首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few attempts have been made to study the alleviating effects of signal molecules on zoysiagrass ( Zoysia japonica ) under drought stress. Calcium chloride has been shown to ameliorate the adverse effects of drought stress on many plants. It is necessary to investigate how to enhance drought tolerance of zoysiagrass using calcium chloride. The study elucidated the effects of calcium chloride on zoysiagrass under drought conditions by investigating the following parameters: biomass, chlorophyll (Chl) content, net photosynthetic rate (Pn), chlorophyll fluorescence, antioxidant enzymes, proline content, and malondialdehyde (MDA) content. Experimental conditions consisted of an aqueous CaCl2 solution at 5, 10, and 20 mM sprayed on zoysiagrass leaves for 3 d, following by an inducement of drought conditions by withholding water for 16 d. Under drought conditions, all CaCl2 pretreatments were found to increase the above-ground fresh biomass, as well as below-ground fresh and dry biomass. The resulting Chl (a, b, a+b) contents of the 5 and 10 mM CaCl2 pretreatment groups were higher than those of the control. In the later stages of drought conditions, the chlorophyll fluorescence parameter Fv/Fm was higher in leaves treated with 10 mM CaCl2 than in the leaves of the other two treatment groups. Zoysiagrass pretreated with 10 mM CaCl2 possessed both the maximum observed Pn and antioxidant enzyme activities. Meanwhile, lower MDA and proline contents were recorded in the plants pretreated with 5 and 10 mM CaCl2 under drought conditions. As a whole, the drought tolerance of zoysiagrass was improved to some extent by the application of a moderate calcium concentration.  相似文献   

2.
Drought is a severe environmental constraint, causing a significant reduction in crop productivity across the world. Salicylic acid (SA) is an important plant growth regulator that helps plants cope with the adverse effects induced by various abiotic stresses. The current study investigated the potential effects of SA on drought tolerance efficacy in two barley (Hordeum vulgare) genotypes, namely BARI barley 5 and BARI barley 7. Ten-day-old barley seedlings were exposed to drought stress by maintaining 7.5% soil moisture content in the absence or presence of 0.5, 1.0 and 1.5 mM SA. Drought exposure led to severe damage to both genotypes, as indicated by phenotypic aberrations and reduction of dry biomass. On the other hand, the application of SA to drought-stressed plants protected both barley genotypes from the adverse effects of drought, which was reflected in the improvement of phenotypes and biomass production. SA supplementation improved relative water content and proline levels in drought-stressed barley genotypes, indicating the osmotic adjustment functions of SA under water-deficit conditions. Drought stress induced the accumulation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and superoxide (O2 •− ), and the lipid peroxidation product malondialdehyde (MDA) in the leaves of barley plants. Exogenous supply of SA reduced oxidative damage by restricting the accumulation of ROS through the stimulation of the activities of key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GPX). Among the three-applied concentrations of SA, 0.5 mM SA exhibited better mitigating effects against drought stress considering the phenotypic performance and biochemical data. Furthermore, BARI barley 5 showed better performance under drought stress than BARI barley 7 in the presence of SA application. Collectively, our results suggest that SA played a crucial role in improving water status and antioxidant defense strategy to protect barley plants from the deleterious effects of water deficiency.  相似文献   

