首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Two durum (Triticum durum L.), Barakatli-95 and Garagylchyg-2; and two bread (Triticum aestivum L.) wheat cultivars, Azamatli-95 and Giymatli-2/17 with different sensitivities to drought were grown in the field on a wide area under normal irrigation and severe water deficit. Drought caused a more pronounced inhibition in photosynthetic parameters in the more sensitive cvs Garagylchyg-2 and Giymatli-2/17 compared with the tolerant cvs Barakatli-95 and Azamatli-95. Upon dehydration, a decline in total chlorophyll and relative water content was evident in all cultivars, especially in later periods of ontogenesis. Potential quantum yield of PS II (F(v)/F(m) ratio) in cv Azamatli-95 was maximal during stalk emergency stage at the beginning of drought. This parameter increased in cv Garagylchyg-2, while in tolerant cultivar Barakatli-95 significant changes were not observed. Contrary to other wheat genotypes in Giymatli-2/17 drought caused a decrease in PS II quantum yield. Drought-tolerant cultivars showed a significant increase in CAT activity as compared to control plants. In durum wheat cultivars maximal activity of CAT was observed at the milk ripeness and in bread wheat cultivars at the end of flowering. APX activity also increased in drought-treated leaves: in tolerant wheat genotypes maximal activity occurred at the end of flowering, in sensitive ones at the end of ear formation. GR activity increased in the tolerant cultivars under drought stress at all stages of ontogenesis. SOD activity significantly decreased in sensitive cultivars and remained at the control level or increased in resistant ones. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

3.
Although much information is available concerning the effect of senescence on cell proteolytic activities, few reports are devoted to the impact of drought stress. Our aim was to study the influence of water deficit on the cell proteolytic potential, and to determine whether or not it could be used as a physiological parameter for screening varieties for tolerance to drought. We have used Phaseolus and Vigna species differing in their senstivity to water deficit: V. unguiculata L. Walp. cv. EPACE (resistant), V. unguiculata L. Walp. cv. IT83D (moderately senstive) and P. vulgaris L. cv. Carioquinha (sensitive). The plants were subjected to controlled water conditions. Proteolytic activities were assayed using azocasein in the case of leaf extracts and [14C]-methylated casein in the case of cell compartments: soluble fraction, membrane fraction and isolated, purified chloroplasts. The results indicate that the leaf extracts contained 3 groups of proteinases with optimum pH at 4.5, 5-6 and 8.5 for the Vigna cultivars and 5.0, 6.5 and 9.0 for the Phaseolus cultivar. The sensitive P. vulgaris Carioquinha showed higher caseinolytic activities than the other tow cultivars in response to water deficit. As regards cell fractions, proteolytic activities were determined for pH values of 4.5, 6.0 and 9.0. In soluble fractions of stressed plants, proteolytic activities increased at all the pH values tested; this clearly correlated with the drought sensitivity level of the plants, especially at pH 4.5. The same phenomenon was observed in the case of membranes and purified chloroplasts of the sensitive cultivar. Under drought stress, the proteolytic potential of the cell increased especially in the vaculoar sap (soluble fraction). The higher activities observed for all the cell compartments in the sensitive cultivar could be responsible, at least partly, for the rapid degradation of leaf and chloroplast proteins under drought. The use of [14C]-methylated casein and soluble cell fractions seem to allow a clear differentiation between cultivars with respect to the drought tolerance at the cellular level.  相似文献   

4.
水分胁迫下荔枝叶片过氧化物酶和IAA氧化酶活性的变化   总被引:14,自引:0,他引:14  
以适应山地栽培的抗旱性较强的东刘1号和适应河边栽培的抗旱性较弱的陈紫2年生荔枝(Litchi chinensis Sonn.)实生苗为试验材料,研究了水分胁迫下叶片细胞胞质,与(细胞)壁以离子键结合和壁以共价键结合的过氧化的酶(POD)和IAA氧化酶活性的变化。结果表明:在叶片中POD主要是以与壁以离子键结合的POD存在,占总活性的51.15%-52.15%,其次是细胞胞质POD,占44.20%-44.74%,与壁以共价键结合的POD活性最低,仅占3.44%-3.65%。与POD不同,IAA氧化酶绝大多数存在于细胞胞质中,占总活性的88.93%-89.29%,其次是少量的与壁以离子键结合的IAA氧化酶,占7.32%-7.63%,与壁以共价键结合的IAA氧化酶活性最低,仅占3.39%-3.44%;2个品种间差异不明显。水分胁迫下,叶片细胞胞质以及与壁以离子键和壁以共价键结合的POD和IAA氧化酶(比)活性均上升,抗旱笥较强的品种上升的幅度均大于抗旱性较弱的品种。  相似文献   

