首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The solitary endoparasitoid Aenasius vexans Kerrich (Hymenoptera: Encyrtidae) is used for augmentative releases against the cassava mealybug, Phenacoccus herreni Cox & Williams (Sternorrhyncha: Pseudococcidae), an important pest on cassava in South America. In light of the need for large numbers of high quality females, experiments were conducted on host stage suitability and sex allocation. In choice and no-choice experiments, individual female wasps were offered second and third instar, as well as adult, hosts. During the first five days after emergence, the wasps showed a steady increase in the number of hosts they successfully parasitised per day, but the respective secondary sex ratio for each instar remained constant. Parasitism was highest for third instar hosts in no-choice tests, while in choice tests parasitism was highest in both third instars and adults. The later the developmental stage of the host at oviposition, the faster the parasitoids developed and emerged, and for each host stage, the development time of males was shorter than for females. The sex ratio of the wasps emerging from hosts that were parasitised as second instars was strongly male-biased, while the apparently preferred later stages yielded significantly more females than males. Female and male A. vexans emerging from hosts parasitised at the third instar were significantly larger than for the other stages. This may explain the preference for the third instar as well as the female-biased sex ratio, as size is usually positively correlated with higher fitness, especially in females. The results suggest that third instar hosts are the most suitable for rearing high numbers of large females.  相似文献   

3.
Abstract. 1. Laboratory experiments and field studies were conducted to explain the coexistence of an endoparasitoid, Encarsia perniciosi Tower, and an ectoparasitoid, Aphytis melinus DeBach, both of which were introduced into California to control the California red scale, Aonidiella aurantii (Mask.).
2. Encarsia parasitized all scale stages but it preferred first and second instar scales. This is in contrast to Aphytis melinus , in which previous studies have shown that it parasitizes second and third instar females and second instar males but prefers third instar female scales. Encarsia developed most rapidly when it parasitized an early second instar and slowest when it parasitized the mature female scale. However, on early second instar scales it was about 80% as fecund as a wasp that emerged from a mature female scale.
3. Second instar scales parasitized by Encarsia were accepted by Aphytis as readily as unparasitized scales.
4. Encarsia did not distinguish between unparasitized hosts and those previously parasitized by Aphytis.
5. Encarsia always outcompeted by Aphytis when both species parasitize the same host.
6. Encarsia prefers scale on stems whereas Aphytis prefers those on leaves and fruits. This, too, may be a result of interspecific competition with Aphytis.
7. The partitioning of the scale resource by the two species explains why they coexist in coastal southern California but it does not explain why Encarsia disappeared from citrus groves in the inland valleys coincident with the introduction of Aphytis melinus into southern California.  相似文献   

4.
Abstract. 1. Sex ratio in the ectoparasitoid, Diglyphus begini (Ashmead), attacking larvae of the dipterous leafminer Liriomyza trifolii (Burgess) in glasshouse marigolds, is best depicted by a model where sex ratio varies as a function of host size.
2. Male D. begini progeny are produced in hosts significantly smaller in size than those producing female progeny.
3. Female wasps attack and oviposit on the largest leafminer larvae available and whether a host is large or small depends upon the size of the other hosts attacked.
4. Diglyphus begini females adjust the thre:shold size for the change-over in sex allocation relative to the size of hosts attacked; however, the sex ratio is maintained at between 60% and 70% males.
5. The patterns observed in these glasshouse studies are not due to sex-specific differential mortality or superparasitism.  相似文献   

5.
Most parasitoid female wasps can distinguish between unparasitized and parasitized hosts and use this information to optimize their progeny and sex allocation. In this study, we explored the impact of mating on oviposition behaviour (parasitism and self‐ and conspecific superparasitism) on both unparasitized and already parasitized hosts in the solitary parasitoid wasp Eupelmus vuilleti (Crw.) (Hymenoptera: Eupelmidae). Virgin and mated females had the same oviposition behaviour and laid eggs preferentially on unparasitized hosts. The sex ratio (as the proportion of females) of eggs laid by mated females in parasitism and conspecific superparasitism was 0.67 ± 0.04 and 0.57 ± 0.09, respectively. Likewise, females laid more eggs in conspecific superparasitism than self‐superparasitism under our experimental conditions. These experiments demonstrate that E. vuilleti females can (i) discriminate between unparasitized and parasitized hosts and adapt the number of eggs they lay accordingly, and (ii) probably discriminate self from conspecific superparasitized hosts. Finally, mating does not appear to influence the host discrimination capacity, the ovarian function, or the oviposition behaviour.  相似文献   

