白(Uncoupling protein, UCP) mRNA表达等。结果显示,高脂食物对高、低BMR组动物体重均无显著影响。与低脂食物组相比,高脂食物组的摄食量、摄入能和消化能显著下降,小肠脂肪酶活力显著增强,消化率明显增加,但高、低BMR组的组间差异不显著。夜间代谢水平显著高于昼间,高脂食物使高BMR组的夜间代谢率显著升高。BAT、肌肉和内脏器官COX活性不受高脂食物的影响,高、低BMR组的组间差异也不显著。高脂食物组仅肝脏UCP2表达显著上调。结果表明,能量摄入和消化系统形态及功能的可塑性调节是黑线仓鼠应对高脂食物的主要策略;黑线仓鼠的代谢率具有显著的昼夜节律,既受高脂食物的影响,也与动物自身的BMR水平有关,但UCP表达具有组织特异性,这可能不是导致BMR个体差异的因素。  相似文献   

18.
攻击行为是增强个体生存能力和提高繁殖成功机会的最有效竞争方式之一。为理解攻击行为对小型哺乳动物能量学收支策略的影响,以具有独居且好斗习性的黑线仓鼠为研究对象,基于居留者-入侵者(resident-intruder)争斗方式将入侵鼠放入居留鼠笼中(10min / d),21d后测定能量摄入、基础代谢率(BMR),分析BMR和内脏器官重量的相关性。结果显示,攻击行为使居留组BMR增加了26.2%,使摄入能和消化能显著增加。居留组体重、胴体重,以及某些代谢活性器官(肝脏、肺脏、肾脏、胃、小肠和盲肠)重量显著增加,且这些器官重量与BMR显著正相关。结果表明,增加能量摄入和BMR是黑线仓鼠应对攻击行为的主要能量学收支策略;在种内个体之间强烈的攻击行为可能是该鼠维持较高水平BMR的原因之一。  相似文献   

19.
The green striped burrowing frog, Cyclorana alboguttata, spends, on average, nine to ten months of every year in aestivation. Recently, C. alboguttata has been the focus of much investigation regarding the physiological processes involved in aestivation, yet our understanding of this frog's capacity to metabolically depress remains limited. This study aimed to extend our current knowledge of metabolic depression during aestivation in C. alboguttata. C. alboguttata reduced whole animal metabolism by 82% within 5 weeks of aestivation. The effects of aestivation on mass specific in vitro tissue metabolic rate (VO2) varied among individual organs, with muscle and liver slices showing significant reductions in metabolism; kidney VO2 was elevated and there was no change in the VO2 of small intestine tissue slices. Organ size was also affected by aestivation, with significant reductions in the mass of all tissues, except the gastrocnemius. These reductions in organ size, combined with changes in mass specific VO2 of tissue slices, resulted in further energy savings to aestivating animals. This study shows that C. alboguttata is capable of selectively down- or up-regulating individual tissues, using both changes in metabolic rate and morphology. This strategy allows maximal energy savings during aestivation without compromising organ functionality and survival at arousal.  相似文献   

20.
树麻雀代谢率和器官重量在季节驯化中表型的可塑性变化   总被引:1,自引:0,他引:1  
柳劲松  李铭 《动物学报》2006,52(3):469-477
动物能量代谢的生理生态特征与物种的分布和丰富度密切相关,基础代谢率(BMR)是内温动物能量预算的重要组成部分。北温带的小型鸟类,通过增加产热来适应低温环境。增加BMR的基础之一是中心器官(代谢机器)发生明显的变化。本研究中我们测定了树麻雀(Passermontanus)的BMR、体重和各器官的重量,分析了麻雀各器官的季节性变化及与BMR的关系。方差分析表明:麻雀的BMR存在明显的季节性变化,在冬季和秋季较高。麻雀内部器官的变化同样有明显的季节性,冬季和秋季麻雀的肝脏、心脏、肌胃、小肠、直肠和整体消化道的重量,都有明显的增加。相关分析表明:麻雀的BMR与肝脏、心脏和消化道等内部器官存在明显的相关性。我们的结果验证了“中心限制假说”,即麻雀体内存在着与BMR相关的“代谢机器”,中心器官是提高麻雀BMR的基础之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号