首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
ADAM17是金属蛋白酶家族(ADAMs)成员之一,研究发现ADAM17可以通过水解细胞表面蛋白的胞外结构域导致肿瘤细胞的增殖和转移.本课题前期研究结果显示,与LNCap细胞相比,ADAM17在DU145细胞中高表达,且与细胞增殖相关.为了研究ADAM17与前列腺癌细胞增殖相关基因p27表达的关系及调控机制,我们采用RNAi技术下调ADAM17的表达,加入PMA(一种ADAM17的激活剂)上调ADAM17的表达,通过细胞计数和CCK-8方法检测细胞增殖,RT-PCR检测p27mRNA的表达,Western印迹检测ADAM17的表达;进一步阻断EGFR和PI3K/Akt信号转导,RT-PCR方法检测p27mRNA的表达,Western印迹检测ADAM17、EGFR、pEGFR、Akt和pAkt的表达.结果显示ADAM17的表达与前列腺癌细胞的增殖呈正相关(P0.05);p27mRNA的表达与ADAM17的表达呈负相关(P0.05);分别阻断EGFR和PI3K/Akt信号转导通路,同时使ADAM17表达增加,与对照组(单独PMA处理组)相比,p27mRNA的表达均增加(P0.05).提示ADAM17调控前列腺癌细胞增殖相关基因p27表达是通过EGFR-PI3K/Akt信号通路实现的.  相似文献   

2.
Epidemiological evidence suggests that consumption of soy is associated with a decreased risk for prostate cancer. Genistein, the most abundant isoflavone present in soy, is thought to be responsible, in part, for these anticancer effects. The present study examined the effects of genistein on cellular proliferation, extracellular signal-regulated kinase (ERK1/2) activity and apoptosis in a nontumorigenic human prostate epithelial cell line (RWPE-1). Low concentrations of genistein (0-12.5 micromol/L) significantly increased cell proliferation and ERK1/2 activity (P<.01) in RWPE-1 cells, while higher concentrations (50 and 100 micromol/L) of genistein significantly inhibited cell proliferation and ERK1/2 activity (P<.001). A similar biphasic effect of genistein on MEK1 activity, an ERK1/2 kinase, was also observed. Pretreatment of cells with a MEK1 inhibitor (PD 098059) significantly blocked genistein-induced proliferation and ERK1/2 activity (P<.01). In addition, treatment of cells with ICI 182,780, a pure antiestrogen, inhibited genistein-induced RWPE-1 proliferation and ERK1/2 signaling. Taken together, these results suggest that genistein modulates RWPE-1 cell proliferation and signal transduction via an estrogen-dependent pathway involving ERK1/2 activation.  相似文献   

3.
Substance P (SP) participates in acute intestinal inflammation via binding to the G-protein-coupled neurokinin-1 receptor (NK-1R) and release of proinflammatory cytokines from colonic epithelial cells. SP also stimulates cell proliferation, a critical event in tissue healing during chronic colitis, via transactivation of the epidermal growth factor (EGF) receptor (EGFR) and activation of mitogen-activated protein kinase (MAPK). Here we examined the mechanism by which SP induces EGFR and MAPK activation. We used non-transformed human NCM460 colonocytes stably transfected with the human NK-1R (NCM460-NK-1R cells) as well as untransfected U373 MG cells expressing high levels of endogenous NK-1R. Exposure of both cell lines to SP (10(-7) m) stimulated EGFR activation (1 min) followed by extracellular signal-regulated protein kinase (ERK1/2) activation (2-5 min). SP-induced ERK1/2 activation was blocked by pretreatment with the metalloproteinase inhibitor Batimastat/GM6001, the EGFR phosphorylation inhibitor AG1478, and the tumor necrosis factor-alpha-converting enzyme (TACE) inhibitor TAPI-1. Pretreatment with antibodies against potential EGFR ligands suggested that transforming growth factor-alpha (TGFalpha), but not the other EGFR ligands EGF, heparin-binding EGF, or amphiregulin, mediates SP-induced EGFR transactivation. SP stimulated TGFalpha release into the extracellular space that was measurable within 2 min, and this release was inhibited by metalloproteinase inhibitors and the TACE inhibitor TAPI-1. SP also induced MAPK-mediated cell proliferation that was inhibited by TACE, matrix metalloproteinase (MMP), EGFR, and MEK1 inhibitors. Thus, in human colonocytes, NK-1R-induced EGFR and MAPK activation and cell proliferation involve matrix metalloproteinases (most likely TACE) and the release of TGFalpha. These signaling mechanisms may be involved in the protective effects of NK-1R in chronic colitis.  相似文献   