5.
6.
以抗旱性强的小麦品种昌乐5号和抗旱性弱的鲁麦5号的幼苗为材料,研究了随着干旱胁迫的加剧,小麦叶片相对含水量、气孔导度和内源激素水平的变化.结果表明,叶片的气孔导度和细胞激动素与脱落酸含量的比值(CTKs/ABA)呈较强的线性正相关关系而与叶片RWC的相关关系较弱,说明气孔导度受CTKs/ABA调控,而不是受叶片RWC的调控.在不同强度的干旱胁迫下我们可以利用CTKs/ABA的变化判断品种抗旱性大小:①抗旱力强的小麦品种叶片的平均CTKs/ABA值较高,而弱者较低,说明强者内源促进型激素含量相对较高,从而在干旱胁迫下保持较高的生活力.②抗旱力强的小麦品种叶片CTKs/ABA与干旱处理天数呈二次负相关关系,而弱者是线性负相关关系,说明强者具有较强的抗逆缓冲能力.③抗旱力强的小麦品种成熟叶(第二叶)CTKs/ABA下降快,新叶(第三叶)下降慢,而弱者反之,说明抗旱性强者可能存在着较强的从成熟叶向新叶的物质运输从而具有自我保护性调节机制.  相似文献   

7.
To study survival under prolonged and severe drought in the perennial grass Dactylis glomerata we compared dormant, resistant and sensitive cultivars (cvs.) in both field and glasshouse experiments. Water status, membrane stability and expression of dehydrins were assessed in the immature leaf bases, which are the last surviving organs. Analysis of leaf elongation and senescence of aerial tissues showed that dormancy was exhibited by the potentially dormant cultivar (cv.) only in the field. This cultivar exhibited a high survival rate, similar levels of dehydration and expression of a low-molecular weight (22–24 kDa) dehydrin in both drought and irrigated plants, whether fully dormant or not. At the same level of soil water deficit, there were no differences between the non-dormant drought resistant and drought sensitive cultivars in plant water status and membrane stability. However, the accumulation of dehydrins as drought progressed was markedly different between these cultivars and was associated with their contrasting survival. The possible role of the major low-molecular dehydrins in maintenance of cell integrity under dehydration is discussed with reference to both summer dormancy and survival under severe drought.  相似文献   

8.
Two tobacco (Nicotiana tabacum L.) cultivars differing in drought tolerance were used to study the effects of foliar-applied glycinebetaine (GB, 80 mM) under well-watered and water-deficit conditions. The latter affected shoot biomass and height, with a more significant decrease observed in drought-sensitive cultivar than in drought-resistant cultivar. Foliar-applied GB was absorbed, accumulated by tobacco leaves and improved growth of plants subjected to water deficit. GB-treated plants maintained leaf water status apparently due to the improved osmotic adjustment. GB application enhanced the photosynthesis in water-deficit experiencing plants, mostly due to a greater stomatal conductance and carboxylation efficiency of CO2 assimilation. photosystem II (PSII) activity in GB-treated plants was higher, as suggested by higher actual efficiency of PSII (ΦPSII). GB increased anti-oxidative enzyme activities under water deficit. All these effects resulted in an improved shoot biomass and height. Therefore, foliar GB application at the rapid growth stage favors plant growth in drought-stressed plants, mainly by improving water status and increasing PSII activity. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 534–541. The text was submitted by the authors in English.  相似文献   

9.
通过对两个品种白三叶Trifolium repens cv.Haifa(海发)和Trifolium repens cv.Rivendel(瑞文德)盆栽试验,模拟3种不同的土壤水分状况(无水分胁迫:保持植株良好的水分供应;轻度胁迫:表层0~20cm土壤处于干旱状态;重度胁迫:表层0~20cm土壤处于极干旱状态,20~40cm土壤处于干旱状态)对白三叶光合作用和根系生长的影响.结果表明,当植株未遭受水分胁迫时,两个品种白三叶的光合作用和根系生长状况没有明显差异;当表层0~20cm处于干旱状态时,'海发'在处理后期的净光合速率和水分利用效率升高,根系生长量增大,表现出促进作用,'瑞文德'受到的影响不显著;当表层0~20cm处于极干旱、20~40cm处于干旱状态时,'海发'在处理前期受到轻微影响,随后恢复正常状态,'瑞文德'则受到较严重的影响.随着干旱程度的加深和时间的延长,白三叶的根冠比逐渐增大.与'瑞文德'相比,在相同时期相同胁迫程度下,'海发'的根冠比没有显著差异,但深根数量大大超过'瑞文德',因而,'海发'的耐旱能力强于'瑞文德'.  相似文献   