6.
Trials were conducted to study how spring Bacillus thuringiensis Berliner subsp. kurstaki treatments on apple may be timed to maximize the survival of parasitoids of the obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae), found in the southern interior of British Columbia, Canada. Orchard collections verified that second through fourth instar obliquebanded leafrollers were found in varying proportions from pink through the petal fall stage of apple development when spring B. thuringiensis treatments are applied vs. lepidopteran pests. Laboratory‐reared second through fourth instar obliquebanded leafrollers, unparasitized and parasitized by one of three native parasitoid species, were fed untreated apple leaves or leaves treated with B. thuringiensis. The highest mortality of unparasitized obliquebanded leafrollers occurred when fourth instars were exposed to B. thuringiensis‐treated leaves; B. thuringiensis‐induced mortality in the unparasitized second and third instars was less than 50%. The consumption of B. thuringiensis‐treated leaves by host larvae significantly increased the percentage of dead host larvae in all parasitized and unparasitized treatments. However, because of the low susceptibility of this leafroller species to B. thuringiensis, relatively high numbers (38–43%) of three obliquebanded leafroller parasitoid species were able to survive the consumption of B. thuringiensis by second and third instar host larvae. Fourth instar obliquebanded leafrollers were found at the full bloom and petal fall stage of apple development in the orchard, at which time B. thuringiensis treatments are recommended for optimal leafroller control. The highest parasitoid mortality due to host mortality was recorded in Apophua simplicipes Cresson (Hymenoptera: Ichneumonidae) and Macrocentrus linearis (Nees) (Hymenoptera: Braconidae), when the hosts were treated as fourth instars. Both of these parasitoids emerge from fifth and sixth instar obliquebanded leafrollers. Bacillus thuringiensis did not have as negative an impact on Apanteles polychrosidis Viereck (Hymenoptera: Braconidae), which emerges when the host is in the fourth instar. When leafroller mortality and parasitism were combined, the B. thuringiensis treatment did not significantly increase host elimination above that of parasitism alone, except for larvae parasitized by A. simplicipes that were in the fourth instar. The consumption of B. thuringiensis by unparasitized larvae was shown to slow larval development.  相似文献   

7.
Overproduction of males in mass rearing of parasitic Hymenoptera contributes to higher costs for biological control because only females directly kill pests. We present a technique, based on manipulating host composition, to generate less male‐biased sex ratios in parasitoid species that adjust their sex allocation in response to relative host size. Our system consisted of chrysanthemum, Dendranthema grandiflora Tzvelev var. ‘Miramar’; a leafminer, Liriomyza langei Frick (Diptera: Agromyzidae); and a commercially available parasitoid, Diglyphus isaea (Walker) (Hymenoptera: Eulophidae). We compared the offspring sex ratios of D. isaea females presented with different compositions of L. langei larvae on chrysanthemum. Presenting individual females with only large hosts increased mean sex ratio from 32 to 67% male over 2 days. However, presenting individual females with progressively larger hosts over 1 or 2 days reduced mean sex ratio from 90 to 100% male to less than 30% male. Groups of females produced sex ratios around 58% male if presented with both plants infested by only small hosts and plants infested by only large hosts. In comparison, groups of females produced sex ratios around 48% male if presented with plants infested by both small hosts and large hosts. We compared the use of both small hosts and large hosts to only large hosts for simulated mass rearing of wasps over 8 weeks. Using both small hosts and large hosts produced similar numbers of wasps as using only large hosts, but reduced mean sex ratio of weekly cohorts from 66% male to 56% male. The two techniques produced females of similar size, but using both large hosts and small hosts produced slightly smaller males than using only large hosts. The use of both small hosts and large hosts for mass rearing of D. isaea could reduce actual costs of females by 23%.  相似文献   

