首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Here, we show that a caveolin-1 (Cav-1) deficiency leads to an amplification of the adult mammary stem cell population, both in vivo and in vitro. First, the expression of two stem cell markers, Sca-1 and Keratin 6, is dramatically increased in the hyperplastic mammary ducts of Cav-1 deficient mice, suggesting that loss of Cav-1 induces the accumulation of a progenitor cell population in the mammary gland. To independently validate these results, we reconstituted mammary acini formation in vitro via a 3D Matrigel assay system--using primary cultures of mammary epithelial cells derived from WT and Cav-1 deficient mice. We show that Cav-1 null 3D epithelial structures display an intense increase in the expression of three stem cell markers, i.e., Sca-1, keratin 6 and keratin 5. Overall, we observed a 2-to-3 fold increase in the number of Cav-1 KO acini that are positive for a given stem cell marker. Also, we show that such amplification of progenitor cells has functional consequences, as demonstrated by the abnormal presence of myoepithelial cells in the hyperplastic lesions of Cav-1 deficient mammary glands. Finally, we provide evidence that hyper-activation of Wnt/?-catenin signaling may constitute one of the down-stream mechanisms leading to mammary stem cell accumulation. The longevity and slow-dividing properties of mammary stem cells facilitates the accumulation of genetic alterations, and renders these progenitor cells the likely precursors of malignant derivatives. As such, we propose that loss of Cav-1 induces the accumulation of mammary stem cells, and that this event may be an initiating factor during mammary tumorigenesis.  相似文献   

2.
Mammary gland stem cells (MaSC) have not been identified in spite of extensive research spanning over several decades. This has been primarily due to the complexity of mammary gland structure and its development, cell heterogeneity in the mammary gland and the insufficient knowledge about MaSC markers. At present, Lin (-) CD29 (i) CD49f (i) CD24 (+/mod) Sca- 1 (-) cells of the mammary gland have been reported to be enriched with MaSCs. We suggest that the inclusion of stem cell markers like Oct4, Sox2, Nanog and the mammary gland differentiation marker BRCA-1 may further narrow down the search for MaSCs. In addition, we have discussed some of the other unresolved puzzles on the mammary gland stem cells, such as their similarities and/or differences with mammary cancer stem cells, use of milk as source of mammary stem cells and the possibility of in vitro differentiation of embryonic stem (ES) cells into functional mammary gland structures in this review. Nevertheless, it is the lack of identity for a MaSC that is curtailing the advances in some of the above and other related areas.  相似文献   

3.
A mouse mammary epithelial cell line with morphogenetic properties in vivo, Comma-Dbeta, was used to isolate and to characterize mammary progenitor cells. We found that a homogeneous cell population expressing high surface levels of stem cell antigen 1 (Sca-1) was able to give rise in vivo to ductal and alveolar structures comprising luminal secretory and basal myoepithelial cells. Unlike the Sca-1(high), the Sca-1(neg/low) cell population displayed a reduced morphogenetic potential. The Sca-1(high) cells presented moderate CD24, high CD44 and alpha6 integrin surface levels, expressed basal cell markers p63, keratins 5 and 14, but no luminal and myoepithelial lineage markers. In culture, the Sca-1(high) cells generated identical daughter cells that retained their in vivo developmental potential, indicating that these cells were maintained by self-renewal. Plated at clonogenic density in Matrigel, Sca-1(high) cells formed spheroids that included luminal and myoepithelial cells. Thus, the isolated Sca-1(high) basal cells possess several features of stem/progenitor cells, including specific markers, self-renewal capacity, and the ability to generate the two major mammary lineages, luminal and myoepithelial. These data provide evidence for the existence of basal-type mouse mammary progenitors able to participate in the morphogenetic processes characteristic of mammary gland development.  相似文献   

4.

Background

Stem cell antigen-1 (Sca-1 or Ly6A) is a glycosyl phostidylinositol (GPI)-anchored cell surface protein associated with both stem and progenitor activity, as well as tumor initiating-potential. However, at present the functional role for Sca-1 is poorly defined.

