首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shoots were regenerated from in vitro leaf tissues of two genotypes of Viburnum dentatum, a popular shrub species for landscape use. Adventitious shoots were induced when leaf tissues were cultured on woody plant medium (WPM) supplemented with either benzyladenine (BA) or thidiazuron (TDZ). Effects of cytokinin concentration, indole-3-butyric acid (IBA), and dark treatment on shoot regeneration were investigated. Dark treatment for the first 4 weeks of leaf explants cultured in the regeneration medium significantly increased the frequency of regeneration. The highest frequency of shoot regeneration (70%) for ‘Synnesvedt’ was obtained when leaf tissues were cultured in the medium with 40 μM BA or 8 μM TDZ with 4 weeks dark treatment. The highest frequency of shoot regeneration (90%) for ‘MN34’ was found in the 4 μM TDZ medium with 4 weeks dark treatment. Addition of IBA significantly enhanced shoot regeneration. Ethyl methanesulfonate (EMS) treatment inhibited callus proliferation, particularly in the early stage of callus recovery; however, no significant difference in shoot regeneration among different treatments was observed, indicating that the inhibitory effect of EMS was minimal after calluses re-acquired their capacity to grow and regenerate in the regular medium. Regenerated shoots (>1.5 cm) were rooted in the half-strength MS medium containing 5-10 μM IBA or naphthalene acetic acid (NAA). Rooted plants were transferred to the potting medium and grown in the greenhouse.  相似文献   

2.
An efficient protocol for in vitro organogenesis was achieved from callus-derived immature and mature leaf explants of Momordica charantia, a very important vegetable and medicinal plant. Calluses were induced from immature leaf explants excised from in vitro (15-day-old seedlings) mature leaf explants of vivo plants (45 days old). The explants were grown on Murashige and Skoog (MS) medium with Gamborg (B5) vitamins containing 30 g l−1 sucrose, 2.2 g l−1 Gelrite, and 7.7 μM naphthalene acetic acid (NAA) with 2.2 μM thidiazuron (TDZ). Regeneration of adventitious shoots from callus (30–40 shoots per explant) was achieved on MS medium containing 5.5 μM TDZ, 2.2 μM NAA, and 3.3 μM silver nitrate (AgNO3). The shoots (1.0 cm length) were excised from callus and elongated in MS medium fortified with 3.5 μM gibberellic acid (GA3). The elongated shoots were rooted in MS medium supplemented with 4.0 μM indole 3-butyric acid (IBA). Rooted plants were acclimatized in the greenhouse and subsequently established in soil with a survival rate of 90%. This protocol yielded an average of 40 plants per leaf explant with a culture period of 98 days.  相似文献   

3.
Primulina tabacum is a rare and endangered species that is endemic to China. Establishing an efficient regeneration system is necessary for its conservation and reintroduction. In this study, when leaf explants collected from plants grown in four ecotypes in China are incubated on Murashige and Skoog (MS) medium containing 5.0 μM thidiazuron (TDZ) for 30 days, then transferred to medium containing 5.0 μM 6-benzyladenine (BA), adventitious shoots are then observed. Conversely, when leaf explants are incubated on medium containing 5.0 μM BA for 30 days, then transferred to medium containing 5.0 μM TDZ, somatic embryogenesis is induced. This indicates that somatic embryogenesis and shoot organogenesis could be switched simply by changing the order of two cytokinins supplemented in the culture medium. Histological investigation has revealed that embryogenic cells are induced within 30 days following incubation of explants in medium containing TDZ. Only if embryogenic cells were induced, TDZ could enhance somatic embryogenesis and BA could stimulate shoot organogenesis. When comparing explants from different ecotypes, leaf explants from Zixiadong in Hunan Province could induce low numbers (1–2) of either somatic embryos or adventitious shoots on medium containing either 5.0 μM TDZ or 5.0 μM BA, respectively. Whereas, leaf explants from plants collected from the other three ecological habitats could induce 50–70 somatic embryos/adventitious shoots per explant. Moreover, somatic embryos could induce secondary somatic embryogenesis and adventitious shoots on different media. All regenerated shoots developed adventitious roots when these are transferred to rooting medium, and over 95% of plantlets have survived following acclimatization and transfer to a potting mixture (1:1, sand:vermiculite).  相似文献   