8.
9.
Highly variable sex ratios are found in the solitary parasitoidEpidinocarsis lopezi, both in the field and in a mass-rearing situation. Superparasitism is one of a number of factors which can influence sex ratios in parasitoid Hymenoptera. We show that superparasitism inE. lopezi is common in the field. Sex allocation decisions when parasitizing unparasitized hosts are not different from those with parasitized hosts; neither does differential mortality occur between the sexes in superparasitized hosts. Therefore superparasitism does not contribute to the variable sex ratio ofE. lopezi. Both the occurrence of superparasitism and the sex produced when ovipositing are shown to be functional forE. lopezi.  相似文献   

10.
Abstract.  1. Polyembryonic wasps provide dramatic examples of intra-specific developmental conflict. In these parasitoids, each egg proliferates into a clonal lineage of genetically identical larvae. If more than one egg is laid in a host (superparasitism), individuals of different clones may compete for food resources.
2. In the polyembryonic encyrtid Copidosoma koehleri , one larva per clone can differentiate into a sterile soldier. It is shown that soldiers are always females, and that they attack intra-specific competitors.
3. Research hypotheses were that (a) clones that develop in superparasitised hosts suffer heavier mortality than clones that develop in singly parasitised hosts, and (b) female clones cause higher mortality to their competitors than male clones, hence larval survival is lower in superparasitised hosts that contain females than in male-only broods.
4. The potential frequency of superparasitism in C. koehleri was manipulated by varying parasitoid–host ratios and exposure durations.
5. As parasitoid densities and exposure durations increased, the frequency of superparasitism rose, brood sizes increased, but the number of hosts that completed development was reduced. The number of offspring per parasitoid female decreased with increasing parasitoid–host ratios. Offspring size and longevity were inversely correlated with brood size. As superparasitism rates increased, fewer all-male broods were produced. Male–female broods were female-biased, suggesting selective killing of males by female soldiers. All-female broods were significantly smaller than all-male broods at high parasitoid densities only, possibly reflecting aggression among soldiers of competing clones.
6. The results support the working hypotheses, and suggest that female larvae outcompete males in superparasitised hosts.  相似文献   

11.
Host stage selection and sex allocation by Gyranusoidea tebygi Noyes (Hym,, Encyrtidae) were studied in choice and no-choice experiments in the laboratory. The parasitoid reproduced on first, second, and third instars of the mango mealybug, Rastrococcus invadens Williams (Hem., Pseudococcidae), and it avoided hosts that were already parasitized. Host feeding was occasionally observed. Sex ratios of the offspring produced by individual wasps were highly biased in favor of females, whereas the sex ratio of groups of wasps foraging under crowded conditions varied from male biased in smaller hosts to female biased in larger hosts. Females had longer developmental times than males, developed faster in larger mealybugs than in smaller ones, and were always larger than males emerging from the same host instar. Their size increased with the instar of the host at oviposition. About 90% of all ovipositions in second and third instar nymphs resulted from an attack with multiple stings, starting with a sting in the head of the host for the most part. The function of these head stings is either to assess quality of the host or to subdue hosts prior to oviposition. Encounter rates, number of attacks, and number of stings during one attack increased, while ovipositions decreased with host instar. Time investment per oviposition and time spent preening increased with increasing host age because older hosts defended themselves more vigorously than younger ones. Thus, while fitness of the parasitoid increased with host size, fitness returns per time decreased. The implications of this host selection behavior for the biological control of the mango mealybug are discussed.  相似文献   

12.
Optimal Foraging Theory predicts that parasitoid females should optimize their host selection to maximize their lifetime fitness gain and parasitize the most profitable hosts. In particular, in solitary parasitoids, females should avoid superparasitism, at least when sufficient unparasitized hosts are available. However, when unparasitized hosts are scarce, they should prefer, among already parasitized hosts, those that provide the best survival probability to their progeny, which depends on the age and the developmental stage of the first parasitoid. To test this hypothesis in a solitary ectoparasitoid, Pachycrepoideus vindemmiae Rondani (Hymenoptera: Pteromalidae), we first assessed the survival probability of a second parasitoid according to the time elapsed since initial parasitism. We then analyzed the female selection behavior in patches containing a mixture of hosts parasitized over various time intervals. Our results showed that the older the opponent larva was, the lower the survival probability of the second parasitoid was. However, when the first individual had reached the prepupal stage, both individuals could complete their development. At this stage, the survival probability of the second parasitoid was surprisingly high but such individuals were reduced in size. Our study also showed that host acceptance by females was strongly correlated with the survival probability of their progeny when the first parasitoid was from 0 to less than 10 days‐old. When the first parasitoid had reached the prepupal stage, females usually rejected these hosts, although the survival probability of the offspring was quite high. This discordance between female host selection behavior and progeny survival probability is discussed.  相似文献   

