首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 259 毫秒
1.
The Stichopus japonicus arginine kinase (AK) is a significant dimeric enzyme. Its modification and inactivation course with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and the reactivation course of DTNB-modified AK by dithiothreitol were investigated on the basis of the kinetic theory of the substrate reaction during the modification of enzyme activity. The results show that the modification is a biphasic course while the inactivation is monophasic, with one essential reactive cysteine per subunit. The Cys274 (numbering from the Stichopus sequence) is exposed to DTNB and is near the ATP binding site. The modified AK can be reactivated by an excess concentration of dithiothreitol in a monophasic kinetic course. The presence of ATP or the transition-state analog markedly slows the apparent reactivation rate constant. The analog components, arginine-ADP-Mg2+ can induce conformational changes of the modified enzyme, but adding NO3- cannot induce further changes that occur with the native enzyme. The reactive cysteines' location and its role in the catalysis of AK are discussed. The results suggest that the cysteine may be located in the hinge area of the two domains of AK. The reactive cysteine of AK, which was proposed to be Cys274, may play an important role not in the binding of the transition-state analog but in the conformational changes caused by the transition-state analog.  相似文献   

2.
The reduction of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified arginine kinase by dithiothreitol has been investigated using the kinetic theory of the substrate reaction during modification of enzyme activity. The results show that the modified arginine kinase can be fully reactivated by an excess concentration of dithiothreitol in a monophasic kinetic course. The presence of ATP or the transition-state analog markedly slows the apparent reactivation rate constant, while arginine shows no effect. The results of ultraviolet (UV) difference and intrinsic fluorescence spectra indicate that the substrate arginine-ADP-Mg2+ can induce conformational changes of the modified enzyme but adding NO3- cannot induce further changes that occur with the native enzyme. The reactive cysteines' location and role in the catalysis of arginine kinase are discussed. It is suggested that the cysteine may be located in the hinge region of the two domains of arginine kinase. The reactive cysteine of arginine kinase may play an important role not in the binding to the transition-state analog but in the conformational changes caused by the transition-state analog.  相似文献   

3.
Diethyl pyrocarbonate inhibits pig kidney holo-3,4-dihydroxyphenylalanine decarboxylase with a second-order rate constant of 1170 M-1 min-1 at pH 6.8 and 25 degrees C, showing a concomitant increase in absorbance at 242 nm due to formation of carbethoxyhistidyl derivatives. Activity can be restored by hydroxylamine, and the pH curve of inactivation indicates the involvement of a residue with a pKa of 6.03. Complete inactivation of 3,4-dihydroxyphenylalanine decarboxylase requires the modification of 6 histidine residues/mol of enzyme. Statistical analysis of the residual enzyme activity and of the extent of modification shows that, among 6 modifiable residues, only one is critical for activity. Protection exerted by substrate analogues, which bind to the active site of the enzyme, suggests that the modification occurs at or near the active site. The modified inactivated 3,4-dihydroxyphenylalanine decarboxylase still retains most of its ability to bind substrates. Thus, it may be suggested that the inactivation of enzyme by diethyl pyrocarbonate is not due to nonspecific steric or conformational changes which prevent substrate binding. However, the modified enzyme fails to produce at high pH either an enzyme-substrate complex or an enzyme-product complex absorbing at 390 nm. Considerations on this peculiar feature of the modified enzyme consistent with a catalytic role for the modified histidyl residue are discussed. The overall conclusion of this study may be that the modification of only one histidyl residue of 3,4-dihydroxyphenylalanine decarboxylase inactivates the enzyme and that this residue plays an essential role in the mechanism of action of the enzyme.  相似文献   

4.
动力学研究揭示两个pK值为4.4和5.8的氨基酸残基可能对内切酶活性起重要作用,化学修饰研究结果表明一个羧基氨基酸对内切葡聚糖苷水解酶活力为必需的,且可能位于或接近酶的催化位点.  相似文献   