4.
We previously showed in rat renal glomerular mesangial cells, that arginine vasopressin (AVP)-stimulated cell proliferation was mediated by epidermal growth factor receptor (EGF-R) transactivation, and activation (phosphorylation) of ERK1/2 and p70S6 kinase (Ghosh et al. [2001]: Am J Physiol Renal Physiol 280:F972-F979]. In this paper, we extend these observations and show that different protein kinase C (PKC) isoforms play different roles in mediating AVP-stimulated ERK1/2 and p70S6 kinase phosphorylation and cell proliferation. AVP treatment for 0-60 min stimulated the serine/threonine phosphorylation of PKC isoforms alpha, delta, epsilon, and zeta. The activation of PKC was dependent on EGF-R and phosphatidylinositol 3-kinase (PI3K) activation. In addition, inhibition of conventional and novel PKC isoforms by chronic (24 h) exposure to phorbol 12-myristate 13-acetate (PMA) inhibited AVP-induced activation of ERK and p70S6 kinase as well as EGF-R phosphorylation. Rottlerin, a specific inhibitor of PKCdelta, inhibited both ERK and p70S6 kinase phosphorylation and cell proliferation. In contrast, a PKCepsilon translocation inhibitor decreased ERK1/2 activation without affecting p70S6 kinase or cell proliferation, while a dominant negative PKCzeta (K281W) cDNA delayed p70S6 kinase activation without affecting ERK1/2. On the other hand, G?6976, an inhibitor of conventional PKC isoforms, did not affect p70S6 kinase, but stimulated ERK1/2 phosphorylation without affecting cell proliferation. Our results indicate that PKCdelta plays an important role in AVP-stimulated ERK and p70S6 kinase activation and cell proliferation.  相似文献   

5.
While epidermal growth factor receptor (EGFR) plays a pivotal role in the repair process of epithelial cells, it is also involved in the overproduction of mucus and goblet cell hyperplasia (GCH), which occurs in chronic airway diseases such as asthma. Among the EGFR ligands, transforming growth factor (TGF)-alpha is thought to be the most important in the synthesis of mucus. Pro-TGF-alpha is cleaved to give an active form by members of the matrix metalloproteinases (MMP)/a disintegrin and metalloproteinases (ADAM) family. Thus MMP/ADAM inhibitors might prevent GCH by inhibiting transactivation of EGFR. Upon stimulation of differentiating normal human bronchial epithelial (NHBE) cells by IL-13, GCH was induced. The mucin genes MUC5AC, MUC5B, and MUC2 were upregulated whereas the expression of ciliated cell markers was greatly repressed. GM6001, a broad-spectrum inhibitor for MMP/ADAM, inhibited IL-13-induced mucin gene expression and mucus production as measured by periodic acid-Schiff staining. This was accompanied by an inhibition of TGF-alpha release. These results suggest that MMP/ADAMs play a pivotal role in the development of GCH in lung epithelial cells.  相似文献   