4.
The goals of this study were to investigate thidiazuron (TDZ)-induced morphogenesis of Echinacea purpurea L. and to assess the possibility of developing a liquid-based protocol for rapid micropropagation. Callus development and root organogenesis were observed on leaf explants cultured on media containing 2,4-dicholorophenoxyacetic acid or dicamba, but no plantlets were regenerated. Addition of TDZ to the culture medium as the sole growth regulator resulted in the production of regenerable callus cultures. The highest rate of regeneration was observed for explants cultured on medium with TDZ at 2.5 μM or higher. Tissue derived from 1.0 μM TDZ treatments was used to initiate liquid cultures. All liquid treatments produced a similar number of regenerants but significantly more healthy plants were obtained from cultures grown in the presence of 0.1 and 1.0 μM TDZ. This TDZ-based micropropagation system is the first liquid, large-scale propagation protocol developed for the mass production of E. purpurea plants.  相似文献   

5.
Shoot organogenesis from mature leaf tissues of two scented Pelargonium capitatum cultivars, ‘Attar of Roses’ and ‘Atomic Snowflake’, grown in the greenhouse, were optimized in the presence of thidiazuron (TDZ). The protocol involved preculture of leaf sections on basal Murashige and Skoog (MS) medium supplemented with 10 μM TDZ, 4.4 μM of 6-benzyladenine (BA) and 5.4 μM α-naphtaleneacetic acid (NAA) for a period of 2 weeks and followed by subculture of explants to a fresh medium containing 4.4 μM BA and 5.4 μM NAA. Frequency of regeneration reached approximately 93% for both cultivars, with the induction of more than 100 shoots per explant. Regenerated plantlets were rooted on half-strength MS medium supplemented with 4.4 mM sucrose and 8.6 μM of Indole-3-acetic acid (IAA). All regenerated shoots from both cultivars developed roots when transferred to organic soil mix, acclimatized, and successfully transferred to greenhouse conditions. When regenerated shoots were transferred to hydroponic conditions, frequency of survival was 76.2 and 61.9% for ‘Attar of Roses’ and ‘Atomic Snowflake’, respectively.  相似文献   

6.
Seabuckthorn (Hippophae rhamnoides) is a multipurpose small tree with unique berries of high nutritional and pharmaceutical values. A clonally propagated plant originating from a 20-year-old tree of H. r. rhamnoides × mongolica hybrid cultivar Julia and seedling offspring of this cultivar were investigated regarding induction of shoot organogenesis in leaf explants and in roots of intact seedlings, and induction of direct somatic embryogenesis in explants from shoot tissue. The highest percentage of leaf explants showing shoot organogenesis was achieved (juvenile explants, 65%; adult explants, 75%) when incubated in Murashige and Skoog (MS) medium supplemented with either 4.5 μM of the phenylurea cytokinin thidiazuron (TDZ) or 2.25 μM TDZ plus 2.2 μM 6-benzyladenine (BA), for juvenile and adult explants, respectively, both supplemented with 0.53 μM α-naphthaleneacetic acid (NAA). Juvenile explants developed on average 18 shoots per explant in the MS medium supplemented with 4.5 μM TDZ, a four fold increase over those incubated on the medium supplemented with 2.25 μM TDZ and 2.2 μM BA. Adult leaf explants grown on medium containing 2.25 μM TDZ and 2.2 μM BA medium produced 12 shoots per explant, while those grown on medium containing 4.5 μM TDZ produced 5 shoots per explant. Shoot organogenesis was observed in roots of intact seedlings pre-cultured on plain medium lacking nutrients (PM) or woody plant medium (WPM) salts and then grown on WPM salts supplemented with 4.4 μM BA, 0.29 μM gibberrelic acid (GA3), and 57.0 μM indoleacetic acid (IAA). The number of shoots formed on each seedling root system was ten fold higher when the pre-culture was in WPM medium indicating a promoting effect of mineral nutrients in the pre-culture medium. Somatic embryogenesis was induced in both juvenile and adult leaf explants in 65 and 78% of the explants, respectively, in MS-based medium supplemented with 2.0 μM N-(2-Chloro-4-pyridyl)-N 1-phenylurea (CPPU), 0.53 μM NAA and varying concentrations of BA. There was an interaction effect between MS salt strength and BA concentration. The most effective medium for inducing somatic embryogenesis in juvenile explants contained half strength MS salts and 2.2 μM BA and full strength MS salts and 13.2 μM BA for adult explants.  相似文献   