3.
In the present study, the physiological responses of Nitraria tangutorum Bobr. seedlings to NaCl stress and the regulatory function of exogenous application of salicylic acid (SA) were investigated. NaCl in low concentration (100 mM) increased while in higher concentrations (200–400 mM) decreased the individual plant dry weights (wt) of seedlings. Decreased relative water content (RWC) and chlorophyll content were observed in the leaves of seedlings subjected to salinity stress (100–400 mM NaCl). Furthermore, NaCl stress significantly increased electrolyte leakage and malondialdehyde (MDA) content. The levels of osmotic adjustment solutes including proline, soluble sugars, and soluble protein were enhanced under NaCl treatments as compared to the control. In contrast, exogenous application of SA (0.5–1.5 mM) to the roots of seedlings showed notable amelioration effects on the inhibition of individual plant dry wt, RWC, and chlorophyll content. The increases in electrolyte leakage and MDA content in the leaves of NaCl-treated seedlings were markedly inhibited by SA application. The SA application further increased the contents of proline, soluble sugars, and soluble protein. The activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were up-regulated by NaCl stress and the activities of SOD, POD, and CAT were further enhanced by SA treatments. Application of SA in low concentration (0.5 mM) enhanced while in higher concentrations (1.0 and 1.5 mM) inhibited APX activities in leaves of NaCl-treated seedlings. These results indicate that SA effectively alleviated the adverse effects of NaCl stress on N. tangutorum.  相似文献   

4.
Salinity has a great influence on plant growth and distribution. A few existing reports on Artemisia annua L. response to salinity are concentrated on plant growth and artemisinin content; the physiological response and salt damage mitigation are yet to be understood. In this study, the physiological response of varying salt stresses (50, 100, 200, 300, or 400 mM NaCl) on A. annua L. and the effect of exogenous salicylic acid (0.05 or 0.1 mM) at 300-mM salt stress were investigated. Plant growth, antioxidant enzyme activity, proline, and mineral element level were determined. In general, increasing salt concentration significantly reduced plant growth. Superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were stimulated by salt treatment to a higher enzyme activity in treated plants than those in untreated plants. Content of proline had a visible range of increment in the salt-treated plants. Distribution of mineral elements was in inconformity: Na+ and Ca2+ were mainly accumulated in the roots; K+ and Mg2+ were concentrated in leaves and stems, respectively. Alleviation of growth arrest was observed with exogenous applications of salicylic acid (SA) under salt stress conditions. The activity of SOD and POD was notably enhanced by SA, but the CAT action was suppressed. While exogenous SA had no discernible effect on proline content, it effectively inhibited excessive Na+ absorption and promoted Mg2+ absorption. Ca2+ and K+ contents showed a slight reduction when supplemented with SA. Overall, the positive effect of SA towards resistance to the salinity of A. annua will provide some practical basis for A. annua cultivation.  相似文献   

5.
Presowing treatment of wheat (Triticum aestivum L.) seeds with 10 or 100 μM salicylic acid (SA) reduced the inhibition of 14-day-old plant growth under soil drought. The same effect was caused by the spraying of 7-day-old seedlings with 0.5 or 2 mM nitrogen oxide donor (sodium nitroprusside, SNP) before drought. The protective effect was enhanced by the combination of seed treatment with 10 μM SA and plant spraying with 0.5 mM SNP, while their combinations in higher concentrations caused weaker effects. SA treatment in both concentrations and 0.5 mM SNP under drought conditions increased the antioxidant enzyme activity (superoxide dismutase, catalase, and guaiacol peroxidase) in leaves. This effect was especially significant when 10 μM SA was combined with 0.5 mM SNP. Spraying with 2 mM SNP and its combination with seed presowing with 100 μM SA did not significantly change the antioxidant enzyme activity; however, the proline content in the leaves increased. It is concluded that the SA stress-protective action on plants can be modified with exogenous nitrogen oxide.  相似文献   

6.
Feverfew (Tanacetum parthenium) (TP) is a valuable medicinal plant from Asteraceae family with various pharmaceutical and therapeutic properties. A pot experiment was conducted to evaluate the effect of salicylic acid (SA) on the physiological and morphological responses of TP under salinity stress. Salinity was induced by NaCl and CaCl2 (2:1) at 30, 60, 90, 120, 150 and 180 mM levels. SA was applied as foliar application at 0, 200 and 300 ppm concentrations. Plant height, leaf and shoot number, fresh and dry weight and essential oil, starch, sugar, protein, proline, catalase (CAT), peroxidase (POD), and ascorbic peroxidase (APX) contents were as measured morpho-physiological traits. The results showed that SA significantly (P  0.05) improved the measured traits and caused higher tolerance in TP plants under salinity stress. The essential oil content increased with increasing the salinity level up to 90 mM, which was more significant when combined with SA application. All of the measured traits except proline content, antioxidant enzymes, essential oil and sugar decreased at high salinity levels.  相似文献   

