首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The American Maydinae genera Zea and Tripsacum cross readily when not isolated from each other by gametophytic barriers, and it has been suggested that intergeneric introgression played a role in the evolution of maize. Four Zea chromosomes pair with members of at least one basic genome of tetraploid Tripsacum, and in hybrids involving octaploid Tripsacum all 10 chromosomes of the basic maize genome frequently compete successfully in synapsis with Tripsacum chromosomes. Hybrids that combine 36 Tripsacum and 10 maize chromosomes are female fertile. When they are pollinated by maize their offspring have 36 Tripsacum and 20 maize chromosomes, or again have 36 Tripsacum and 10 maize chromosomes, but the 10 Zea chromosomes are contributed by the new pollen parent. Later backcross generations also include plants with 36 Tripsacum and 12, 14, 16, or 18 maize chromosomes. Individuals with 2n = 56 produce an abundance of offspring with 18 Tripsacum and 20 maize chromosomes when backcrossed with maize. Further backcrossing results in elimination of Tripsacum chromosomes, and eventually plants with 2n = 20 Tripsacum-contaminated maize chromosomes are obtained. Two generations of selfing restore full fertility to these 2n = 20 plants and eliminate all obvious traces of Tripsacum morphology.  相似文献   

2.
Derivatives of a cross between diploid Zea mays L. and Tripsacum dactyloides (L.) L. (2n = 72) were compared cytologically and morphologically. The objective of this study was to detect introgression from Tripsacum to maize that might have occurred during seven backcross generations with maize. Thirty-three morphological characters were used to analyze variation among aneuploid (20Zm + 2Td), 20-chromosome recovered maize, and the recurrent maize parent plants. Aneuploid and maize checks were extreme types, with 20-chromosome hybrid derivatives being morphologically intermediate. Several recovered maizes clustered with aneuploid plants and these hybrid derivatives have the greatest chance of Tripsacum introgression. Many traits such as endosperm abnormalities, tassel seed, albinos, tunicate glumes, tassel-tipped ears, fasciated and branched ear, and male spikelets between rows of kernels were observed. Although the genetic basis of many traits is unknown, mutations, epistatic effects or expression of Tripsacum chromatin are possible causes. The number of abnormal and tripsacoid traits observed in 20-chromosome recovered maizes indicates genetic transfer from Tripsacum to the maize genome.  相似文献   

3.
 DNA fingerprinting verified hybrid plants obtained by crossing Eastern gamagrass, Tripsacum dactyloides L., and perennial teosinte, Zea diploperennis Iltis, Doebley & R. Guzmán. Pistillate inflorescences on these hybrids exhibit characteristics intermediate to the key morphological traits that differentiate domesticated maize from its wild relatives: (1) a pair of female spikelets in each cupule; (2) exposed kernels not completely covered by the cupule and outer glumes; (3) a rigid, non-shattering rachis; (4) a polystichous ear. RFLP analysis was employed to investigate the possibility that traits of domesticated maize were derived from hybridization between perennial teosinte and Tripsacum. Southern blots of restriction digested genomic DNA of parent plants, F1, and F2 progeny from two different crosses were probed with RFLP markers specifically associated with changes in pistillate inflorescence architecture that signal maize domestication. Pairwise analysis of restriction patterns showed traits considered missing links in the origin of maize correlate with alleles derived from Tripsacum, and the same alleles are stably inherited in second generation progeny from crosses between Tripsacum and perennial teosinte. Received: 11 October 1996/Accepted:8 November 1996  相似文献   

4.
Random samples, consisting of at least 100 individual seedlings, were taken from the diploid (2n=2x=36) eastern gamagrass (Tripsacum dactyloides var.dactyloides) and assayed to determine which of 12 enzyme marker loci and isozyme systems would be most informative in providing satisfactory resolution of both maize andTripsacum isozyme systems. For comparison, eight maize inbreds were included in the study to aid evaluation and comparison of the various isozyme systems. In addition, evaluations were conducted to identify if the identified optimum isozyme system could be used to detectTripsacum introgression in maize following a maize ×Tripsacum backcrossing scheme. Using the established isozyme techniques for maize (Zea mays L.), theAdh, Pgd, Cat, Est, B-Glu, Got, Idh, Tpi isozyme systems detected no polymorphism among theTripsacum individuals assayed. TheEst andB-Glu systems forTripsacum were unscorable due to poor staining and resolution. TheAcp, Mdh, Pgm, andPhi isozyme systems were found to be satisfactory markers for differentiating between eastern gamagrass individuals as well as detectingTripsacum introgression in maize. The availability of useful isozyme systems which can simultaneously provide significant isozyme resolution of maize,Tripsacum and maize-Tripsacum backcross hybrids, on a single gel system, will be useful for the detection of marker assistedTripsacum introgression into maize. In addition, the identification of a set of variable biochemical markers should also assist breeding, selection and genetic manipulations in eastern gamagrass.The use of company names in this publication does not imply endorsement by the USDA-ARS, or the product names of criticism of similar ones not mentioned. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.  相似文献   