7.
A novel protocol for callus-mediated shoot regeneration was established for an important medicinal and ornamental plant native to South China, Curcuma kwangsiensis, using shoot base sections excised from seedlings in vitro as explant sources. The frequency of callus formation reached 91% for explants cultured on MS medium containing 1.4 μM TDZ, 4.4 μM BA and 2.3 μM 2,4-D. 8.2 shoots per callus was achieved on MS medium supplemented with 1.4 μM TDZ, 17.8 μM BA and 2.7 μM NAA. Single shoots transferred into MS medium free of plant growth regulator rooted well. Regenerated plants acclimatized ex vitro at 100%, and grew vigorously under shaded greenhouse conditions.  相似文献   

8.
A protocol for in vitro regeneration via indirect organogenesis for Phaseolus vulgaris cv. Negro Jamapa was established. The explants used were apical meristems and cotyledonary nodes dissected from the embryonic axes of germinating seeds. Several auxin/cytokinin combinations were tested for callus induction. The best callus production was obtained with medium containing 1.5 μM 2,4-dichlorophenoxyacetic acid. After 2 weeks of growth calli were transferred to shooting medium containing 22.2 μM 6-benzylaminopurine. Shoots regenerated with a frequency of approximately 0.5 shoots per callus, and upon transfer to rooting medium these shoots produced roots with 100% efficiency. Histological analyses of the regeneration process confirmed the indirect organogenesis pattern. Greenhouse grown regenerated plants showed normal development and were fertile. The protocol was reproducible for other nine P. vulgaris cultivars tested, suggesting a genotype independent procedure.  相似文献   

9.
Plant regeneration through direct somatic embryogenesis in Aeschynanthus radicans ‘Mona Lisa’ was achieved in this study. Globular somatic embryos were formed directly from cut edges of leaf explants and cut ends or on the surface of stem explants 4 wk after culture on Murashige and Skoog (MS) medium supplemented with N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea (TDZ) with α-naphthalene acetic acid (NAA), TDZ with 2,4-dichlorophenoxyacetic acid (2,4-D), or 6-benzylaminopurine (BA) or kintin (KN) with 2,4-D. MS medium containing 9.08 μM TDZ and 2.68 μM 2,4-D resulted in 71% of stem explants producing somatic embryos. In contrast, 40% of leaf explants produced somatic embryos when induced in medium containing 6.81 μM TDZ and 2.68 μM 2,4-D. Somatic embryos matured, and some germinated into small plants on the initial induction medium. Up to 64% of stem explants cultured on medium supplemented with 9.08 μM TDZ + 2.68 μM 2,4-D, 36% of leaf explants cultured on medium containing 6.81 μM TDZ and 2.68 μM 2,4-D had somatic embryo germination before or after transferring onto MS medium containing 8.88 μM BA and 1.07 μM NAA. Shoots elongated better and roots developed well on MS medium without growth regulators. Approximately 30–50 plantlets were regenerated from each stem or leaf explant. The regenerated plants grew vigorously after transplanting to a soil-less substrate in a shaded greenhouse with more than a 98% survival rate. Three months after their establishment in the shaded greenhouse, 500 plants regenerated from stem explants were morphologically evaluated, from which five types of variants that had large, orbicular, elliptic, small, and lanceolate leaves were identified. Flow cytometry analysis of the variants along with the parent showed that they all had one identical peak, indicating that the variant lines, like the parent, were diploid. The mean nuclear DNA contents of the variant lines and their parent ranged from 4.90 to 4.99 pg 2C−1, which were not significantly different statistically. The results suggest that the regenerated plants have a stable ploidy level, and the regeneration method established in this study can be used for rapid propagation of ploidy-stable Aeschynanthus radicans.  相似文献   