7.
Soil salinity is one of the important environmental factors that produce serious agricultural problems. The objective of the present study was to determine the interactive effect of salicylic acid (SA) and calcium (Ca) on plant growth, photosynthetic pigments, proline (Pro) concentration, carbonic anhydrase (CA) activity and activities of antioxidant enzymes of Triticum aestivum L. (cv. Samma) under salt stress. Application of 90 mM of NaCl reduced plant growth (plant height, fresh weight (FW) and dry weight (DW), chlorophyll (Chl) a, Chl b, CA activity) and enhanced malondialdehyde (MDA) and Pro concentration. However, the application of SA or Ca alone as well as in combination markedly improved plant growth, photosynthetic pigments, Pro concentration, CA activity and activities of antioxidant enzymes peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) under salt stress. It was, therefore, concluded that application of SA and Ca alone as well as in combination ameliorated the adverse effect of salinity, while combined application proved more effective to reduce the oxidative stress generated by NaCl through reduced MDA accumulation, Chl a/b ratio and Chls degradation and enhanced activities of antioxidant enzymes.  相似文献   

8.
马永慧  李永洁  李进 《广西植物》2022,42(4):668-675
干旱、盐分已成为限制植物生长发育的主要因子,在干旱与NaCl双重胁迫下植物的生长发育受到一定影响。为了探究黑果枸杞(Lycium ruthenicum)对盐旱逆境的适应性,该文采用盆栽试验,研究NaCl与干旱胁迫共同作用对其幼苗生长的影响,并观察盐旱逆境下黑果枸杞幼苗对外源水杨酸(SA)的生理响应,探究提高NaCl与干旱胁迫下黑果枸杞幼苗的存活率。结果表明:外源SA(0.1、0.5 mmol·L-1)处理下,盐旱双重胁迫下黑果枸杞叶内可溶性糖、可溶性蛋白和脯氨酸含量有所增加,而丙二醛(MDA)含量显著降低(P<0.05),过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性上升,且0.5 mmol·L-1 SA处理效果优于0.1 mmol·L-1 处理。综上结果可知,黑果枸杞对于轻度盐旱胁迫具有一定的适应能力,适宜浓度SA可提高盐旱逆境中黑果枸杞叶内渗透调节物质含量及抗氧化酶活性,该研究为进一步了解盐旱双重胁迫下黑果枸杞幼苗的生长发育提供相关理论依据。  相似文献   

9.
以酿酒葡萄‘雷司令’(Riesling)一年生营养袋扦插苗为材料,采用人工气候室水培试验,考察在聚乙二醇6000(PEG)模拟干旱条件下,不同浓度(0.05、0.10和0.20mg/L)24-表油菜素内酯(EBR)预处理对‘雷司令’幼苗活性氧、抗氧化物质、渗透调节物质含量和抗氧化酶活性的影响,以揭示EBR预处理对干旱胁迫下葡萄幼苗的抗旱机理。结果显示:(1)与正常生长(对照)相比,干旱胁迫显著提高葡萄幼苗叶片中超氧阴离子自由基(■)、过氧化氢(H_2O_2)和丙二醛(MDA)含量;与干旱胁迫处理(PEG)相比,不同浓度EBR预处理均可降低叶片中■、H_2O_2和MDA的含量。(2)与对照相比,PEG处理显著降低葡萄幼苗叶片的抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量;与PEG处理相比,各浓度EBR预处理均可显著提高葡萄叶片AsA与GSH的含量,且以0.10mg/LEBR处理效果最好。(3)随着干旱胁迫时间的延长,葡萄幼苗叶片中的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)与抗坏血酸过氧化物酶(APX)活性均呈先上升后下降的变化趋势,而在正常生长条件下酶活性基本保持不变;EBR预处理的葡萄叶片SOD、CAT、POD和APX活性均始终高于同期PEG处理。(4)PEG处理条件下,渗透调节物质脯氨酸和可溶性蛋白的含量整体高于对照;与PEG处理相比,不同浓度EBR预处理在干旱胁迫中后期均能显著提高葡萄叶片中脯氨酸和可溶性蛋白含量。研究表明,在干旱胁迫下,外源EBR预处理能够提高葡萄叶片抗氧化系统酶活性和渗透调节物质含量,有效降低干旱胁迫诱导的活性氧过度积累及膜脂过氧化程度,提高葡萄幼苗的抗旱能力,且以0.10mg/L EBR处理效果最佳。  相似文献   