5.
Highly purified p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens can be separated into at least five fractions by anion-exchange chromatography. All fractions exhibit the same specific activity and the enzyme exists mainly in the dimeric form in solution. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis of a mixture of the different fractions reveals two apparent forms of enzyme molecules, while isoelectric focusing experiments, on the other hand, reveal six apparently different forms of enzyme molecules. It is shown that the different forms of enzyme molecules are due to the (partial) oxidation of Cys-116 in the sequence of the enzyme. This interpretation of the data is supported by kinetic measurements of the formation of hybrid dimeric molecules monitored by fast protein liquid chromatography, using purified enzyme containing Cys-116 either in the native and or the fully oxidized (sulfonic acid) state. By chemical modification studies using maleimide derivatives, 5,5'-dithiobis(2-nitrobenzoate) and H2O2, it is shown that sulfenic, sulfinic and sulfonic acid derivatives of Cys-116 are products of oxidation. The results are briefly discussed with respect to the possibility that this isolation artifact might also be partially responsible for the appearance of multiple forms of enzyme molecules in other biochemical preparations.  相似文献   

6.
The modification of Escherichia coli citrate synthase (citrate oxaloacetatelyase(pro-3S-CH2.COO- leads to acetyl-CoA, EC 4.1.3.7) with 5,5'-dithiobis-(2-nitrobenzoic acid) has been investigated. (1) In low ionic strength (20 mM Tris.HCl, pH 8.0): (A) Eight thiol groups per tetramer of the native enzyme reacted with Nbs2. (b) Two of the eight accessible thiols were modified rapidly with the loss of 26% enzyme activity but with no change in the NADH inhibition. The remaining six were modified more slowly, resulting in a further 60% loss of activity and complete densensitization to NADH. (c) The 2nd-order rate constant for the modification of the rapidly reacting thiols is 2.5.10(4) M-1.min-1. At the reagent concentrations used (0.1 to 0.2 mM) the modification of the six thiols in the slow kinetic set appeared to be 1st-order; at 0.1 mM dithionitrobenzoic acid their rate of modification was approximately 30 times slower than the thiols in the fast kinetic set. (2) In high ionic strength (20 mM Tris.HCl, pH 8.0, 0.1 M KCl): (a) Four thiol groups were modified in a single kinetic set and it appeared that these thiols are four of the six slowly modified in the absence of KCl. (b) The modification resulted in 70% loss of enzyme activity and complete loss of NADH inhibition. (3) From the kinetic analysis it is proposed that the four thiol groups accessible to dithionitrobenzoic acid in the absence and presence of 0.1 M KCl are those involved in the response of NADH. Modification of any one of these four groups produced no reduction in the inhibition; instead, loss of NADH sensitivity was coincident with the appearance of tetrameric protein possessing three substituted thiols, whereas enzyme with one or two modified groups was still fully inhibited by NADH.  相似文献   

7.
Nonactivated phosphorylase kinase from rabbit skeletal muscle is inactivated by treatment with phenylglyoxal. Under mild reaction conditions, a derivative that retains 10-15% of the pH 8.2 catalytic activity is obtained. The kinetics of inactivation profile, differential effects of modification on pH 6.8 and 8.2 catalytic activities, and the insensitiveness of the modified enzyme to activation by ADP reveal that the 10-15% of catalytic activity remaining is very likely due to intrinsic catalytic activity of the derivative rather than to the presence of unmodified enzyme molecules. The kinetic results also suggest that the inactivation is correlatable with the reaction of one molecule of the reagent with the enzyme without any prior binding of phenylglyoxal. The phenylglyoxal modification reduces the autophosphorylation rate of the kinase. Autophosphorylated phosphorylase kinase is inactivated by phenylglyoxal at a much slower rate than the inactivation of nonactivated kinase. Thus, phenylglyoxal modification influences the phosphorylation and vice versa. The modified enzyme can be reactivated by treatment with trypsin or by dissociation using chatropic salts. The activity of the phenylglyoxal-modified enzyme after trypsin digestion or dissociation with LiBr reaches the same level as that of the native enzyme digested with trypsin or treated with LiBr under identical conditions. The results suggest that the effect of modification is overcome by dissociation of the subunits of phosphorylase kinase and that the catalytic site is not modified under conditions when 85% of the pH 8.2 catalytic activity is lost. Among various nucleotides and metal ions tested, only ADP, with or without Mg2+, afforded effective protection against inactivation with phenylglyoxal. At pH 6.8, 1 mM ADP afforded complete protection against inactivation. Experiments with 14C-labeled phenylglyoxal revealed that ADP seemingly protects one residue from modification. This result is in agreement with the kinetic result that the inactivation seemingly is due to reaction of one molecule of the reagent with the enzyme. The results confirm the existence of a high-affinity ADP binding site on nonactivated phosphorylase kinase and suggest the involvement of a functional arginyl residue at or near the ADP binding site in the regulation of of pH 8.2 catalytic activity of the enzyme.  相似文献   