10.
Dormant buds from a mature tree of Populus tremula ‘Erecta’ were incubated on a Murashige and Skoog (MS) medium supplemented with 1.0 μM thidiazuron (TDZ). Induced shoots were then proliferated on medium of MS or Woody Plant Medium (WPM), or Driver and Kuniyuki Walnut (DKW) supplemented with varying levels of benzyladenine (BA). Overall, shoots grown on MS medium supplemented with 1.25–2.5 μM BA exhibited the highest frequency of shoot proliferation (>95%) and more than 60% of responding explants produced more than five shoots per explant. Shoot organogenesis was induced from both leaf and petiole explants incubated on WPM medium containing BA, or TDZ, or zeatin. Among the different cytokinins tested, zeatin induced the highest frequency (average 72.1%) of shoot organogenesis. None of explants survived on media containing no cytokinins within 6–8 weeks following culture. Overall, a higher frequency of shoot regeneration was obtained from petioles than from leaf explants. The highest frequency of regeneration was achieved when petioles were incubated on WPM containing 10–20 μM zeatin. Addition of naphthaleneacetic acid (NAA) did not have a significant effect on shoot regeneration in all treatments. Shoot organogenesis was directly induced from petiole explants without intervening callus. Regenerated shoots were easily rooted on all tested media supplemented with 0.5 μM NAA. Rooted plants were transferred to potting mix and grown in the greenhouse.  相似文献   

11.
A regeneration system was developed for oriental lily (Lilium orientalis) based on both leaf and bulb scale. Adventitious shoots were regenerated from leaves of in vitro cultures on Murashige and Skoog medium containing thidiazuron (TDZ) or 6-benzylaminopurine (BA) and naphthaleneacetic acid (NAA). The highest percent regeneration from leaf explants was 74.2%, being observed on medium containing 10.8 μM TDZ and 0.54 μM NAA. The highest mean number of shoots generated was 4.4 and was obtained from bulb scale explants on medium containing 0.54 μM TDZ and 0.54 μM NAA. Adventitious shoots were successfully rooted at rates ranging from 79.2% to 100%. The rooted plantlets survived after acclimatization in the greenhouse. The effect of kanamycin concentration on adventitious shoot regeneration was also evaluated, a value of 100 mg l−1 being suggested as a lethal dose for lily transformation. Eighteen ISSR markers were employed to determine the genetic stability of the regenerated shoots in comparison to their mother plant. Eleven primers in total produced 70 clear and reproducible bands. Genetic similarity indicators among the clonal derivatives and the mother plant ranged from 0.92 to 1.0. All 15 micropropagated progenies and the mother plant could be grouped together in one major cluster with a similarity level of 92%. The somaclonal variation rate across the plantlets was estimated as 4.2%, indicating that direct shoot formation from explant regeneration is a safe method for multiplication of “true-to-type” plants.  相似文献   