10.
To understand the adaptability of alfalfa (Medicago sativa L.) to environmental stresses, we analyzed the activity of several antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT), in alfalfa shoots and roots subjected to salt and drought stresses during germination. The germination rate of six alfalfa cultivars was comparatively studied under 200 mM NaCl or 35% PEG treatment. Alfalfa Xinmu No. 1 and Northstar varieties were selected as stress-tolerant and -sensitive cultivars, respectively, and were used for further characterization. After NaCl or PEG treatment, Xinmu No. 1 showed enhanced seedling growth, compared with Northstar. Xinmu No. 1 also exhibited low levels of hydrogen peroxide (H2O2) production and lipid peroxidation, compared with Northstar. In addition, Xinmu No. 1 showed higher enzymatic activity of SOD, APX, CAT, and POD in its shoots and roots than Northstar. These results seem to indicate that Xinmu No. 1 cultivar's tolerance to salt or drought stresses during germination is associated with enhanced activity of antioxidant enzymes. This study highlights the importance of antioxidant enzymes in the establishment of alfalfa seedlings under drought and salinity conditions typical of desertification.  相似文献   

11.
The effect of proline on the antioxidant system in the leaves of eight species of wild almond (Prunus spp.) exposed to H2O2-mediated oxidative stress was studied. The levels of endogenous proline (Pro) and hydrogen peroxide, and the activities of total superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and guaiacol peroxidase (POD) were measured. The degradation of chlorophyll but not carotenoids occurred in leaves in the solution of 5 mM H2O2. An increase in membrane lipid peroxidation was observed in H2O2 treatment, as assessed by MDA level and percentage of membrane electrolyte leakage (EL). Significant increases in total SOD and CAT activities, as well as decreases in APX and POD activities, were detected in H2O2-treated leaves. The three SOD isoforms showed different behavior, as Mn-SOD activity was enhanced by H2O2, whereas Fe-SOD and Cu/Zn-SOD activities were inhibited. In addition, Pro accumulation up to 0.1 ??mol/g fr wt, accompanied by significant decreases in ascorbate and glutathione levels, was observed in H2O2-treated leaves. After two different treatments with 10 mM Pro + 5 mM H2O2, total SOD and CAT activities were similar to the levels in control plants, while POD and APX activities were higher if compared to the leaves exposed only to H2O2. Pro + H2O2 treatments also caused a strong reduction in the cellular H2O2 and MDA contents and EL. The results showed that Pro could have a key role in protecting against oxidative stress injury of wild almond species by decreasing membrane oxidative damage.  相似文献   