5.
Polyploid plants in the genus Tripsacum, a wild relative of maize, reproduce through gametophytic apomixis of the diplosporous type, an asexual mode of reproduction through seed. Moving gene(s) responsible for the apomictic trait into crop plants would open new areas in plant breeding and agriculture. Efforts to transfer apomixis from Tripsacum into maize at CIMMYT resulted in numerou intergeneric F1 hybrids obtained from various Tripsacum species. A bulk-segregant analysis was carried out to identify molecular markers linked to diplospory in T. dactyloides. This was possible because of numerous genome similarities among related species in the Andropogoneae. On the basis of maize RFLP probes, three restriction fragments co-segregating with diplospory were identified in one maize-Tripsacum dactyloides F1 population that segregated 1∶1 for the mode of reproduction. The markers were also found to be linked in the maize RFLP map, on the distal end of the long arm of chromosome 6. These results support a simple inheritance of diplospory in Tripsacum. Manipulation of the mode of reproduction in maize-Tripsacum backcross generations, and implications for the transfer of apomixis into maize, are discussed.  相似文献   

6.
Summary Maize was crossed with sorghum, Tripsacum and millet with the aim of introgressing desirable alien characteristics into maize. The products of crosses were analyzed as to their level of differentiation following pollination; their further development on artificial culture medium was compared. In spite of a stimulation rate close to 5%, no evidence of hybridization between maize and sorghum or millet could be obtained. The plants recovered proved to be of maternal origin. However, with an appreciable frequency, stimulation leading to hypertrophic growth of nucellar tissue was observed. This phenomenon is bound to pollination, never occurring in non-pollinated ears. In crosses involving Tripsacum, more than 140 true hybrids were isolated. The influence of the genotypes used as well as factors such as climatic conditions or in vitro techniques are discussed. Except for one haploid maize plant, all the plants recovered proved to be classical hybrids, most of them showing the expected complement of chromosomes from each parent (10 + 36 chromosomes), a few others being slightly hyperploid (2n = 47 to 50 chromosomes). No non-classical hybrids constituted by a nonreduced female gamete and a reduced male gamete were obtained.  相似文献   

7.
Tripsacum andersonii Gray (Gramineae) is a species with 2n = 64 chromosomes. Chromosome behaviour during meiosis of microsporogenesis suggests that the species combines three homologous haploid Tripsacum genomes of x = 18 (54 chromosomes), and an alien haploid genome of x = 10 chromosomes. Cytogenetic studies indicate that T. andersonii originated as a hybrid between a species of Tripsacum (2n = 36) and a species of Zea (2n = 20). Comparative morphology and flavonoid chemistry fail to identify the Zea species involved in this intergeneric hybrid. Chromosome morphology suggests that it was either Z. mays L. subsp. mays (domesticated maize) or subspecies mexicana (Schrad.) Iltis (annual teosinte). The Tripsacum parent probably was T. latifolium Hitchc. of Central America. It resembles T. andersonii in vegetative morphology. Tripsacum maizar Hernandez et Randolph and T. laxum Nash, which resemble T. andersonii in flavonoid chemistry, are eliminated as possible parents on the basis of growth habit and the morphology of their hybrids with maize.  相似文献   

8.
The patterns of esterase and peroxidase isoenzymes, subunits of zein-2 fraction and protomers of SDS-protein complex of Zea mays L. × Tripsacum dactyloides L. hybrids and their parents were compared. The study has been made to detect specific to Tripsacum isoesterases and isoperoxidases, zein subunits and SDS-protein protomers which could be used as markers for introgression of gene loci encoding these proteins from Tripsacum into hybrids of Tripsacum with Zea mays. Isoesterases and isoperoxidases as well protomers of SDS-protein complex specific to Tripsacum were detected in all hybrids analyzed. Zein subunits, specific to Tripsacum were detected in some of the analyzed hybrids which i that introgression frequency of the loci encoding proteins studied was different. Chromosome counts taken on the examined hybrids showed the addition of 9 – 13 Tripsacum chromosomes to maize chromosome complement.  相似文献   