12.
A simple, high-frequency and reproducible protocol for induction of adventitious shoot buds and plant regeneration from leaf-disc cultures of Jatropha curcas L. has been developed. Adventitious shoot buds were induced from very young leaf explants of in vitro germinated seedlings as well as mature field-grown plants cultured on Murashige and Skoog’s (MS) medium supplemented with thidiazuron (TDZ) (2.27 μM), 6-benzylaminopurine (BA) (2.22 μM) and indole-3-butyric acid (IBA) (0.49 μM). The presence of TDZ in the induction medium has greater influence on the induction of adventitious shoot buds, whereas BA in the absence of TDZ promoted callus induction rather than shoot buds. Induced shoot buds were multiplied and elongated into shoots following transfer to the MS medium supplemented with BA (4.44 μM), kinetin (Kn) (2.33 μM), indole-3-acetic acid (IAA) (1.43 μM), and gibberellic acid (GA3) (0.72 μM). Well-developed shoots were rooted on MS medium supplemented with IBA (0.5 μM) after 30 days. Regenerated plants after 2 months of acclimatization were successfully transferred to the field without visible morphological variation. This protocol might find use in mass production of true-to-type plants and in production of transgenic plants through Agrobacterium/biolistic-mediated transformation.  相似文献   

13.
In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BA), 0.45 μM thidiazuron (TDZ), and 500 mg l−1 casein hydrolysate (CH) with a regeneration frequency of 64.7% after 3 wk. Subculturing explants (after harvesting shoots) to fresh treatment medium significantly increased shoot bud regeneration (16.6 buds per explant), but the buds failed to develop into shoots. A higher percentage (73.3%) of the explants regenerated four shoots per explant on woody plant medium (WPM) supplemented with 4.4 μM BA, 0.29 μM gibberellic acid (GA3), and 500 mg l−1 CH after 3 wk. Explants subcultured to fresh treatment medium after harvesting shoots significantly increased shoot regeneration (16 shoots per explant). Shoot elongation was achieved (4 cm) when shoots were excised and cultured on WPM supplemented with 0.44 μM BA and 0.29 μM GA3. In vitro regenerated shoots were rooted on WPM supplemented with 4.9 μM indole-3-butyric acid. A higher percentage regeneration response and shoot numbers per explant were recorded on WPM supplemented with BA and GA3, than on MS medium containing BA and TDZ. Lower concentrations of BA and GA3 were required for shoot elongation and prevention of shoot tip necrosis. Each cotyledonary node yielded approximately 20 shoots within 12 wk. Rooted plantlets were successfully acclimatized.  相似文献   

14.
Micropropagation has been achieved in a promising larvicidal asteraceous taxon Spilanthes acmella L. using seedling leaf explants. The explants were reared on a variety of growth regulators, namely 2,4-dichlorophenoxyacetic acid, 1-naphthalene acetic acid, Indole-3-butyric acid, N6-benzyladenine, and kinetin either alone or in combination on Murashige and Skoog’s (MS) medium. The best green and compact callus was obtained on 1 μM NAA and 10 μM benzyladenine (BA) in 15 d. The callus on subculture to the same but fresh medium after every 30 d differentiated an average of 12.90 ± 0.32 shoot buds in 50% cultures. Elongation in shoot buds occurred only if they were transferred to NAA lacking MS+BA medium. An average number of 4.22 ± 0.83 shoots and 15 ± 0.84 shoot buds per explant were obtained in 70.3% cultures on MS + 10 μM BA in 30 d. One hundred percent excised shoots rooted in MS(1/2) + 0.1 μM IBA within 2 wk. The plants were gradually hardened and established in soil where they flowered and set viable seeds. The regenerated plants were morphologically similar to the field grown plants and showed 100% larvicidal activity against malaria and filarial vectors.  相似文献   