12.
Salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. In this study, the role of SA in improving drought tolerance in two maize cultivars (Zea mays L.) differing in their tolerance to drought was evaluated. The plants were regularly watered per pot and grown until the grain filling stage (R2) under a rainout shelter. At stage R2, parts of the plants were treated with SA, after which drought stress was applied. Leaf samples were harvested on the 10th and 17th days of the drought. Some antioxidant enzyme activity, such as the superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), hydrogen peroxide (H2O2) and malondialdehyde (MDA) content, was measured during the drought period. Exogenous SA prevented water loss and delayed leaf rolling in comparison with control leaves in both cultivars. As a consequence of drought stress, lipid peroxidation, measured in terms of malondialdehyde content, was prevented by SA. SA pretreatment induced all antioxidant enzyme activities, and to a greater extent than the control leaves, during drought. SA also caused a reduction in the ascorbate (ASC) and glutathione (GSH) content in two maize cultivars. The H2O2 level was higher in SA pretreated plants than the controls in both cultivars. Pretreatment with SA further enhanced the activities of antioxidant enzymes and the concentrations of non-enzymatic antioxidants in the tolerant cultivar compared with the sensitive cultivar. Results suggested that exogenous SA could help reduce the adverse effects of drought stress and might have a key role in providing tolerance to stress by decreasing water loss and inducing the antioxidant system in plants with leaf rolling, an alternative drought protection mechanism.  相似文献   

13.
The effects of Cd, in combination with salicylic acid (SA) and sodium nitroprusside (SNP), on ryegrass seedlings were studied. Exposure of plants to 0.1 mM CdCl2 for 2 weeks resulted in toxicity symptoms such as chlorosis and necrotic spots on leaves. The addition of 0.2 mM SA or 0.1 mM SNP slightly alleviated the toxic effects of Cd. After application of both SA and SNP, these symptoms significantly decreased. Treatment with Cd resulted in a decrease of dry weight of roots and shoots, chlorophyll content, net photosynthetic rate (P n), transpiration rate (T r), and the uptake and translocation of mineral elements. In Cd-treated plants, levels of lipoxygenase activity and malondialdehyde, hydrogen peroxide (H2O2), and proline contents significantly increased, whereas the activities of antioxidant enzymes, such as superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, decreased in both roots and shoots. The results indicated that Cd caused physiological stresses in ryegrass plants. The Cd-stressed plants exposed to SA or SNP, especially to SA + SNP, exhibited improved growth compared with Cd-stressed plants. Application of SA or SNP, especially the combination SA + SNP, considerably reduced root-to-shoot translocation of Cd and increased the activities of antioxidant enzymes in both roots and shoots of Cd-stressed plants. The interaction of SA and SNP increased chlorophyll content, P n and T r in leaves, and the uptake and translocation of mineral elements, and decreased lipid peroxidation and H2O2 and proline accumulation in roots and shoots. These results suggest that SA or SNP, and, in particular, their combination counteracted the negative effects of Cd on ryegrass plants.  相似文献   

14.
Seedling stage is a critical period for survival and growth under drought stress. In the current study, we determined effects of drought stress on physiological and biochemical parameters of leaves and roots of Lycium ruthenicum Murr. seedling. The variables measured were lipid peroxidation (in terms of malondialdehyde (MDA) content), osmotic substances (free proline, soluble protein, and soluble sugar), and antioxidative enzymes (peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT)). Free proline, soluble sugar, and MDA of leaves and roots increased with increasing stress level. Leaves displayed higher accumulations of free proline and MDA than roots. However, roots showed higher total soluble sugar than leaves. Under drought stress, soluble proteins in leaves and roots decreased initially and then increased. Meanwhile, measured proteins were higher in leaves. Under drought stress, SOD, POD, and CAT activities in leaves increased initially and then decreased but increased with increasing drought stress level in roots. Under drought the level of accumulation of osmotics was higher in the leaves than in the roots, while increased activity of antioxidant enzymes persisted in the stressed roots longer that in the leaves.  相似文献   