10.
The effect of triadimefon was investigated in a medicinal plant, Catharanthus roseus subjected to water deficit stress. The abscisic acid (ABA) level, DNA and RNA contents and activities of ATPase and protease were found varying in different parts of the plants under treatment. Drought treatment increased the ABA level more than twofold in all parts of the plants. TDM treatment to the drought stressed plants showed highest contents. In roots, stem and leaves, drought stress caused a decrease in the DNA and RNA contents when compared with control and other treatments. TDM treatment with drought increased the nucleic acid contents to the level of the control roots. The activity of ATPase and protease were increased under drought treatment and lowered due to TDM applications. This information could be useful in the field of soil water deficits reclamation efforts by using plant growth regulators.  相似文献   

11.
A greenhouse experiment was carried out to investigate the influence of the arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) on metabolic changes in tropical maize (Zea mays L.) under drought. Two cultivars, Tuxpeno sequia CO (drought sensitive) and C8 (drought resistant), were subjected for 3 weeks to water stress following tasselling (75–95 days after sowing). Fully expanded 7th or 8th leaves were sampled and assessed for levels of chlorophyll, sugars, proteins, and amino acids. Chlorophyll content was not altered either by water stress or the presence of mycorrhizae. Mycorrhizal plants (M+) had higher total and reducing sugars than nonmycorrhizal plants (M-) at the end of 3 weeks of the drought cycle. An increase in protein content was observed with drought stress in M + plants of the cultivar C0. Most of the amino acids showed a linear increase during the period of water stress in M+ and M- plants for both cultivars. Total amino acids increased by 40.6% and 43.7% in M- plants of C0 and C8, respectively. With the presence of AM fungus, amino acid levels increased by only 10.7% and 19.2% of leaf dry mass in C0 and C8, respectively. Alanine, asparagine, glutamine, and glycine accounted for 70% of the amino acid pool. Under drought, AM inoculation enabled the plants to retain considerable amounts of sugars and proteins, especially in the drought-sensitive cultivar C0. This may be of physiological importance in helping the plant to withstand moderate drought.  相似文献   

12.
The effects of brassinolide, uniconazole and methyl jasmonate on the antioxidant system were studied in seedlings of drought-resistant (PAN 6043) and drought-sensitive (SC 701) cultivars of Zea mays L. When seedlings treated with the three regulators were subjected to water stress (–1.0 MPa PEG 6000 solution), the activities of superoxide dismutase, catalase and ascorbate peroxidase, as well as the ascorbic acid and total carotenoid contents, increased in the resistant cultivar, whereas the levels remained unaltered in the sensitive cultivar. The increased tolerance to drought stress induced by the growth regulators in the resistant cultivar seems to be due to the maintenance of increased antioxidant enzyme activity and antioxidant substance levels.  相似文献   

13.
 研究了田间缓慢干旱胁迫下,抗旱性不同的两个小麦(Triticum aestivum)品种的生长状况、质膜极性脂脂肪酸组成以及质膜关键酶活力的变化。在小麦生长发育的早期,干旱胁迫使其叶片质膜极性脂脂肪酸不饱和度下降、质膜微囊消耗O2的速率升高、膜蛋白含量降低、H+-ATPase (EC 3.6.1.35)活力下降、5'-AMPase (EC 3.1.3.5)活力大幅度升高;在小麦发育的后期,随着干旱的持续,小麦叶片质膜的极性脂脂肪酸不饱和度不变或升高、质膜微囊消耗O2的速率降低、膜蛋白含量与H+-ATPase活力升高、5'-AMPase活力下降。以上结果表明,小麦在发育的早期阶段对干旱较敏感,其细胞质膜流动性降低、细胞中能荷贮备降低;而在后期,则又表现出对干旱的适应。这些结果将有助于阐明自然干旱条件下植物的抗旱机制。  相似文献   