6.
Increased consumption of soy is associated with a decreased risk for prostate cancer; however, the specific cellular mechanisms responsible for this anticancer activity are unknown. Dietary modulation of signaling cascades controlling cellular growth, proliferation and differentiation has emerged as a potential chemopreventive mechanism. The present study examined the effects of four soy isoflavones (genistein, daidzein, glycitein and equol) on extracellularsignal-regulated kinase (ERK1/2) activity in a nontumorigenic prostate epithelial cell line (RWPE-1). All four isoflavones (10 micromol/L) significantly increased ERK1/2 activity in RWPE-1 cells, as determined by immunoblotting. Isoflavone-induced ERK1/2 activation was rapid and sustained for approximately 2 h posttreatment. Glycitein, the most potent activator of ERK1/2, decreased RWPE-1 cell proliferation by 40% (P<.01). Glycitein-induced ERK1/2 activation was dependent, in part, on tyrosine kinase activity associated with vascular endothelial growth factor receptor (VEGFR). The presence of both VEGFR1 and VEGFR2 in the RWPE-1 cell line was confirmed by immunocytochemistry. Treatment of RWPE-1 cells with VEGF(165) resulted in transient ERK1/2 activation and increased cellular proliferation. The ability of isoflavones to modulate ERK1/2 signaling cascade via VEGFR signaling in the prostate may be responsible, in part, for the anticancer activity of soy.  相似文献   

7.
Epigallocatechin-3-gallate (EGCG), a tea polyphenol, inhibits the proliferation of many cancer cell lines; however, the antiproliferative mechanism(s) are not well-characterized. The objective of this study is to identify the cellular signaling mechanism(s) responsible for the antiproliferative effects of EGCG in the PC-3 prostate cancer cell line. EGCG inhibited PC-3 cell proliferation in a concentration-dependent manner with an IC(50) value of 39.0 microM, but had no effect on the proliferation of a nontumorigenic prostate epithelial cell line (RWPE-1). Treatment of PC-3 cells with EGCG (0-50 microM) resulted in time and concentration-dependent activation of the extracellular signal-regulated kinase (ERK1/2) pathway. EGCG treatment did not induce ERK1/2 activity in RWPE-1 cells. The activation of ERK1/2 by EGCG was not inhibited using PD98059, a potent inhibitor of mitogen-activated protein kinase kinase (MEK), the immediate upstream kinase responsible for ERK1/2 activation; suggesting a MEK-independent signaling mechanism. Pretreatment of PC-3 cells with a phosphoinositide-3 kinase (PI3K) inhibitor partially reduced both EGCG-induced ERK1/2 activation and the antiproliferative effects of this polyphenol. These results suggest that ERK1/2 activation via a MEK-independent, PI3-K-dependent signaling pathway is partially responsible for the antiproliferative effects of EGCG in PC-3 cells.  相似文献   

8.
While epidermal growth factor receptor (EGFR) plays a pivotal role in the repair process of epithelial cells, it is also involved in the overproduction of mucus and goblet cell hyperplasia (GCH), which occurs in chronic airway diseases such as asthma. Among the EGFR ligands, transforming growth factor (TGF)-α is thought to be the most important in the synthesis of mucus. Pro-TGF-α is cleaved to give an active form by members of the matrix metalloproteinases (MMP)/a disintegrin and metalloproteinases (ADAM) family. Thus MMP/ADAM inhibitors might prevent GCH by inhibiting transactivation of EGFR. Upon stimulation of differentiating normal human bronchial epithelial (NHBE) cells by IL-13, GCH was induced. The mucin genes MUC5AC, MUC5B, and MUC2 were upregulated whereas the expression of ciliated cell markers was greatly repressed. GM6001, a broad-spectrum inhibitor for MMP/ADAM, inhibited IL-13-induced mucin gene expression and mucus production as measured by periodic acid-Schiff staining. This was accompanied by an inhibition of TGF-α release. These results suggest that MMP/ADAMs play a pivotal role in the development of GCH in lung epithelial cells.  相似文献   