15.
Salt-induced changes in the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and lipid peroxidation in terms of malondialdehyde (MDA), level of H2O2, and some key metabolites such as soluble proteins, free proline and phenolics in the leaves of six radish cultivars (Radish Red Neck, Radish Lal Pari, Radish Mino Japani, Radish 40 Days, Mannu Early and Desi) were investigated. Varying levels of NaCl (0, 80 and 160 mM) applied for 40 days adversely affected the shoot fresh weight, chlorophyll contents and soluble proteins, while increased the levels of proline, and the activities of SOD, POD and CAT. However, leaf H2O2 and total phenolic contents were not affected by salt stress. Cultivars Mannu Early, Radish 40 Days and Desi were relatively higher in shoot fresh weight (percent of control) while cvs. Radish Mino Japani and Mannu Early in proline, and cvs. Radish 40 Days and Desi in total soluble proteins at 160 mM of NaCl. However, levels of H2O2 and phenolics were higher in cvs. Desi, Radish Lal Pari and Mannu Early and SOD, POD and CAT activities only in Radish Lal Pari and Mannu Early than the other cultivars under saline conditions. Overall, the differential salt tolerance of radish cultivars observed in the present study was not found to be associated with higher antioxidant enzyme activities and other key metabolites analyzed, so these attributes cannot be considered as selection criteria for salt tolerance in radish.  相似文献   

16.

Key message

SA treatment effectively ameliorated the negative effect of moderate drought stress on T. grandis Seedlings through increasing the water content, Pn, proline content, antioxidant enzymes activity and reducing MDA.

Abstract

Water availability is one of the most critical factors that limits the growth and development of plants. Salicylic acid (SA) is an important signal molecule that modulates plant responses to abiotic stress. To elucidate the regulating mechanism of exogenous SA on Torreya grandis cv. Merrillii under different water stresses, a pot experiment was conducted in a greenhouse. Exposure of T. grandis seedlings to drought conditions resulted in reduced growth rate that was associated with a decline in water content and CO2 assimilation. Foliar application of SA effectively increased the water content, net CO2 assimilation rate, proline content and antioxidant enzymes activity in the plants, which helped T. grandis to acclimate to moderate drought stress and increase the shoot dry matter. However, when the plants were under severe drought stress, the relative water content and CO2 assimilation in the SA-treated plants were significantly lower than those in the control plants. Therefore, our results indicated that SA can effectively ameliorate the negative effect of moderate drought stress on T. grandis seedling growth.  相似文献   

17.
该研究以平邑甜茶[Malus hupehensis(Pamp.)Rehd.]2年生实生苗为材料,通过盆栽试验于干旱处理前3d分别连续喷施黄腐酸(FA)、甜菜碱(GB)和复配(FA+GB),并以清水为对照(CK)进行预处理,比较分析不同预处理对干旱胁迫下平邑甜茶的生理及光合特性变化,探讨FA和GB对平邑甜茶的抗旱生理机制。结果显示:(1)与对照相比,FA、GB和FA+GB预处理均能够显著提高平邑甜茶叶片相对含水量,且FA的保水性效果最佳。(2)3种预处理均可显著促进干旱胁迫下叶片可溶性蛋白、可溶性糖和脯氨酸含量增加,且FA+GB预处理后在干旱胁迫下叶片可溶性糖和脯氨酸累积量显著高于单施FA或GB。(3)3种预处理均可显著提高干旱胁迫下平邑甜茶幼苗的SOD、POD、CAT活性,并显著降低MDA的积累速度及其累积量,且以FA+GB预处理的MDA含量最低、抗氧化酶活性最高。(4)GB和FA+GB预处理下平邑甜茶的净光合速率、瞬时水分利用率显著高于CK和FA,且FA+GB处理下改善光合特性的效果最佳,GB次之。研究表明,单独喷施黄腐酸和甜菜碱及两者配施预处理均能够增加干旱胁迫下平邑甜茶的渗透调节物质和相对含水量,提高叶片的保水性,调节抗氧化物酶活性,降低丙二醛含量,增加细胞膜稳定性,改善光合性能,进而提高平邑甜茶的抗旱能力,且以复配喷施(FA+GB)预处理的效果最好。  相似文献   