9.
Knob heterochromatin homology in maize and its relatives   总被引:13,自引:0,他引:13  
Summary We have characterised the major DNA sequence component of knob heterochromatin in maize, teosinte andTripsacum. Sequence analysis of this DNA gives strong support to the proposal that maize originated by selection of variants in teosinte. In situ hybridization has confirmed that this repeating DNA sequence, which is the major component of maize knob heterochromatin, is also the major component of knobs in teosinte,Zea diploperennis andTripsacum. In Southern blot hybridizations the repeat has a similar basic organization in all taxa;Tripsacum, however, is differentiated from maize and teosinte by a number of sequence features. Maize and teosinte knob heterochromatin are indistinguishable with regard to the distribution of mutations in the 180-bp repeat and the presence and organization of a 202-bp variant sequence. The knob DNA sequence was not detectable in three species ofCoix, an Old World genus of the Maydeae.Within the repeat unit is a 27-bp region that shows no sequence changes in maize, teosinte orTripsacum. The remainder of the repeat unit has randomly distributed nucleotide changes. The presence of the conserved sequence region suggests that knob DNA may have a functional role in the nucleus.  相似文献   

10.
Modern races of maize (Zea mays L.) are characterized by indurated glume and rachis tissues. The archaeological record, as well as experimental studies indicate that in North America this induration is associated with hybridization between domesticated maize and its closest wild relative Z. mays subsp. mexicana (Schrad.) Iltis (teosinte). Similar induration can also be introduced into maize through introgression from Tripsacum. North and South American indurated races of maize are not all closely allied morphologically. They evolved independently under domestication. Teosinte is absent from South America, but Tripsacum is widely sympatric with maize from about 42 N to 42 S latitude. For these reasons it has been postulated that induration in South American races may be the result of Tripsacum introgression. However, barriers restricting gene exchange between Zea and Tripsacum are difficult to overcome in nature. It is maintained that indurated South American races of maize were derived from indurated Mexican races, and that the presence or absence of such induration is due to different degrees of expression by intermediate alleles of the tunicate locus.  相似文献   

11.
Restriction site variation in the zea chloroplast genome   总被引:4,自引:0,他引:4       下载免费PDF全文
Doebley J  Renfroe W  Blanton A 《Genetics》1987,117(1):139-147
Nineteen accessions selected from the four species and three subspecies of the genus Zea and one accession from the related genus Tripsacum were surveyed for variation with 21 restriction endonucleases. In all, 580 restriction sites were assayed in each chloroplast (cp)DNA, this representing 2.2% of the genome. Twenty-four of the 580 sites were variable in one or more of the cpDNAs. The number of nucleotide substitutions per site (p) between Zea and Tripsacum (0.0056) approximates that between other closely related angiosperm genera. The range in values of p among Zea species (0.0003-0.0024) is on the lower end of the range reported for other angiosperm genera. Analysis of the distribution of restriction site mutations throughout the genome indicated that the inverted repeat evolves more slowly than either the small or large unique sequence regions. Parsimony phylogenetic analysis of the restriction site data produced a tree consistent with isoenzymatic and morphological measures of affinity among the species. Chloroplast DNA analysis was not useful in discriminating the subspecies within Zea mays. The lack of any detectable differences between the cpDNA of maize (Z. mays subsp. mays) and some teosintes (Z. mays subsps. mexicana and parviglumis ) is consistent with the hypothesis that maize is a domesticated form of teosinte. Comparison of the degree of sequence divergence for Z. mays cpDNA and the Adh1 locus suggests the latter may be evolving at 10 times the rate of the former. Comparison of rates of sequence evolution for the mitochondrial and chloroplast genomes was inconclusive and could not clarify whether these two genomes have dissimilar rates of sequence evolution.  相似文献   