9.
During the progression of prostate cancer, the epithelial adhesion molecule E-cadherin is cleaved from the cell surface by ADAM15 proteolytic processing, generating an extracellular 80 kDa fragment referred to as soluble E-cadherin (sE-cad). Contrary to observations in cancer, the generation of sE-cad appears to correlate with ADAM10 activity in benign prostatic epithelium. The ADAM10-specific inhibitor INCB8765 and the ADAM10 prodomain inhibit the generation of sE-cad, as well as downstream signaling and cell proliferation. Addition of EGF or amphiregulin (AREG) to these untransformed cell lines increases the amount of sE-cad shed into the conditioned media, as well as sE-cad bound to EGFR. EGF-associated shedding appears to be mediated by ADAM10 as shRNA knockdown of ADAM10 results in reduced shedding of sE-cad. To examine the physiologic role of sE-cad on benign prostatic epithelium, we treated BPH-1 and large T immortalized prostate epithelial cells (PrEC) with an sE-cad chimera comprised of the human Fc domain of IgG1, fused to the extracellular domains of E-cadherin (Fc-Ecad). The treatment of untransformed prostate epithelial cells with Fc-Ecad resulted in phosphorylation of EGFR and downstream signaling through ERK and increased cell proliferation. Pre-treating BPH-1 and PrEC cells with cetuximab, a therapeutic monoclonal antibody against EGFR, decreased the ability of Fc-Ecad to induce EGFR phosphorylation, downstream signaling, and proliferation. These data suggest that ADAM10-generated sE-cad may have a role in EGFR signaling independent of traditional EGFR ligands.  相似文献   

10.
11.
Several lines of evidence suggest that tumor-derived trypsin contributes to the growth and invasion of cancer cells. We have recently shown that trypsin is a potent growth factor for colon cancer cells through activation of the G protein-coupled receptor protease-activated receptor 2 (PAR2). Here, we analyzed the signaling pathways downstream of PAR2 activation that lead to colon cancer cell proliferation in HT-29 cells. Our data are consistent with the following cascade of events upon activation of PAR2 by the serine protease trypsin or the specific PAR2-activating peptide (AP2): (i) a matrix metalloproteinase-dependent release of transforming growth factor (TGF)-alpha, as demonstrated with TGF-alpha-blocking antibodies and measurement of TGF-alpha in culture medium; (ii) TGF-alpha-mediated activation of epidermal growth factor receptor (EGF-R) and subsequent EGF-R phosphorylation; and (iii) activation of ERK1/2 and subsequent cell proliferation. The links between these events are demonstrated by the fact that stimulation of cell proliferation and ERK1/2 upon activation of PAR2 is reversed by the metalloproteinase inhibitor batimastat, TGF-alpha-neutralizing antibodies, EGF-R ligand binding domain-blocking antibodies, and the EGF-R tyrosine kinase inhibitors AG1478 and PD168393. Therefore, transactivation of EGF-R appears to be a major mechanism whereby activation of PAR2 results in colon cancer cell growth. By using the Src tyrosine kinase inhibitor PP2, we further showed that Src plays a permissive role for PAR2-mediated ERK1/2 activation and cell proliferation, probably acting downstream of the EGF-R. These data explain how trypsin exerts robust trophic action on colon cancer cells and underline the critical role of EGF-R transactivation.  相似文献   

12.
Interleukin-8 (IL-8) has been reported to promote tumor cell growth in colon cancer cells after binding to its receptors, which are members of the G-protein coupled receptor (GPCR) family. Recent studies demonstrated that stimulation of GPCR can induce shedding of epidermal growth factor (EGF) ligands via activation of a disintegrin and metalloprotease (ADAM), with subsequent transactivation of the EGF receptor (EGFR). In this study, we investigated mechanisms of cell proliferation and migration stimulated by IL-8 in a human colon carcinoma cell line (Caco2). IL-8 increased DNA synthesis of Caco2 in a dose dependent manner and this was inhibited by ADAM, EGFR kinase, and MEK inhibitors. IL-8 transiently induced EGFR tyrosine phosphorylation after 5-90 min and this was completely inhibited by ADAM inhibitor. Neutralizing antibody against HB-EGF as a key ligand for EGFR also blocked transactivation of EGFR and cell proliferation by IL-8. Since IL-8-induced cell migration was further suppressed by the ADAM inhibitor and the HB-EGF neutralizing antibody, our data indicate that IL-8 induces cell proliferation and migration by an ADAM-dependent pathway, and that HB-EGF plays an important role as the major ligand for this pathway.  相似文献   