18.
Changes in growth, leaf water status, pigments, osmolytes, activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX), and ascorbic acid (ASA) content were investigated in Chinese cork oak (Quercus variabilis Bl.) seedlings. Three-month-old seedlings were subjected to four drought cycles (30, 60, 90, and 120 days) and four drought intensities (80, 60, 40, and 20% field capacity (FC)). The seedlings had optimal height, basal diameter, and leaf water status at 80% FC. These parameters significantly decreased as drought intensity increased. The total root length, diameter, and surface area at 60% FC significantly increased compared with those at 80% FC. However, at 40 and 20% FC these parameters significantly decreased compared with those at 80% FC. The ratio of total root length to seedling height significantly increased with increasing drought intensity. The contents of chlorophyll a + b (Chl a + b ) and carotenoids (Car) significantly decreased at 40 and 20% FC. However, no significant changes in Chl a /Chl b and Car/Chl a + b ratios were observed among the four drought intensities. Comparatively, the seedlings accumulated more soluble sugars and proline, as well as they demonstrated the higher POD, SOD, CAT, APX activities and ASA content at >40% FC. However, prolonged drought stress at 20% FC suppressed antioxidant activities and osmolyte accumulation, leading to a rapid increase in lipid peroxidation. These results suggest that a water supply >40% FC is required to support the growth and survival of the current-year seedlings of Chinese cork oak  相似文献   

19.
Low-light (LL) intensity is a primary abiotic stressor that negatively influences turf grass quality. In the present experiment, we studied the effect of exogenous Ca2+ (0, 10, 50, 100, and 200 mM) on the antioxidant system, the accumulation of MDA and proline, the content of photosynthetic pigments in plant leaves in order to investigate whether exogenous Ca2+ treatment improves LL tolerance in tall fescue (Festuca arundinacea Schreb.). We have found that LL significantly reduced a number of growth parameters (plant height, leaf width, leaf fresh weight, root fresh weight, leaf dry weight, and root dry weight), chlorophyll (Chl) a and Chl b contents, and carotenoid (Car) levels, while considerably enhancing electrolyte leakage (EL), MDA accumulation, calcium (Ca2+) concentration, and generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and superoxide radical (O 2 ·? ). Moreover, LL significantly induced the activities of antioxidant enzymes, such as peroxidase (POD) and catalase (CAT), and slightly increased the activity of superoxide dismutase (SOD) in tall fescue leaves. In contrast, POD and SOD activities declined considerably while CAT activity significantly increased in plant roots under LL stress. The application of 50 mM Ca2+ significantly improved the aforementioned growth parameters, the content of photosynthetic pigments, and further enhanced the activities of POD, SOD, and CAT, but decreased electrolyte leakage and MDA and H2O2 levels in the leaves and roots of tall fescue under LL stress. These results suggest that Ca2+ is likely involved in a resistance to LL by regulating antioxidant enzyme action in tall fescue leaves and roots.  相似文献   

20.
为探讨水杨酸(SA)对杏花抗寒性的影响机制,以早熟品种‘骆驼黄’杏的显蕾期花枝为试材,分析–2℃的低温下适宜浓度SA及其抑制剂ABT和PAC对杏花MDA、抗氧化酶和CBF转录因子的影响。结果表明,–2℃低温条件下,对照和2个SA抑制剂处理的杏花细胞膜系统均受到严重伤害,CAT、POD和SOD等抗氧化酶活性降低,MDA含量明显升高。而SA预处理的杏花在低温胁迫期间抗氧化酶活性增强,MDA含量比对照和抑制剂处理的有明显降低且相对稳定。通过荧光定量检测CBF转录因子的表达水平,表明SA能诱导杏花CBF基因的表达,尤其在低温处理3 h时,SA预处理的杏花中CBF的表达量明显高于对照和SA抑制剂处理。由此认为,适宜浓度的外源SA可能是通过调控低温下杏花中CBF转录因子的表达、增强细胞的抗氧化酶活性,减轻低温造成的膜脂过氧化伤害,从而在一定程度上增强了杏花的抗寒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号