15.
An efficient in vitro micropropagation system for Clivia miniata Regel was developed using basal tissues of young petals and young ovaries as explants. For callus induction, explants were incubated on Murashige and Skoog (MS) medium containing either 2.22 μM 6-benzyladenine (BA) and 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 4.44 μM BA, 5.37 μM α-naphthaleneacetic acid (NAA), and 9.05 μM 2,4-D. Moreover, callus was induced from young ovaries when these were incubated on MS medium containing 8.88 μM BA, 10.74 μM NAA, and 9.05 or 18.10 μM 2,4-D. Subsequently, callus was transferred to MS medium supplemented with kinetin (KT) and NAA for shoot organogenesis. Frequency of shoot regeneration from petal-derived callus was highest when callus was transferred to medium containing 2.69 μM NAA with either 9.29 or 13.94 μM KT. Shoot regeneration frequency from ovary-derived callus was highest when this callus was transferred to medium containing 9.29 μM KT and 10.74 μM NAA. Overall, different explant types exhibited different organogenic capacities wherein, young petals had higher shoot regeneration frequencies than young ovaries. The highest rooting frequency (98.25 ± 3.04%) was obtained when shoots were transferred to half-strength MS medium without plant growth regulators. Regenerated plantlets were transplanted to soil mix and acclimatized, yielding a 96.80% survival frequency. Only 0.6% of regenerated plantlets exhibited morphological changes. The diploid status (2n = 22) of regenerated plantlets was determined using chromosome counts of root-tips. Moreover, inter-simple sequence repeats were used to assess the genetic fidelity of regenerated plantlets. Overall, regenerated plants shared 90.5–100.0% genetic similarities with mother plants and 89.0–100.0% similarities with each other.  相似文献   

16.
Summary Protocols for both axillary bud proliferation and shoot organogenesis of Euphorbia pulchurrima Winter RoseTM were developed using terminal buds and leaf tissues. Greenhouse-grown terminal buds were placed on Murashige-Skoog (MS) basal medium supplemented with various concentrations of either benzlyaminopurine (BA) or thidiazuron (TDZ). Explants produced the greatest number of axillary buds on media containing between 2.2 and 8.8 μM BA. The number of explants that produced axillary buds increased with increasing BA concentration. TDZ at concentrations between 2.3 and 23.0 μM caused hyperhydricity of shoots and were not effective in promoting shoot proliferation. The most calluses and shoots were produced from leaf midvein sections from in vitro grown plants placed on the medium containing 8.8–13.3 μM BA and 17.1 μM indole-3-acetic acid (IAA) for 1 mo. before transferring to the medium containing only BA. Adventitious buds were produced only from red-pigmented callus, and explants that produced callus continued to produce adventitious shoots in the presence of IAA. Five-mo.-old shoots derived from shoot culture or organogenesis rooted readily in artificial soil with or without treatment with indolebutyric acid, and were acclimatized in the greenhouse.  相似文献   

17.
Summary Stem nodal explants of Paphiopedilum philippinense hybrids (hybrid PH59 and PH60) directly formed shoots when cultured on a modified half-strength Murashige and Skoog (1962) basal medium supplemented with a combination of 2,4-dichlorophenoxyacetic acid (2,4-D: 4.52 and 45.25 μM) and 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea (TDZ; 0.45 and 4.54 μM) for 6 mo. On hormone-free basal medium, the percentages of explants with shoots were 33.3% and 0% and the shoot numbers per explant were 1 and 0 in hybrid PH59 and hybrid PH60, respectively. In hybrid PH59, 4.52 μM 2,4-D plus 0.45μM TDZ induced a higher percentage of explants with shoots and shoot number per explant than did the hormone-free treatment. In hybrid PH60, although 4.52 μM 2,4-D and 0.45 μM TDZ promoted shoot formation, the highest shoot number was found with 4.52 μM 2,4-D alone. Plantlets, each having several roots, were obtained from regenerated shoots after transferring onto hormone-free basal medium for 3 mo. The plantlets were potted in sphagnum moss, and acclimatized well in a greenhouse.  相似文献   