8.
The beta-glucosidase from Schizophyllum commune was purified to homogeneity by a modified procedure that employed Con A-Sepharose. The participation of carboxyl groups in the mechanism of action of the enzyme was delineated through kinetic and chemical modification studies. The rates of beta-glucosidase-catalyzed hydrolysis of p-nitrophenyl-beta-D-glucoside were determined at 27 degrees C and 70 mM ionic strength over the pH range 3.0-8.0. The pH profile gave apparent pK values of 3.3 and 6.9 for the enzyme-substrate complex and 3.3 and 6.6 for the free enzyme. The enzyme is inactivated by Woodward's K reagent and various water-soluble carbodiimides; chemical reagents selective for carboxyl groups. Of these reagents, 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide iodide in the absence of added nucleophile was the most effective and a kinetic analysis of the modification indicated that one molecule of carbodiimide is required to bind to the beta-glucosidase for inactivation. Employing a tritiated derivative of the carbodiimide, 44 carboxyl groups in the enzyme were found to be labelled while the competitive inhibitor deoxynojirimycin protected three residues from modification. Treatment of the enzyme with tetranitromethane resulted in the modification of five tyrosine residues with approx. 28% diminution of enzymic activity. Titration of denatured enzyme with dithiobis(2-nitro-benzoic acid) indicated the absence of free thiol groups. Reaction of the enzyme with diethyl pyrocarbonate resulted in the modification of four histidine residues with the retention of 78% of the original enzymatic activity. The divalent transition metals Cu2+ and Hg2+ were found to be potent inhibitors of the enzyme, binding in an apparent irreversible manner.  相似文献   

9.
The activity-stability-structure relationship of the cold-active alkaline phosphatase from Red Arctic shrimp, Pandalus borealis (SAP) was studied by chemically modifying aliphatic (C-H) or amino (NH2) groups using benzophenone tetracarboxylic derivatives in either a light (UV-A) or dark reaction. The response of the cold-adapted enzyme was compared to a similarly modified calf alkaline phosphatase (CAP). MALDI-TOF-MS was used to determine the extent and nature of the modifications in both SAP and CAP. On average 2 to 4 amino acid residues were linked to a BP-modifier, with up to 18 to 21 amino acids modified in a smaller portion of the material. The effect of the modifications on kinetic and thermodynamic properties varied with the enzyme and type of modification. The aliphatic-group modified SAP demonstrated typical characteristics of a mesophilic enzyme, consistent with an activity-stability trade-off where gain in thermostability was attained at the expense of decreased activity. In contrast, the activity of the amino-group modified SAP attained an even more psychrophilic character with respect to its kinetic (increase in kcat and Km) and thermodynamic (reduction in deltaH#) properties. Interestingly, the amino-group modified SAP also acquired higher thermostability, thus demonstrating that both activity and stability can be simultaneously enhanced using chemical modification. The study demonstrates the applicability of benzophenone chemical modification for improving the thermal properties of enzymes from psychrophiles and mesophiles.  相似文献   