13.
Abstract. 1. Females of the multivoltine carpenter bee Xylocopa sulcutipes (Maa) (Hymenoptera: Anthophoridae) usually excavate a straight tunnel in dead twigs and mass provision a linear array of up to ten brood cells with pollen and nectar. An egg is deposited upon each food mass within one cell.
2. Female offspring generally receive a higher provisioning mass (0.180 ± 0.048 g) than males, a significant difference ( P > 0.001). There are, however, male larvae that receive as much food or more as their sisters or female larvae reared in another nest.
3. There is a close positive association between the size of a mother and the weight of provisions for individual daughters, but not for sons.
4. Female offspring are positioned in the innermost brood cells (Gositions 1, 2 and 3). The sex ratio of the outer cells is either significantly male biased (positions 4–6) or skewed towards males (positions 8 and 9). Positions 7 and 10 are in equilibrium.
5. Solitary females produce a significantly female biased sex ratio ( P < 0.01). Sex ratio in social nests is skewed toward females, but not significantly so ( P < 0.2). There is no significant difference between the sex ratio of solitary and social nests ( P = 0.361). The population sex ratio (pooled sex ratio of all broods produced) is significantly female biased ( P = 0.003).
6. Females kept in the laboratory produced female biased sex ratios whilst unmated females produced all-male broods indicating that insemination and ovarian development are not causally related.
7. The expected sex ratio (ESR) under equal investment, calculated as 1/CR (CR = mean male provision weight/mean female provision weight), is 137.5:117.5 (males:females), and differs significantly from that observed, 104:151 (males:females) ( P < 0.001). The 'Local Resource Enhlancement' hypothesis best explains the female biased sex ratio found in X.sulcatipes and its maintenance in the population.  相似文献   

14.
Abstract. 1. Encarsia pergandiella Howard females develop as primary parasitoids on immature whiteflies, and males develop as secondary parasitoids on females of their own or a related species. The hypothesis that the sex ratio reflects the relative abundance of the two host types was tested in the laboratory using petri dish arenas with varying proportions of early fourth instar greenhouse whitefly (Trialeurodes vaporariorum (West.)) (primary hosts) and pupal female E.pergandiella (secondary hosts). Egg distribution was analysed with respect to sex ratio, super-parasitism and host discrimination.
2. The proportion of primary and secondary hosts parasitized in each treatment reflected the relative availability of each host type. Thus females presented with 75% primary hosts laid more female eggs than male. However, in all treatments, a greater proportion of secondary hosts were parasitized than would be expected from the proportion of secondary hosts available. This indicates that more male eggs were laid than expected.
3. More secondary hosts than primary hosts were superparasitized.
4. Host discrimination analysis using a new test statistic showed that females generally laid eggs at random with regard to previous parasitism of primary or secondary hosts. However, females in one treatment with 50% of each host type appeared to preferentially oviposit in secondary hosts which did not contain any eggs.  相似文献   

15.
Interspecific host discrimination by adults, and larval competition among the endoparasitoidsMicroplitis croceipes (Cresson),Microplitis demolitor Wilkinson,Cotesia kazak (Telenga) andHyposoter didymator (Thunberg) were investigated usingHeliothis virescens (F.) as the host. In ovipositional choice tests, the mean number of encounters and ovipositions for unparasitized hosts was not significantly different from the mean number of encounters and ovipositions for parasitized hosts for each treatment combination (P>0.05). Thus, none of the parasitoid species discriminated between host larvae recently parasitized once by a female of another species und unparasitized hosts. However, in all but two cases, females did discriminate between unparasitized hosts and hosts in which an early first instar of the first-attacking species was developing.Cotesia kazak andH. didymator did not discriminate between unparasitized hosts and hosts parasitized by an early first instar ofM. demolitor. Larval competition among these parasitoid species was studied for three time intervals between the first and second species parasitization: 1) second species attack immediately (5–15 sec) after the first; 2) second species attack 24 h after the first; and 3) second species attack 48 h after the first. Time until egg eclosion was shortest forM. demolitor, thenC. kazak, thenM. croceipes, and longest forH. didymator. When the second parasitoid species attacked a host immediately after the first species, the species in which egg eclosion occurred first was the victor more frequently, except whenM. demolitor competed withC. kazak andH. didymator. With a 24 h delay between the first and second species to attack, the older first instar from the first parasitization usually outcompeted the younger first instar from the second attack. A first instar from the second species to attack generally outcompeted the second instar of the first species when the second parasitization had been delayed 48 h. Competiors were eliminated mainly by physical attack, butC. kazak andM. croceipes apparently also killedH. didymator eggs by physiological processes.  相似文献   