18.
This study describes a reliable protocol for callus induction and rapid mass propagation of the ecologically important plant, Zygophyllum xanthoxylon (Bunge) Maxim. The optimum callus induction medium was Murashige and Skoog (MS) supplemented with 4.4 μM 6-benzylaminopurine (BAP) and 2.7 μM α-naphthalene–acetic acid (NAA), on which the callus induction frequencies from different seedling explants were all 100%. However, seedling-derived callus did not form regenerated shoots. In order to achieve shoot multiplication, shoots were developed from cultured plumules, at an average of 3.1 shoots per explant, and the regenerated shoot tips were further multiplied by subculture. The best shoot multiplication from shoot tips was achieved on MS supplemented with 5.4 μM NAA and 22.2 μM BAP after 40 d of culture. Seventy-three percent of regenerated shoots formed roots when cultured on MS supplemented with 8.6 μM IAA after 4 wk of culture. The plants that acclimatized successfully in sand flourished the following year, with normal morphology and growth characteristics.  相似文献   

19.
Uraria picta is extensively used in the Asian traditional systems of medicine. Overexploitation of the species for preparation of the drug Dashmula has led to the plant becoming rare and endemic. In the present investigation, an efficient micropropagation protocol has developed from leaf-derived callus of U. picta. Among the various concentrations of cytokinins (6-benzyladenine—BA; kinetin—Kin; and thidiazuron—TDZ) used, a significantly higher number of shoots per culture (58.8 ± 0.8) was observed on Murashige and Skoog (MS) medium fortified with 4.44 μM BA. The shoot regeneration frequency was sustained upon transfer to the same fresh medium at 4-wk intervals over a period of 2 yr. The medium containing various concentrations of auxins (α-napthalene acetic acid (NAA) or indole-3-acetic acid (IAA)) showed callus interspersed root formation; however, MS basal medium containing 3% sucrose revealed direct root induction from in vitro raised shoots. The acclimatized in vitro grown plants showed almost 98% survival upon transfer to soil in earthen pots and grown ex vitro. Randomly amplified polymorphic DNA analysis of 25 arbitrarily selected regenerants and mother plants revealed 100% uniformity and true-to-type nature of the regenerants. Methanolic extracts of callus showed strong antibacterial activity against pathogenic bacteria as compared to leaf and root extracts of in vitro raised plants and wild plants, suggesting the presence of higher concentrations of active chemical constituents (isoflavanoids) in callus cultures of U. picta.  相似文献   

20.
A rapid and efficient micropropagation system was developed for Psoralea corylifolia, an endangered, valuable medicinal plant. Multiple shoot buds were obtained in half-strength liquid Phillips–Collins (L2) medium supplemented with 5 μM benzylaminopurine (BA) and 5 μM thidiazuron (TDZ) from apical bud explants of 1-week-old cultures. The shoot buds were subcultured on enriched solid L2 medium supplemented with different concentrations and combinations of BA, kinetin (KIN), 2-isopentenyladenine (2iP), TDZ, bavistin (BVN) and trimethoprim (TMP). Enriched solid L2 medium supplemented with 2 μM BA, 1 μM TDZ and 100 mg l−1 BVN were more effective in producing greater number of shoots per explant (85.2 ± 0.9 shoots/explant) after 4 weeks of culture. The regenerated shoots (40–50 mm in length) rooted and accompanied by hardening upon transfer to 50 μM indole-3-butyric acid (IBA) for 15 min and followed by planting in sterile soil mixture and vermiculate (3:1 v/v), with 50 ml of one-eight strength L2 basal salt solution devoid of sucrose and inositol, supplemented with 5 μM IBA and 100 mg l−1 BVN. The plants achieved 100% rooting with hardening. Subsequently the rooted plants were successfully established in the field. The survival percentage differed with seasonal variations. The concentration of psoralen was evaluated in different tissues of ex vitro and in vivo grown plants by high-performance liquid chromatography (HPLC). Psoralen content was increased in leaves (2.97%), roots (2.38%), stems (5.40%) and seeds (1.63%) of ex vitro plants than the in vivo plants. This system facilitates for commercial and rapid propagation of P. corylifolia for conservation strategies and phytomedicine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号