13.
G protein-coupled receptors (GPCRs) such as angiotensin II, bradykinin and endothelin-1 (ET-1) are critically involved in the regulation of adrenal function, including aldosterone production from zona glomerulosa cells. Whereas, substantial data are available on the signaling mechanisms of ET-1 in cardiovascular tissues, such information in adrenal glomerulosa cells is lacking. Bovine adrenal glomerulosa (BAG) cells express receptors for endothelin-1 (ET-1) and their stimulation caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), extracellularly regulated signal kinases (ERK1/2), and their dependent proteins, p90 ribosomal S6 kinase (RSK-1) and CREB. ET-1 elicited these responses predominantly through activation of a Gi-linked cascade with a minor contribution from the Gq/PKC pathway. Whereas, selective inhibition of EGF-R kinase with AG1478 caused complete inhibition of EGF-induced ERK/RSK-1/CREB activation, it caused only partial reduction (30–40%) of such ET-1-induced responses. Consistent with this, inhibition of matrix metalloproteinases (MMPs) with GM6001 reduced ERK1/2 activation by ET-1, consistent with partial involvement of the MMP-dependent EGF-R activation in this cascade. Activation of ERK/RSK-1/CREB by both ET-1 and EGF was abolished by inhibition of Src, indicating its central role in ET-1 signaling in BAG cells. Moreover, the signaling characteristics of ET-1 in cultured BAG cells closely resembled those observed in clonal adrenocortical H295R cells. The ET-1-induced proliferation of BAG and H295 R cells was much smaller than that induced by Ang II or FGF. These data demonstrate that ET-1 causes ERK/RSK-1/CREB phosphorylation predominantly through activation of Gi and Src, with a minor contribution from MMP-dependent EGF-R transactivation.  相似文献   

14.
Axl receptor tyrosine kinase exists as a transmembrane protein and as a soluble molecule. We show that constitutive and phorbol 12-myristate 13-acetate-induced generation of soluble Axl (sAxl) involves the activity of disintegrin-like metalloproteinase 10 (ADAM10). Spontaneous and inducible Axl cleavage was inhibited by the broad-spectrum metalloproteinase inhibitor GM6001 and by hydroxamate GW280264X, which is capable of blocking ADAM10 and ADAM17. Furthermore, murine fibroblasts deficient in ADAM10 expression exhibited a significant reduction in constitutive and inducible Axl shedding, whereas reconstitution of ADAM10 restored sAxl production, suggesting that ADAM10-mediated proteolysis constitutes a major mechanism for sAxl generation in mice. Partially overlapping 14-amino-acid stretch deletions in the membrane-proximal region of Axl dramatically affected sAxl generation, indicating that these regions are involved in regulating the access of the protease to the cleavage site. Importantly, relatively high circulating levels of sAxl are present in mouse sera in a heterocomplex with Axl ligand Gas6. Conversely, two other family members, Tyro3 and Mer, were not detected in mouse sera and conditioned medium. sAxl is constitutively released by murine primary cells such as dendritic and transformed cell lines. Upon immobilization, sAxl promoted cell migration and induced the phosphorylation of Axl and phosphatidylinositol 3-kinase. Thus, ADAM10-mediated generation of sAxl might play an important role in diverse biological processes.  相似文献   