14.
Water deficit is an important constraint to rice (Oryza sativa L.) productivity. The present study was undertaken to investigate whether the level of oxidative stress, carbonylation of proteins, proteolysis and status of antioxidative defense could serve as a model to distinguish water deficit tolerant and sensitive rice cultivars. When 10-day-grown seedlings of two rice cultivars, Malviya-36 (drought-sensitive) and Brown Gora (drought-tolerant) were subjected to ?1.0 and ?2.1 MPa water deficit treatments for 24–72 h with polyethylene glycol 6000 in the medium, a greater decline in the growth of the seedlings and levels of leaf water potential, relative water content, Chl a, Chl b, carotenoids and greater increase in leaf water loss were observed in the sensitive cultivar than the tolerant. Under similar level of water deficit seedlings of sensitive cultivar showed higher level of superoxide anion generation, H2O2, lipid peroxidation and proteolysis in roots as well as shoots compared to the tolerant. Drought-tolerant cultivar had higher constitutive level of antioxidative enzymes superoxide dismutase and catalase and the activities of these two enzymes alongwith of guaiacol peroxidase showed greater increase in this cultivar under water deficit compared to the sensitive. A significant decline in the level of protein thiol and a higher increase in protein carbonyls content, also confirmed by protein gel blot analysis with an antibody against 2,4-dinitrophenylhydrazine was observed in the seedlings of drought sensitive cv. Malviya-36 compared to the tolerant cv. Brown Gora when subjected to similar level of water deficit. Seedlings of drought sensitive cultivar, under water deficit, showed higher proteolytic activity, higher number of in-gel activity stained proteolytic bands and higher expression of oxidized proteins in roots compared to the tolerant cultivar. Results suggest that poor capacity of antioxidative enzymes could be, at least partly, correlated with water deficit sensitivity of sensitive cultivar and that higher activity of antioxidative enzymes superoxide dismutase, catalase, guaiacol peroxidase, low proteolytic activity, lower level of protein carbonyls and protein thiolation could serve as a model to depict water deficit tolerance in Indica rice seedlings.  相似文献   

15.
Little is known about the simultaneous effects of drought stress and plant resistance on herbivorous insects. By subjecting the green peach aphid Myzus persicae Sulzer to well‐watered and drought‐stressed plants of both susceptible and resistant peach (Prunus persica), the effects of both stressors on aphid performance and proteomics are tested. Overall, the influence of the water treatment on aphid performance is less pronounced than the effect of host plant genetic resistance. On the susceptible cultivar, aphid survival, host acceptance and ability to colonize the plant do not depend on water treatment. On the resistant cultivar, aphid survival and ability to colonize are higher on drought‐stressed than on well‐watered plants. A study examining the pattern of protein expression aiming to explain the variation in aphid performance finds higher protein expression in aphids on the drought‐stressed susceptible cultivars compared with the well‐watered ones. In the susceptible cultivar, the regulated proteins are related to energy metabolism and exoskeleton functionality, whereas, in the resistant cultivar, the proteins are involved with the cytoskeleton. Comparison of the protein expression ratios for resistant versus susceptible plants reveals that four proteins are down‐regulated in well‐watered plants and 15 proteins are down‐regulated in drought‐stressed plants. Drought stress applied to the susceptible cultivar induces the regulation of proteins in M. persicae that enable physiological adaptation to maintain an almost unaltered aphid performance. By contrast, for aphids on the resistant cultivar subjected to drought stress, the down‐regulation of proteins responds to an induced host susceptibility effect.  相似文献   

16.
根施甜菜碱对水分胁迫下烟草幼苗光合机构的保护   总被引:7,自引:0,他引:7  
以烟草品种大黄金5210(抗旱性强)和中烟100(抗旱性弱)为材料,研究了水分胁迫对烟草叶片光合机构的影响,并通过根部施用甜菜碱的方法,探讨了甜菜碱对烟草光合机构的保护作用。结果表明:水分胁迫导致烟草幼苗光合机构损伤,表现在叶绿素含量、PSII光化学效率、希尔反应活力以及类囊体膜ATPase活性下降,且对抗旱性弱的中烟100损伤更加严重。外源甜菜碱处理减轻了水分胁迫对以上指标的降低程度,特别是对干旱敏感型烟草品种中烟100的效果更加明显。甜菜碱的这种保护作用可能与它能够维持叶片中各种抗氧化酶活性、减轻活性氧的积累、保护类囊体膜上各种色素蛋白的功能以及缓解水分胁迫对膜的破坏作用有关。  相似文献   