16.
Female parasitoids are expected to avoid superparasitism (ovipositing in and/or on parasitized hosts) when unparasitized hosts are available. However, when the supply of unparasitized hosts is restricted, they are expected to self‐ as well as conspecifically superparasitize. One of the cues of a reduced availability of unparasitized hosts is the presence of a conspecific. Moreover, if the focal species can perform infanticide, after encountering a conspecific female, the females are expected to kill eggs existing in and/or on hosts when superparasitizing, because the eggs are more likely to be laid by others. In this study we investigated whether females of an infanticidal semisolitary parasitoid, Echthrodelphax fairchildii, increase their frequencies of superparasitism and infanticide after encountering a conspecific female. Echthrodelphax fairchildii females are capable of discriminating between self‐ and conspecific superparasitism until up to 0.75 h after the first egg was laid (self‐superparasitism frequency < conspecific superparasitism frequency). As expected, the female parasitoids were more likely to perform self‐ and conspecific superparasitism after they had encountered a conspecific. In particular, the self‐superparasitism frequency increased highly within a short period after the first oviposition, so that no difference between the self‐ and conspecific superparasitism frequencies was found. In contrast, the infanticidal‐probing frequency remained extremely low, irrespective of whether or not the female parasitoids had encountered a conspecific. Moreover, when superparasitizing, females usually laid female eggs. Possible causes for the low frequency of infanticidal probing and the female‐biased sex ratio are discussed.  相似文献   

17.
The effect of interspecific competition between the solitary endoparasitoid Glyptapanteles porthetriae Muesebeck (Hymenoptera: Braconidae) and the gregarious Glyptapanteles liparidis Bouché (Hymenoptera: Braconidae), was investigated in larvae of Lymantria dispar L. (Lepidoptera: Lymantriidae). Host larvae were parasitized by both wasp species simultaneously in premolt to the 2nd or the 3rd host instar or in an additional approach with a 4-day delay in parasitization by the second wasp species. Host acceptance experiments revealed that both wasp species do not discriminate between unparasitized host larvae and larvae parasitized previously by the same or the other species. In more than 90% female wasps parasitized the larva they encountered first. During the period of endoparasitic development, larvae of the competing parasitoid species never attacked the egg stage of the other species. When host larvae were parasitized simultaneously by both wasp species, the rate of successful development of both species depended on the age of the host larva at the time of its parasitization; G. liparidis emerged successfully from 44% of host larvae parasitized during the premolt to 2nd instar, G. porthetriae from 28%, and in 20% of the hosts both parasitoid species were able to develop in one gypsy moth larva. However, when host larvae were parasitized simultaneously during premolt to the 3rd instar, G. liparidis was successful in 90% of the hosts, compared to 8% from which only G. porthetriae emerged. In the experiments with delayed oviposition, generally the species that oviposited first succeeded in completing its larval development. Larvae of the species ovipositing with four days delay were frequently attacked and killed by larvae of the first parasitizing species or suffered reduced growth. As the secondary parasitoid species, G. porthetriae-larvae were never able to complete their development, whereas G. liparidis developed successfully in at least 12,5% of the multiparasitized host larvae. Thus, multiparasitism of gypsy moth larvae by both Glyptapanteles species corresponds to the contest type; however, G. porthetriae is only able to develop successfully as the primary parasitoid of young host larvae.  相似文献   