15.
16.
A disintegrin and metalloproteinase 17 (ADAM17) regulates key cellular processes including proliferation and migration through the shedding of a diverse array of substrates such as epidermal growth factor receptor (EGFR) ligands. ADAM17 is implicated in the pathogenesis of many diseases including rheumatoid arthritis and cancers such as head and neck squamous cell carcinoma (HNSCC). As a central mediator of cellular events, overexpressed EGFR is a validated molecular target in HNSCC. However, EGFR inhibition constantly leads to tumour resistance. One possible mechanism of resistance is the activation of alternative EGFR family receptors and downstream pathways via the release of their ligands. Here, we report that treating human HNSCC cells in vitro with a human anti-ADAM17 inhibitory antibody, D1(A12), suppresses proliferation and motility in the absence or presence of the EGFR tyrosine kinase inhibitor (TKI) gefitinib. Treatment with D1(A12) decreases both the endogenous and the bradykinin (BK)-stimulated shedding of HER ligands, accompanied by a reduction in the phosphorylation of HER receptors and downstream signalling pathways including STAT3, AKT and ERK. Knockdown of ADAM17, but not ADAM10, also suppresses HNSCC cell proliferation and migration. Furthermore, we show that heregulin (HRG) and heparin-binding epidermal growth factor like growth factor (HB-EGF) predominantly participate in proliferation and migration, respectively. Taken together, these results demonstrate that D1(A12)-mediated inhibition of cell proliferation, motility, phosphorylation of HER receptors and downstream signalling is achieved via reduced shedding of ADAM17 ligands. These findings underscore the importance of ADAM17 and suggest that D1(A12) might be an effective targeted agent for treating EGFR TKI-resistant HNSCC.  相似文献   

17.
Stimulation of the angiotensin II (Ang II) type 1 receptor (AT1-R) causes phosphorylation of extracellularly regulated kinases 1 and 2 (ERK1/2) via epidermal growth factor receptor (EGF-R) transactivation-dependent or -independent pathways in Ang II target cells. Here we examined the mechanisms involved in agonist-induced EGF-R transactivation and subsequent ERK1/2 phosphorylation in clone 9 (C9) hepatocytes, which express endogenous AT1-R, and COS-7 and human embryonic kidney (HEK) 293 cells transfected with the AT1-R. Ang II-induced ERK1/2 activation was attenuated by inhibition of Src kinase and of matrix metalloproteinases (MMPs) in C9 and COS-7 cells, but not in HEK 293 cells. Agonist-mediated MMP activation in C9 cells led to shedding of heparin-binding EGF (HB-EGF) and stimulation of ERK1/2 phosphorylation. Blockade of HB-EGF action by neutralizing antibody or its selective inhibitor, CRM197, attenuated ERK1/2 activation by Ang II. Consistent with its agonist action, HB-EGF stimulation of these cells caused marked phosphorylation of the EGF-R and its adapter molecule, Shc, as well as ERK1/2 and its dependent protein, p90 ribosomal S6 kinase, in a manner similar to that elicited by Ang II or EGF. Although the Tyr319 residue of the AT1-R has been proposed to be an essential regulator of EGF-R transactivation, stimulation of wild-type and mutant (Y319F) AT1-R expressed in COS-7 cells caused EGF-R transactivation and subsequent ERK1/2 phosphorylation through release of HB-EGF in a Src-dependent manner. In contrast, the noninvolvement of MMPs in HEK 293 cells, which may reflect the absence of Src activation by Ang II, was associated with lack of transactivation of the EGF-R. These data demonstrate that the individual actions of Ang II on EGF-R transactivation in specific cell types are related to differential involvement of MMP-dependent HB-EGF release.  相似文献   