12.
A. F. MacRae  M. T. Clegg 《Genetica》1992,86(1-3):55-66
We present data on evolution of the Ac/Ds family of transposable elements in select grasses (Poaceae). An Ac-like element was cloned from a DNA library of the grass Pennisetum glaucum (pearl millet) and 2387 bp of it have been sequenced. When the pearl millet Ac-like sequence is aligned with the corresponding region of the maize Ac sequence, it is found that all sequences corresponding to intron II in maize Ac are absent in pearl millet Ac. Kimura's evolutionary distance between maize and pearl millet Ac sequences is estimated to be 0.429±0.020 nucleotide substitutions per site. This value is not significantly different from the average number of synonymous substitutions for coding regions of the Adh1 gene between maize and pearl millet, which is 0.395±0.051 nucleotide substitutions per site. If we can assume Ac and Adh1 divergence times are equivalent between maize and pearl millet, then the above calculations suggest Ac-like sequences have probably not been strongly constrained by natural selection. The level of DNA sequence divergence between maize and pearl millet Ac sequences, the estimated date when maize and pearl millet diverged (25–40 million years ago), coupled with their reproductive isolation/lack of current genetic exchange, all support the theory that Ac-like sequences have not been recently introduced into pearl millet from maize. Instead, Ac-like sequences were probably present in the progenitor of maize and pearl millet, and have thus existed in the grasses for at least 25 million years. Ac-like sequences may be widely distributed among the grasses. We also present the first 2 Dsl controlling element sequences from teosinte species: Zea luxurians and Zea perennis. A total of 10 Dsl elements had previously been sequenced from maize and a distant maize relative, Tripsacum. When a maximum likelihood network of genetic relationships is constructed for all 12 sequenced Dsl elements, the 2 teosinte Dsl elements are as distant from most maize Dsl elements and from each other, as the maize Dsl elements are from one another. Our new teosinte sequence data support the previous conclusion that Dsl elements have been accumulating mutations independently since maize and Tripsacum diverged. We present a scenario for the origin of Dsl elements.  相似文献   

13.
Nuclear genotype affects mitochondrial genome organization of CMS-S maize   总被引:7,自引:0,他引:7  
Summary A WF9 strain of maize with the RD subtype of the S male-sterile cytoplasm (CMS-S) was converted to the inbred M825 nuclear background by recurrent backcrossing. The organization of the mitochondrial genomes of the F1 and succeeding backcross progenies was analyzed and compared with the progenitor RD-WF9 using probes derived from the S1 and S2 mitochondrial episomes, and probes containing the genes for cytochrome c oxidase subunit I (coxI), cytochrome c oxidase subunit II (coxII) and apocytochrome b (cob). Changes in mitochondrial DNA (mtDNA) organization were observed for S1-, S2-, and coxI-homologous sequences that involve loss of homologous restriction enzyme fragments present in the RD-WF9 progenitor. With the coxI probe, the loss of certain fragments was accompanied by the appearance of a fragment not detectable in the progenitor. The changes observed indicate the effect of the nuclear genome on the differential replication of specific mitochondrial subgenomic entities.  相似文献   

14.
Electrophoretic patterns of malate dehydrogenase (Mdh), alcohol dehydrogenase (Adh), and 6-phosphogluconate dehydrogenase (Pgd) of Zea mays L. × Tripsacum dactyloides L. hybrids and their parents were compared. The components of enzymes specific to T. dactyloides may be used as markers to identify the following T. dactyloides chromosomes in the hybrids: Tr 16 (Mdh 2 and Pdg 1), Tr 7, and/or Tr 13 (Adh 2). The isozymes of Mdh 2 are supposed as a possible biochemical marker to evaluate the introgression of genes, determining an apomictic mode of reproduction from T. dactyloides (localized on Tripsacum 16 chromosome) into Z. mays. The isozymes may be used as markers for the identification of maize chromosomes 1 and 6 in the hybrids as well. Chromosome count taken on the examined hybrids showed the addition of 9 to 13 chromosomes of T. dactyloides to maize chromosome complement.  相似文献   

15.
Diploid (2n = 36) Tripsacum australe Cutler and Anderson var. hirsutum de Wet and Timothy, T. cundinamarce de Wet and Timothy, T. dactyloides (L.) L. var. dactyloides and var. meridonale de Wet and Timothy, and T. laxum Nash were crossed with Zea mays L. (2n = 20) as the pollen parent. True hybrids combine the cytologically nonreduced genome of Tripsacum (36 chromosomes) with the haploid (10 chromosomes) or more rarely diploid (20 chromosome) genome of Zea. Maternal offspring with 2n = 36 Tripsacum chromosomes commonly result from parthenogenetic development of cytologically nonreduced eggs. Some individuals with 2n = 36 Tripsacum chromosomes, however, resemble true hybrids in phenotype. These counterfeit hybrids incorporated Zea genetic material into their Tripsacum genomes without true fertilization having taken place. Offspring of counterfeit hybrids that were grown to maturity resembled their mothers in phenotype, and must have originated parthenogenetically. It is proposed that counterfeit hybrids are also produced in nature, and that this process contributes to origins of variation in gametophytic apomicts, and perhaps also in sexually reproducing species.  相似文献   