18.
Adaptiveness of sex ratio control by the solitary parasitoid wasp Itoplectis naranyae (Hymenoptera: Ichneumonidae) in response to host size was studied, by examining whether differential effects of host size on the fitness of resulting wasps are to be found between males and females. The offspring sex ratio (male ratio) decreased with increasing host size. Larger hosts yielded larger wasps. Male larvae were less efficient in consuming larger hosts than female larvae. No significant interaction in development time was found between parasitoid sex and host size. Larger female wasps lived longer than smaller females, while longevity of male wasps did not increase with increasing wasp size. Smaller males were able to mate either with small or with large females, while larger males failed to mate with small females. Larger female wasps had a greater number of ovarioles and mature eggs at any one time than smaller females, although the number of eggs produced per host-feeding was not influenced by female wasps. Thus, the differential effect of host size on the fitness of males and females exists in I. naranyae. The basic assumption of the host-size model was therefore satisfied, demonstrating that sex ratio control by I. naranyae in response to host size is adaptive.  相似文献   

19.
The effect of interspecific competition between the solitary endoparasitoid Glyptapanteles porthetriae Muesebeck (Hymenoptera: Braconidae) and the gregarious Glyptapanteles liparidis Bouché (Hymenoptera: Braconidae), was investigated in larvae of Lymantria dispar L. (Lepidoptera: Lymantriidae). Host larvae were parasitized by both wasp species simultaneously in premolt to the 2nd or the 3rd host instar or in an additional approach with a 4‐day delay in parasitization by the second wasp species. Host acceptance experiments revealed that both wasp species do not discriminate between unparasitized host larvae and larvae parasitized previously by the same or the other species. In more than 90% female wasps parasitized the larva they encountered first. During the period of endoparasitic development, larvae of the competing parasitoid species never attacked the egg stage of the other species. When host larvae were parasitized simultaneously by both wasp species, the rate of successful development of both species depended on the age of the host larva at the time of its parasitization; G. liparidis emerged successfully from 44% of host larvae parasitized during the premolt to 2nd instar, G. porthetriae from 28%, and in 20% of the hosts both parasitoid species were able to develop in one gypsy moth larva. However, when host larvae were parasitized simultaneously during premolt to the 3rd instar, G. liparidis was successful in 90% of the hosts, compared to 8% from which only G. porthetriae emerged. In the experiments with delayed oviposition, generally the species that oviposited first succeeded in completing its larval development. Larvae of the species ovipositing with four days delay were frequently attacked and killed by larvae of the first parasitizing species or suffered reduced growth. As the secondary parasitoid species, G. porthetriae‐larvae were never able to complete their development, whereas G. liparidis developed successfully in at least 12,5% of the multiparasitized host larvae. Thus, multiparasitism of gypsy moth larvae by both Glyptapanteles species corresponds to the contest type; however, G. porthetriae is only able to develop successfully as the primary parasitoid of young host larvae.  相似文献   

20.
Oviposition decisions (i.e., host selection and sex allocation) of female parasitoids are expected to correspond with host quality, as their offspring fitness is dependent on the amount and quality of resources provided by a single host. The host size model assumes that host quality is a linear function of host size, with larger hosts believed to contain a greater quantity of resources, and thus be more profitable than smaller hosts. We tested this assertion in the laboratory on a solitary larval–pupal parasitoid Diadegma mollipla (Holmgren) (Hymenoptera: Ichneumonidae) developing on three instars (second–fourth) of one of its hosts, the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). In a no‐choice test, parasitism levels and sex ratio (i.e., proportion of female progeny) were significantly high in hosts attacked in the second instar followed by third then fourth instars. However, the few parasitoids that completed a generation from the fourth instars did so significantly faster than conspecifics that started development in the other two instars. In direct observations, however, the parasitoids (i) randomly attacked the various host instars, (ii) spent a similar period examining the various host instars with their ovipositors, (iii) subdued all three host instars with about the same effort, and (iv) no statistical differences were observed in the attack rates on the three host instars. In a choice test, the females parasitized significantly more third instars followed by second then fourth instars. However, total parasitism in this experiment was 43% lower compared to parasitism of only second instars in the no‐choice test. No significant differences were detected in progeny sex ratios. In both choice and no‐choice tests, significantly more fourth instars died during the course of the experiments than second instars, while third instars were intermediate. The higher parasitism of third than second instars in the choice test indicates that the females perceived larger hosts as higher quality than smaller hosts, despite their lower suitability for larval development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号