18.
Interleukin-6 (IL-6) is involved in angiogenesis. However, the underlying mechanisms are unknown. Using human cerebral endothelial cell (HCEC), we report for the first time that IL-6 triggers HCEC proliferation and migration in a dose-dependent manner, specifically associated with enhancement of VEGF expression, up-regulated and phosphorylated VEGF receptor-2 (KDR), and stimulated MMP-9 secretion. We investigated the signal pathway of IL-6/IL-6R responsible for KDR's regulation. Pharmacological inhibitor of PI3K failed to inhibit IL-6-mediated VEGF overexpression, while blocking ERK1/2 with PD98059 could abolish IL-6-induced KDR overexpression. Further, neutralizing endogenous VEGF attenuated KDR expression and phosphorylation, suggesting that IL-6-induced KDR activation is independent of VEGF stimulation. MMP-9 inhibitor GM6001 significantly decreases HCEC proliferation and migration (p<0.05), indicating the crucial function of MMP-9 in promoting angiogenic changes in HCECs. We conclude that IL-6 triggers VEGF-induced angiogenic activity through increasing VEGF release, up-regulates KDR expression and phosphorylation through activating ERK1/2 signaling, and stimulates MMP-9 overexpression.  相似文献   

19.
It was realized in the 1990s that some membrane proteins such as TNFα, both TNF receptors, ligands of the EGF-R and the Interleukin-6 receptor are proteolytically cleaved and are shed from the cell membrane as soluble proteins. The major responsible protease is a metalloprotease named ADAM17. So far, close to 100 substrates, including cytokines, cytokine receptors, chemokines and adhesion molecules of ADAM17 are known. Therefore, ADAM17 orchestrates many different signaling pathways and is a central signaling hub in inflammation and carcinogenesis. ADAM17 plays an important role in the biology of Interleukin-6 (IL-6) since the generation of the soluble Interleukin-6 receptor (sIL-6R) is needed for trans-signaling, which has been identified as the pro-inflammatory activity of this cytokine. In contrast, Interleukin-6 signaling via the membrane-bound Interleukin-6 receptor is mostly regenerative and protective. Probably due to its broad substrate spectrum, ADAM17 is essential for life and most of the few human individuals identified with ADAM17 gene defects died at young age. Although the potential of ADAM17 as a therapeutic target has been recognized, specific blockade of ADAM17 is not trivial since the metalloprotease domain of ADAM17 shares high structural homology with other proteases, in particular matrix metalloproteases. Here, the critical functions of ADAM17 in IL-6, TNFα and EGF-R pathways and strategies of therapeutic interventions are discussed.  相似文献   

20.
Glycoprotein V (GPV) is a subunit of the GPIb-IX-V receptor for von Willebrand factor and thrombin and has been shown to modulate platelet responses to the two strongest physiological agonists, thrombin and collagen. Thrombin directly cleaves GPV from the platelet surface, yielding a 69-kDa fragment GPV f1 of unknown function. We show here that a approximately 82-kDa fragment of GPV is shed from the platelet surface upon cellular activation with phorbol 12-myristate 13-acetate or the collagen-related peptide. This shedding was inhibited by the broad range metalloproteinase inhibitor GM6001, the two potent ADAM17 inhibitors GW280264X and TAPI-2, and was absent in mice lacking functional ADAM17 (ADAM17 lacking Zn-binding domain; ADAM17(DeltaZn/DeltaZn)). Furthermore, we show that recombinant ADAM17 ectodomain efficiently releases GPV from the platelet surface. GPV is known to be associated with the intracellular regulatory protein calmodulin, which has previously been shown to be involved in ADAM17-mediated shedding of l-selectin from the surface of leukocytes. As in these reports, inhibition of calmodulin led to rapid GPV shedding from the platelet surface, a process that was again blocked by GM6001 or ADAM17 inhibitors and that was absent in ADAM17(DeltaZn/DeltaZn) mice. Inhibition of outside-in signaling through GPIIb/IIIa did not significantly affect GPV shedding, excluding an essential role of this pathway for the regulation of ADAM17 activity. These results demonstrate that GPV is cleaved upon agonist-induced platelet activation and show that ADAM17 is the major enzyme mediating this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号