10.
The literature data on the activity of histidine-15 modified hen egg white lysozyme are conflicting: the modified enzyme is reported to have more activity, similar activity or less activity by different authors. Amino acid analysis had shown modification of the single His-15. Detailed activity studies on His-15-modified (by iodoacetic acid or diethyl pyrocarbonate) lysozyme have shown that the contradicting reports are due to the specific choices of ionic strengths and cell wall substrate concentrations and can be attributed to the substrate being negatively charged. Our analysis suggests that even though histidine-15 is far removed from the active site of lysozyme, its chemical modification or binding of the negatively-charged substrate near it, changes the conformation around the active site. However, the change in the optimum activity on chemically modifying His-15 is small.  相似文献   

11.
This paper deals with the kinetic study of a multisubstrate mechanism with enzyme inactivation induced by a suicide substrate. A transient phase approach has been developed that enables the deduction of explicit equations of product concentration vs. time. From these equations kinetic constants which characterize the suicide substrate can be obtained. This study with tyrosinase enzyme, which acts on L-dopa and catechol allowed us to determine the corresponding kinetic parameters, indicating that catechol is about 8-times more powerful as a suicide substrate than is L-dopa.  相似文献   

12.
The alkaline protease, savinase was chemically modified to enhance the productivity of the enzyme at low temperatures on a complex polymeric protein (azocasein) substrate. At 5 and 15°C, savinase modified with ficol or dextran hydrolyzed fivefold more azocasein than the unmodified savinase. Kinetic studies showed that the catalytic improvements are associated with changes in uncompetitive substrate inhibition with Ki values of modified savinases sixfold higher than the unmodified savinase. Modeling of small‐angle scattering data indicates that two substrate molecules bind on opposing sides of the enzyme. The combined kinetic and structural data indicate that the polysaccharide modifier sterically blocks the allosteric site and reduces substrate inhibition. In contrast to the properties of cold‐active enzymes that generally manifest as low activation enthalpy and high flexibility, this study shows that increased activity and productivity at low temperature can be achieved by reducing uncompetitive substrate inhibition, and that this can be achieved using chemical modification with an enzyme in a commercial enzyme‐formulation. Biotechnol. Bioeng. 2009;103: 676–686. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
Catalase conjugates with 3, 7, 9 and 42 progesterone molecules were obtained by the reaction between the enzyme and N-oxy-succinimide ether of 3-0-carboxymethyloxime of progesterone. The enzyme modified by 42 progesterone molecules is effective in o-dianisidine oxidation by hydrogen peroxide and has a kcat/KM value of 512 M-1 s-1. The catalase conjugates with 3, 7 and 9 progesterone molecules exhibit a high activity during o-dianisidine oxidation by cumene hydroperoxide. The activity of conjugates is higher than that of the native non-modified enzyme in the same reaction. The maximum effectiveness was observed for catalase modified by 7 progesterone molecules. This conjugate is characterized by kcat/KM of 99,000 M-1 s-1 at 30 degrees C. The effect of the degree of enzyme modification on the kinetic parameters of o-dianisidine oxidation by H2O2 and cumene hydroperoxide is discussed.  相似文献   

14.
A kinetic analysis was performed for the novel 1-(8-phosphonooctyl)-6-amino-5-bromouracil and 1-(8-phosphonooctyl)-7-deazaxanthine inhibitors of Escherichia coli thymidine (dThd) phosphorylase (TPase). The structure of the compounds was rationally designed based on the available crystal structure coordinates of bacterial TPase. These inhibitors reversibly inhibited TPase. Kinetic analysis revealed that the compounds inhibited TPase in a purely competitive or mixed fashion not only when dThd, but also when inorganic phosphate (Pi), was used as the variable substrate. In contrast, the free bases 6-amino-5-bromouracil and 7-deazaxanthine behaved as non-competitive inhibitors of the enzyme in the presence of variable Pi concentrations while being competitive or mixed with respect to thymine as the natural substrate. Our kinetic data thus revealed that the novel 1-(8-phosphonooctyl)pyrimidine/purine derivatives are able to function as multisubstrate inhibitors of TPase, interfering at two different sites (dThd(Thy)- and phosphate-binding site) of the enzyme. To our knowledge, the described compounds represent the first type of such multisubstrate analogue inhibitors of TPase; they should be considered as lead compounds for the development of mechanistically novel type of TPase inhibitors.  相似文献   