16.
In cereals, interspecific and intergeneric hybridizations (wide crosses) which yield karyotypically stable hybrid plants have been used as starting points to widen the genetic base of a crop and to construct stocks for genetic analysis. Also, uniparental genome elimination in karyotypically unstable hybrids has been utilized for cereal haploid production. We have crossed hexaploid oat (2n=6x=42, Avena sativa L.) and maize (2n=2x=20, Zea mays L.) and recovered 90 progenies through embryo rescue. Fifty-two plants (58%) produced from oatxmaize hybridization were oat haploids (2n=3x=21) following maize chromosome elimination. Twenty-eight plants (31%) were found to be stable partial hybrids with 1–4 maize chromosomes in addition to a haploid set of 21 oat chromosomes (2n=21+1 to 2n=21+4). Ten of the ninety plants produced were found to be apparent chromosomal chimeras, where some tissues in a given plant contained maize chromosomes while other tissues did not, or else different tissues contained a different number of maize chromosomes. DNA restriction fragment length polymorphisms (RFLPs) were used to identify the maize chromosome(s) present in the various oat-maize progenies. Maize chromosomes 2, 3, 4, 5, 6, 7, 8, and 9 were detected in partial hybrids and chromosomal chimeras. Maize chromosomes 1 and 10 were not detected in the plants analyzed to-date. Furthermore, partial self-fertility, which is common in oat haploids, was also observed in some oat-maize hybrids. Upon selfing, partial hybrids with one or two maize chromosomes showed nearly complete transmission of the maize chromosome to give self-fertile maize-chromosome-addition oat plants. Fertile lines were recovered that contained an added maize chromosome or chromosome pair representing six of the ten maize chromosomes. Four independently derived disomic maize chromosome addition lines contained chromosome 4, one line carried chromosome 7, two lines had chromosome 9, one had chromosome 2, and one had chromosome 3. One maize chromosome-8 monosomic addition line was also identified. We also identified a double disomic addition line containing both maize chromosomes 4 and 7. This constitutes the first report of the production of karyotypically stable partial hybrids involving highly unrelated species from two subfamilies of the Gramineae (Pooideae — oat, and Panicoideae — maize) and the subsequent recovery of fertile oat-maize chromosome addition lines. These represent novel material for gene/ marker mapping, maize chromosome manipulation, the study of maize gene expression in oat, and the transfer of maize DNA, genes, or active transposons to oat.Joint contribution of the Minnesota Agricultural Experiment Station and USDA-ARS. Scientific journal series paper No. 21 859 of the Minnesota Agricultural Experiment Station. Mention of a trademark or proprietary product does not constitute a guarantee or warranty by the USDA-ARS or the University of Minnesota and does not imply approval over other products that also may be suitable  相似文献   

17.
Tripsacum-maize interaction: a novel cytogenetic system   总被引:3,自引:0,他引:3       下载免费PDF全文
de Wet JM  Harlan JR 《Genetics》1974,78(1):493-502
The genera Zea and Tripsacum cross readily when they are not isolated by gametophytic barriers, and it has been postulated that intergeneric introgression played a role in the evolution of maize. The basic x = 9 Tripsacum and x = 10 Zea genomes have little cytological affinity for each other in hybrids that combine 10 Zea with 18 Tripsacum chromosomes. However, one to four Tripsacum chromosomes sometimes associate with Zea chromosomes in hybrids between Z. mays (2n = 20) and T. dactyloides (2n = 72). These hybrids with 10 Zea and 36 Tripsacum chromosomes frequently produce functional female gametes with 36 Tripsacum chromosomes only. When they are pollinated with maize, their offspring again have 36 Tripsacum and 10 maize chromosomes, but the Tripsacum genome is contaminated with maize genetic material. In these individuals, intergenome pairing is the rule, and when they are pollinated with maize, their offspring have 36 Tripsacum and 10, 12, 14, 16, 18, or 20 Zea chromosomes. Plants with 36 Tripsacum and 20 Zea chromosomes behave cytologically as alloploids, although the Tripsacum genome is contimated with maize, and one basic maize genome is contaminated with with Tripsacum genetic material. When they are pollinated with maize, offspring with 18 Tripsacum and 20 Zea chromosome are obtained. Further successive backcrosses with maize selectively eliminate Tripsacum chromosomes, and eventually plants with 2n = 20 Zea chromosomes are recovered. Many of these maize plants are highly "tripsacoid." Strong gametophytic selection for essentially pure Zea gametes, however, eliminates all obvious traces of Tripsacum morphology within a relatively few generations.  相似文献   