Methodology/Principal Findings

To investigate the role of Sca-1 in mammary tumorigenesis, we used a mammary cell line derived from a MMTV-Wnt1 mouse mammary tumor that expresses high levels of endogenous Sca-1. Using shRNA knockdown, we demonstrate that Sca-1 expression controls cell proliferation during early tumor progression in mice. Functional limiting dilution transplantations into recipient mice demonstrate that repression of Sca-1 increases the population of tumor propagating cells. In scratch monolayer assays, Sca-1 enhances cell migration. In addition, knockdown of Sca-1 was shown to affect cell adhesion to a number of different extracellular matrix components. Microarray analysis indicates that repression of Sca-1 leads to changes in expression of genes involved in proliferation, cell migration, immune response and cell organization.

Conclusions/Significance

Sca-1 exerts marked effects on cellular activity and tumorgenicity both in vitro and in vivo. A better understanding of Sca-1 function may provide insight into the broader role of GPI-anchored cell surface proteins in cancer.  相似文献   

5.
Breast epithelial stem cells are thought to be the primary targets in the etiology of breast cancer. Since breast cancers mostly express estrogen and progesterone receptor (ERalpha and PR), we examined the biology of these ERalpha/PR-positive cells and their relationship to stem cells in normal human breast epithelium. We employed several complementary approaches to identify putative stem cell markers, to characterise an isolated stem cell population and to relate these to cells expressing the steroid receptors ERalpha and PR. Using DNA radiolabelling in human tissue implanted into athymic nude mice, a population of label-retaining cells were shown to be enriched for the putative stem cell markers p21(CIP1) and Msi-1, the human homolog of Drosophila Musashi. Steroid receptor-positive cells were found to co-express these stem cell markers together with cytokeratin 19, another putative stem cell marker in the breast. Human breast epithelial cells with Hoechst dye-effluxing "side population" (SP) properties characteristic of mammary stem cells in mice were demonstrated to be undifferentiated "intermediate" cells by lack of expression of myoepithelial and luminal apical membrane markers. These SP cells were 6-fold enriched for ERalpha-positive cells and expressed several fold higher levels of the ERalpha, p21(CIP1) and Msi1 genes than non-SP cells. In contrast to non-SP cells, SP cells formed branching structures in matrigel which included cells of both luminal and myoepithelial lineages. The data suggest a model where scattered steroid receptor-positive cells are stem cells that self-renew through asymmetric cell division and generate patches of transit amplifying and differentiated cells.  相似文献   

6.
The precise localization of putative stem cells and other cells within the embryonic mammary gland would help to elucidate the molecular pathways that govern normal mammary development. The ultrastructural appearances and the antigen of Sca-1 were considered together as putative stem cell markers, and the antigens of cytokeratin, CD10, Muc-1 and CD34 as differentiation markers. Electron microscopy was performed to reveal the ultrastructure of cells in different site of the mammary anlagen. An immunofluorescence system was used to reveal the whole structure profile of the mammary anlagen using the anti-cytokeratin antibody to localize specific types of cell populations such as Sca-1, CD10, Muc-1 and CD34 positive cells within the anlagen, which distribute near the inside edge, distribute uniformly, distribute in the central region and distribute in the site of mesenchyme around the neck of the anlagen, respectively. We also observed under electron microscope that some pale cells like putative stem cells reported by prevenient scholars, which are mainly distributed in the Sca-1+ cell population near the inside edge of the anlagen, have pale-stained nucleoplasm and cytoplasm, sparse organelles clustered close to their nucleus and have a lack of rough endoplasmic reticulums and cell polarization. The results indicate that the putative stem cells are localized near the edge of the mammary anlagen; the cell populations with different differentiation degree were localized in the central part and around the edge within the anlagen.  相似文献   

7.

Background

Based on evidence from several other tissues, cartilage stem/progenitor cells in the auricular cartilage presumably contribute to tissue development or homeostasis of the auricle. However, no definitive studies have identified or characterized a stem/progenitor population in mice auricle.

Methodology/Principal Findings

The 5-bromo-2′-deoxyuridine (BrdU) label-retaining technique was used to label dividing cells in fetal mice. Observations one year following the labeling revealed that label-retaining cells (LRCs) were present specifically in auricular perichondrium at a rate of 0.08±0.06%, but LRCs were not present in chondrium. Furthermore, LRCs were successfully isolated and cultivated from auricular cartilage. Immunocytochemical analyses showed that LRCs express CD44 and integrin-α5. These LRCs, putative stem/progenitor cells, possess clonogenicity and chondrogenic capability in vitro.