15.
An elaborate computer program to simulate the process of starch hydrolysis by amylolytic enzymes was been developed. It is based on the Monte Carlo method and iteration kinetic model, which predict productive and non-productive amylase complexes with substrates. It describes both multienzymatic and multisubstrate reactions simulating the "real" concentrations of all components versus the time of the depolymerization reaction the number of substrates, intermediate products, and final products are limited only by computer memory. In this work, it is assumed that the "proper" substrate for amylases is the glucoside linkages in starch molecules. Dynamic changes of substrate during the simulation adequately influence the increase or decrease of reaction velocity, as well as the kinetics of depolymerization. The presented kinetic model, can be adapted to describe most enzymatic degradations of a polymer. This computer program has been tested on experimental data obtained for alpha- and beta-amylases.  相似文献   

16.
Streptozotocin diabetic rats fed ad libitum exhibited hyperplasia of the small intestine. As compared to the control animals, the intestine of experimental animals grew in weight, length and total RNA and DNA contents. Intestinal cinnabarinate synthase activity in diabetic rats was however significantly lower. Developmental studies in albino rats indicated that, attainment of the terminal and highest activity of the enzyme tends to correspond with cessation of further increase in RNA and DNA contents of the intestine, thereby suggesting a possible relationship between cinnabarinate synthase and the hyperplastic changes observed. It was also observed that some properties of this enzyme, such as Km and Vmax are modified in diabetic condition. The enzyme was purified to apparent homogeneity and some of its kinetic and other properties were studied.  相似文献   

17.
1. The inactivation of horse liver alcohol dehydrogenase by pyridoxal 5'-phosphate in phosphate buffer, pH8, at 10 degrees C was investigated. Activity declines to a minimum value determined by the pyridoxal 5'-phosphate concentration. The maximum inactivation in a single treatment is 75%. This limit appears to be set by the ratio of the first-order rate constants for interconversion of inactive covalently modified enzyme and a readily dissociable non-covalent enzyme-modifier complex. 2. Reactivation was virtually complete on 150-fold dilution: first-order analysis yielded an estimate of the rate constant (0.164min-1), which was then used in the kinetic analysis of the forward inactivation reaction. This provided estimates for the rate constant for conversion of non-covalent complex into inactive enzyme (0.465 min-1) and the dissociation constant of the non-covalent complex (2.8 mM). From the two first-order constants, the minimum attainable activity in a single cycle of treatment may be calculated as 24.5%, very close to the observed value. 3. Successive cycles of modification followed by reduction with NaBH4 each decreased activity by the same fraction, so that three cycles with 3.6 mM-pyridoxal 5'-phosphate decreased specific activity to about 1% of the original value. The absorption spectrum of the enzyme thus treated indicated incorporation of 2-3 mol of pyridoxal 5'-phosphate per mol of subunit, covalently bonded to lysine residues. 4. NAD+ and NADH protected the enzyme completely against inactivation by pyridoxal 5'-phosphate, but ethanol and acetaldehyde were without effect. 5. Pyridoxal 5'-phosphate used as an inhibitor in steady-state experiments, rather than as an inactivator, was non-competitive with respect to both NADH and acetaldehyde. 6. The partially modified enzyme (74% inactive) showed unaltered apparent Km values for NAD+ and ethanol, indicating that modified enzyme is completely inactive, and that the residual activity is due to enzyme that has not been covalently modified. 7. Activation by methylation with formaldehyde was confirmed, but this treatment does not prevent subsequent inactivation with pyridoxal 5'-phosphate. Presumably different lysine residues are involved. 8. It is likely that the essential lysine residue modified by pyridoxal 5'-phosphate is involved either in binding the coenzymes or in the catalytic step. 9. Less detailed studies of yeast alcohol dehydrogenase suggest that this enzyme also possesses an essential lysine residue.  相似文献   