17.
Ramanjulu  S.  Sreenivasulu  N.  Sudhakar  C. 《Photosynthetica》1998,35(2):279-283
Three-month-old mulberry (Morus alba L.) cultivars (drought tolerant S13 and drought sensitive S54) were subjected to water stress for 15 d. Water stress decreased the leaf water potential, net photosynthetic rate (PN), and stomatal conductance (gs) in both the cultivars. However, the magnitude of decline was comparatively greater in the sensitive cultivar (S54). Intercellular CO2 concentration (Ci) was unaltered during mild stress, but significantly increased at severe stress in both cultivars. The photosystem 2 activity significantly declined only at a severe stress in both cultivars. The Ci/gs ratio representing the mesophyll efficiency was greater in the tolerant cultivar S13. Involvement of stomatal and/or non-stomatal components in declining PN depended on the severity and duration of stress. However, the degree of non-stomatal limitations was relatively less in the drought tolerant cultivar.  相似文献   

18.
Complex study of the effect of soil drought (72 h) and subsequent rehydration for 24 and 48 h on the activities of antioxidant and osmoprotective systems in the leaves of young plants of winter wheat (Triticum aestivum L.) cvs. Ballada (high productivity) and Beltskaya (low productivity) was carried out. Under drought conditions, the content of water in the leaves of cv. Ballada reduced to a lesser degree than in the leaves of cv. Beltskaya. Drought did not affect the rate of leaf growth in cv. Ballada but retarded leaf growth in cv. Beltskaya. Under drought conditions, the content of ascorbate reduced in cv. Beltskaya but was not changed in cv. Ballada; the content of glutathione increased by 19% in cv. Ballada and by 30% in cv. Beltskaya. Under drought conditions, ascorbate peroxidase activity was not changed in cv. Ballada whereas in cv. Beltskaya there was a tendency to its decrease. Glutathione reductase activity in the leaves of cv. Beltskaya increased stronger than in cv. Ballada. Substantial differences between cultivars in the accumulation of reducing sugars and sucrose under water deficit were observed. In both cultivars, drought induced an active proline accumulation. Observed differences in the cultivar responses to water stress evidently indicate differences in the strategy of their adaptation to drought. Drought did not affect the contents of chlorophyll and MDA in both cultivars. The data obtained allow a suggestion that, under conditions of moderate soil drought, the coordinated system of antioxidant defense and osmotic control functioned sufficiently effective; as a result, oxidative stress was not developed in both cultivars. Young plants of both cultivars differing in their responses to water deficit retained the ability to recover after rehydration.  相似文献   

19.
水分胁迫对冬小麦CO_2同化作用的影响   总被引:13,自引:1,他引:12  
比较了两个小麦品种陕合6号和郑引1号经受不同程度的水分胁迫处理后,叶片多种光合参数:净光合速率(P_n)、气孔导度(G_s)、细胞间隙CO_2浓度(G_i)、表观量子需要量和羧化效率以及Rubis CO蛋白量与活性等的变化。在轻度水分胁迫下,叶片光合速率降低的根本原因在于气孔导度的下降;而在严重胁迫下,非气孔因素起主要作用。  相似文献   

20.
Antioxidant defenses in two wheat cultivars differing in sensitivity to dehydration (YouJian (YJ-24) more sensitive than LongChun (LC-20) were analyzed during water deficit and rewatering. Resistant cultivar (LC-20) showed a higher relative water content than the sensitive cultivar (YJ-24) during the whole period of water withholding. In order to analyze the changes of antioxidant enzymes, native PAGE analysis of protein extract were performed. Wheat leaves had two isoforms of Mn-superoxide dismutase (SOD), two isoforms of Cu/Zn-SOD and one of Fe-SOD. Three catalase (CAT) isoforms were identified in the leaves of wheat. The activities of SOD and CAT isoforms were increased in two cultivars under water deficit. The intensities of SOD and CAT isoforms were slightly lower in LC-20 and increased continuously in YJ-24 after rewatering. Peroxidase (POD) isoforms were significantly increased during the whole dehydration-rehydration period. Three ascorbate peroxidase (APX) isoforms were present in gel. APX-1 and APX-3 were enhanced during water deficit and decreased during rewatering in LC-20. In YJ-24 only the activities of APX-2 were increased under water deficit. Seven isoforms of glutathione reductase (GR) were detected in the native gel. Activities of most of GR isoforms were higher in tolerant (LC-20) than in sensitive cultivar (YJ-24). Different isoforms of GR in two wheat cultivars behaved differently under water deficit and rewatering. These results collectively suggest that water deficit activates the SOD, CAT and ascorbate-glutathione cycle in wheat leaves. The response of enzyme isoforms to drought is not the same for all isoforms of antioxidant enzymes in two wheat cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号