18.
Protoplasts of a kanamycin-resistant (KR, nuclear genome), streptomycin-resistant (SR, chloroplast genome) and chlorophyll-deficient (A1, nuclear genome) Nicotiana tabacum (KR-SA) cell suspension cultures or X-ray-irradiated mesophyll protoplasts of kanamycin- and streptomycin-resistant green plants (KR-SR) were fused with protoplasts of a cytoplasmic male-sterile (CMS) Daucus carota L. cell suspension cultures by electrofusion. Somatic hybrid plants were selected for kanamycin resistance and the ability to produce chlorophyll. Most of the regenerated plants had a normal D. carota morphology. Callus induced from these plants possessed 23–32 chromosomes, a number lower than the combined chromosome number (66) of the parents, and were resistant to kanamycin, but they segregated for streptomycin resistance, which indicated that N. tabacum chloroplasts had been eliminated. Genomic DNA from several regenerated plants was analyzed by Southern hybridization for the presence of the neomycin phosphotransferase gene (NPTII); all of the plants analyzed were found to contain this gene. Mitochondrial (mt) DNA was analyzed by Southern hybridization of restriction endonuclease digests of mtDNA with two DNA probes, PKT5 and coxII. The results showed that the two plants analyzed possessed the mitochondria of D. carota. These results demonstrate that the regenerated plants are interfamilial somatic hybrids.  相似文献   

19.
The expression of gene(s) governing apomictic reproduction inTripsacum provides the best foundation for comparing the effectiveness of apomictic reproduction in a series of maize-Tripsacum hybrids. Several 38-chromosome, apomictic maize-Tripsacum hybrids are available which possess the gene(s) conferring apomictic reproduction fromTripsacum. Without a base line for comparison, studies directed towards discerning the successful transfer or effectiveness of gene expression in a maize background are hampered. The objectives of this study are to compare the reproductive features found in apomicticTripsacum with those in apomictic maize-Tripsacum hybrids. In addition, this study determined the feasibility of utilizing these maize-Tripsacum hybrid materials to continue an attempt to transfer the genes into a pure maize background. The frequency and occurrence of five unique reproductive features found in apomictic accessions ofTripsacum dactyloides were compared to the reproductive behaviours exhibited in the maize-Tripsacum hybrids. Results indicate the genes controlling apomixis in tetraploidTripsacum are fully functional in maize-Tripsacum hybrids with diploid and triploid maize constitutions. The ability of theTripsacum apomictic genes to retain full expression provides evidence to continue their transfer to a diploid or tetraploid maize background.The use of company names in this publication does not imply endorsement by the USDA-ARS, or the product names or criticism of similar ones not mentioned. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.  相似文献   

20.
Constitutive heterochromatin of a karyotypically conserved species of harvest mouse was compared to that of three karyotypically derived species of harvest mice by examining banding patterns produced on metaphase chromosomes with three restriction endonucleases (EcoRI, MboI and PstI). Banding patterns produced by two of these restriction endonucleases (EcoRI and MboI) were compared to published G- and C-banded karyotypes and in situ hybridization of a satellite DNA repeat for these taxa. The third restriction endonuclease (PstI) did not produce a detectable pattern of digestion. For the most part, patterns produced by EcoRI and MboI can be related to C-banded chromosomes and in situ hybridization of satellite DNA sequences. Moreover, digestion with EcoRI reveals bands not apparent with these other techniques, suggesting that restriction endonuclease digestion of metaphase chromosomes may provide additional insight into the structure and organization of metaphase chromosomes. The patterns produced by restriction endonuclease digestion are compatible with the chromosomal evolution of these taxa, documenting that in the highly derived taxa not only are the chromosomes rearranged but the abundance of certain sequences is highly variable. However, technical variation and difficulty in producing consistent results even on a single slide with some restriction endonucleases documents the problems associated with this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号