Conclusions/Significance

We have identified a population of putative cartilage stem/progenitor cells in the auricular perichondrium of mice. Further characterization and utilization of the cell population should improve our understanding of basic cartilage biology and lead to advances in cartilage tissue engineering and novel therapeutic strategies for patients with craniofacial defects, including long-term tissue restoration.  相似文献   

8.
Isolation and characterization of functional mammary gland stem cells   总被引:12,自引:0,他引:12  
Abstract.  Significant advances in the stem-cell biology of several tissues, including the mammary gland, have occurred over the past several years. Recent progress on stem-cell fate determination, molecular markers, signalling pathways and niche interactions in haematopoietic, neuronal and muscle tissue may provide parallel insight into the biology of mammary epithelial stem cells. Taking advantage of approaches similar to those employed to isolate and characterize haematopoietic and epidermal stem cells, we have identified a mammary epithelial cell population with several stem/progenitor cell qualities. In this article, we review some recent data on mammary epithelial stem/progenitor cells in genetically engineered mouse models. We also discuss several potential molecular markers, including stem-cell antigen-1 (Sca-1), which may be useful for both the isolation of functional mammary epithelial stem/progenitor cells and the analysis of tumour aetiology and phenotype in genetically engineered mouse models. In different transgenic mammary tumour models, Sca-1 expression levels, as well as several other putative markers of progenitors including keratin-6, possess dramatically altered expression profiles. These data suggest that the heterogeneity of mouse models of breast cancer may partially reflect the selection or expansion of different progenitors.  相似文献   

9.
BACKGROUND: Somatic stem and progenitor cell division is likely to be an important determinant of tumor development. Each division is accompanied by a risk of fixing genetic mutations, and/or generating innately immortal cells that escape normal physiological controls. AIM: Using biological information, we aimed to devise a theoretical model for mammary gland development that described the effect of various stem/progenitor cells activities on the demographics of adult mammary epithelial cell populations. RESULTS: We found that mammary ductal trees should develop in juvenile mice despite widely variant levels of activity in the progenitor compartment. Sequestration (inactivation) of progenitor cells dramatically affected the aging-maturation of the population without affecting the total regenerative capacity of the gland. Our results showed that if stem and progenitor cells can be demonstrated in glands regenerated by serial transplantation, they originated in a canonical primary stem cell (providing a functional definition of mammary stem cells). Finally, when the probability of symmetric division of stem cells increased above a threshold, the mammary epithelial population overall was immortal during serial transplantation. CONCLUSIONS: This model provides, (1) a theoretical framework for testing whether the phenotypes of genetically modified mice (many of which are breast cancer models) derive from changes of stem and progenitor activity, and (2) a means to evaluate the resolving power of functional assays of regenerative capacity in mammary epithelial cell populations.  相似文献   

10.
The uterus is an extremely plastic organ that undergoes cyclical remodeling including endometrial regeneration during the menstrual cycle. Endometrial remodeling and regeneration also occur during pregnancy and following parturition, particularly in hemochorial implanting species. The mechanisms of endometrial regeneration are not well understood. Endometrial stem/progenitor cells are proposed to contribute to endometrial regeneration in both humans and mice. BrdU label retention has been used to identify potential stem/progenitor cells in mouse endometrium. However, methods are not available to isolate BrdU label-retaining cells (LRC) for functional analyses. Therefore, we employed a transgenic mouse model to identify H2B-GFP LRCs throughout the female reproductive tract with particular interest on the endometrium. We hypothesized that the female reproductive tract contains a population of long-term LRCs that persist even following pregnancy and endometrial regeneration. Endometrial cells were labeled (pulsed) either transplacentally/translactationally or peripubertally. When mice were pulsed transplacentally/translactationally, the label was not retained in the uterus. However, LRCs were concentrated to the distal oviduct and endocervical transition zone (TZ) following natural (i.e., pregnancy/parturition induced) and mechanically induced endometrial regeneration. LRCs in the distal oviduct and endocervical TZ expressed stem cell markers and did not express ERα or PGR, implying the undifferentiated phenotype of these cells. Oviduct and endocervical TZ LRCs did not proliferate during endometrial re-epithelialization, suggesting that they do not contribute to the endometrium in a stem/progenitor cell capacity. In contrast, when mice were pulsed peripubertally long-term LRCs were identified in the endometrial glandular compartment in mice as far out as 9 months post-pulse. These findings suggest that epithelial tissue of the female reproductive tract contains 3 distinct populations of epithelial cells that exhibit stem/progenitor cell qualities. Distinct stem/progenitor-like cells localize to the oviduct, endometrium, and cervix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号