18.
Catalytically active chymotrypsin derivatives can be synthesized from cyanogen bromide-activated Sephadex G200. In most cases the apparent catalytic activity of the covalently fixed enzyme appears to be considerably decreased in comparison to the activity of the free enzyme. However, by proper choice of the reaction conditions for the activation, enzyme conjugates with high activity, even toward a high molecular substrate, can be synthesized. These latter derivatives may be of practical value for the digestion of proteins. Crosslinked dextran as carrier was chosen because of the possbility, of digesting it enzymatically by dextranase. Sephadex G200, if activated at or below pH 10.3, will combine with chymotrypsin to yield digestable products. Changes of apparent kinetic properties of the fixed enzyme can accordingly be studied during the degradation process. On the solubilization of the insoluble conjugate, a total recovery of activity of the fixed enzyme can be obtained in cases the carrier has been activated by a sufficiently mild procedure. The high apparent Michaelis constant Km of insoluble chymotrypsin–Sephadex toward N-acetyl-L -tyrosine ethyl ester shifts back on solubilization to the value of free chymotrypsin. We therefore propose that the decreased activity of an insoluble chymotrypsin–Sephadex is due to diffusional effects shown by the gel matrix toward the substrate. Similarly observed shifts in optimum pH are explained by accumulation of hydrogen ions in the gel. The organic chemical reaction used for coupling the enzyme to the polymer can therefore be performed without decreasing the inherent catalytic activity of the enzyme. The route described for fixing chymotrypsin to Sephadex followed by solubilization of the products may be useful as a synthetic method for binding proteins, peptides, and other amino group-containing substances to soluble carriers, e.g., for the modification of pharmaceuticals.  相似文献   

19.
Effect of chemical modification of horseradish peroxidase lysine epsilon-amino groups by propionic, butyric, valeric, succinic anhydrides and trinitrobenzolsulfonic acid (TNBS) on catalytic properties of the enzyme is investigated. All the preparations of modified peroxidase have 100% peroxidase activity for o-dianizidine at pH 7.0, which indicates the absence of lysine epsilon-amino group in the enzyme active site. pH-dependencies of modified peroxidase relative activity are studied; modification by anhydrides of monobasic acids is not found to result in changes of the relative activity pH-profile, while modification by succinic anhydride widens it. Absorption and circular dichoism spectra of native and modified peroxidase within 260--270 nm are obtained, some changes in the enzyme tertiary structure after its epsilon-amino groups modification are observed. Modification of four epsilon-amino groups by buturic and succinic anhydrides and of three epsilon-amino groups by TNBS is found to increase the regidity of protein surrounding of heme, and modification of six epsilon-amino groups by TNBS results in more unwrapped enzyme structure as compared with its native molecule.  相似文献   

20.
The review deals with directed synthesis of specific enzyme inhibitors. They are classified within the framework of the mechanistic approach, namely, stable analogues of substrates, which form enzyme complexes mimicking the Michaelis complex or those which influence the chemical stages of enzyme catalysis; conformational inhibitors; substrate analogues participating in enzyme reactions and producing modified products; suicide inhibitors; stage inhibitors (inhibitors influencing certain stages of enzyme reaction); transition state analogues; multisubstrate analogues and collected substrates. Types of chemical modification used in synthesis of the specific inhibitors are discussed. Some possibilities of the quantity structure-activity relationship methods, computer modelling and molecular graphics in designing the optimal structure of inhibitors are mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号