首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured skin fibroblasts from a patient with I-Cell disease (mucolipidosis II) were assayed for a number of lysosomal enzymes using both natural and synthetic substrates. The cells from this patient were found to have very low activity for galactosylceramide β-galactosidase, lactosylceramide β-galactosidases (using two assay methods that measure different enzymes), GM1 ganglioside β-galactosidase and sphingomyelinase. Glucosylceramide β-glucosidase activity was found to be normal. Acid hydrolase activities toward many synthetic substrate were measured and all except β-glucosidase and acid phosphatase were found to be extremely low (as has been reported by others). Acid phosphatase and β-glucosidase were in the low normal range. These studies expand on previously published reports on I-Cell disease that only present data from synthetic substrates, and also report the fibroblast culture deficiencies of galactosyl-ceramide β-galactosidase (the Krabbe disease enzyme) and sphingomyelinase (the Niemann-Pick disease enzyme) activities for the first time. Those two enzymes do not have a readily available synthetic analog to assay. Acid β-galactosidase activity measured with both the 4-methylumbelliferyl derivative and GM1 ganglioside was partially deficient in leukocytes prepared from this patient. New methods for measuring 4-methylumbelliferyl-β-D-glucoside and glucosylceramide β-glucosidase activities are also presented.  相似文献   

2.
A novel continuous spectrophotometric assay to measure the activity of the debranching enzyme and α-amylase has been developed. The assay mixture comprises the debranching enzyme (GlgX from Escherichia coli) or α-amylase (PPA from porcine pancreas), a reducing end-specific α-glucosidase (MalZ), maltodextrin-branched β-cyclodextrin (Glcn-β-CD) as the substrate, and the glucose oxidase/peroxidase system (GOPOD). Due to its high reducing end specificity, the branch chains of the substrates are not hydrolyzed by MalZ. After hydrolysis by GlgX or PPA, the released maltodextrins are immediately hydrolyzed into glucose from the reducing end by MalZ, whose concentration is continuously measured by GOPOD at 510 nm in a thermostat spectrophotometer. The kinetic constants determined for GlgX (Km = 0.66 ± 0.02 mM and kcat = 76.7 ± 1.5 s−1) are within a reasonable range compared with those measured using high-performance anion-exchange chromatography (HPAEC). The assay procedure is convenient and sensitive, and it requires lower concentrations of enzymes and substrate compared with dinitrosalicylic acid (DNS) and HPAEC analysis.  相似文献   

3.
A simple and inexpensive assay for β-glucosidase, based on the coupling of glucose oxidase and Fenton's reagent has been described. Hydrogen peroxide formed as a result of the action of glucose oxidase on glucose (derived from the action of β-glucosidase on cellobiose) oxidizes ferrous sulphate, resulting in an increase in absorbance. The oxidation products produced a peak of maximum absorbance at 340 nm. Using this assay system, a linear relationship between glucose concentration in the range 5.55–27.78 mmol l?1(100–500 mg dl?1) and absorbance was obtained, indicating conformity to Beer's law. The preciseness of the glucose oxidase/Fenton's reagent for the assay of glucose was shown to be satisfactory. β-Glucosidase was assayed using the hexokinase assay reagent and the glucose oxidase/ferrous sulphate reagent. The values obtained using both reagents did not differ significantly. Although 2.6 times less sensitive than the hexokinase reagent when absorbance is measured at 340 nm, the glucose oxidase/Fenton's reagent is 10 times cheaper and could be used satisfactorily for routine assays of β-glucosidase and other carbohydrases including cellulase and amylase. In this respect, fructose, mannose, xylose, sucrose and cellobiose did not affect the sensitivity of the reagent. Of several metals tested, only aluminium interfered with the reagent, decreasing its sensitivity.  相似文献   

4.
Massimo Aureli 《FEBS letters》2009,583(15):2469-6422
Human fibroblasts produce ceramide from sialyllactosylceramide on the plasma membranes. Sialidase Neu3 is known to be plasma membrane associated, while only indirect data suggest the plasma membrane association of β-galactosidase and β-glucosidase. To determine the presence of β-galactosidase and β-glucosidase on plasma membrane, cells were submitted to cell surface biotinylation. Biotinylated proteins were purified by affinity column and analyzed for enzymatic activities on artificial substrates. Both enzyme activities were found associated with the cell surface and were up-regulated in Neu3 overexpressing cells. These enzymes were capable to act on both artificial and natural substrates without any addition of activator proteins or detergents and displayed a trans activity in living cells.  相似文献   

5.
Fluorometric methods are described for the determination of the enzymes hexokinase and β-glucosidase, and the carbohydrates glucose, fructose, maltose, cellobiose, lactose, glycogen, and salicin Glucose and fructose are determined fluorometrically using hexokinase and the resazurin-resorufin indicator reaction. Maltose, cellobiose, lactose, glycogen, and salicin are enzymically hydrolyzed to glucose, which is then determined fluorometrically using glucose oxidase, p-hydroxyphenylacetic acid, and peroxidase. All the carbohydrates were assayed in the range 0.01–50 μg/ml and the enzymes hexokinase and β-glucosidase in the range 10?3 to 10?1 unit/ml with an accuracy and precision of about 1.5%.  相似文献   

6.
In this paper, we report new sequence data for secreted thermostable fungal enzymes from the un-sequenced xylanolytic filamentous fungus Talaromyces emersonii and reveal novel insights on the potential role of enzymes relevant as wheat dough improvers. The presence of known and de novo enzyme sequences were confirmed through NanoLC-ESI-MS/MS and resultant peptide sequences were identified using SWISS PROT databases. The de novo protein sequences were assigned identity based on homology to known fungal proteins. Other proteins were assigned function based on the limited T. emersonii genome coverage. This approach allowed the identification of enzymes with relevance as wheat dough improvers. Rheological examination of wheat dough and wheat flour components treated with the thermostable fungal enzyme cocktail revealed structural alterations that can be extrapolated to the baking process.Thermoactive amylolytic, xylanolytic, glucanolytic, proteolytic and lipolytic enzyme activities were observed. Previously characterized T. emersonii enzymes present included; β-glucosidase, xylan-1,4-β-xyloxidase, acetylxylan esterase, acid trehalase, avenacinase, cellobiohydrolase and endo-glucanase. De novo sequence analysis confirmed peptides as being; α-glucosidase, endo-1,4-β-xylanase, endo-arabinase, endo-glucanase, exo-β-1,3-glucanase, glucanase/cellulase, endopeptidase and lipase/acylhydrolase. Rheology tests using wheat dough and fractioned wheat flour components in conjunction with T. emersonii enzymes show the role of these novel biocatalysts in altering properties of wheat substrates. Enzyme treated wheat flour fractions showed the effects of particular enzymes on appropriate substrates. This proteomic approach combined with rheological characterization is the first such report to the authors’ knowledge.  相似文献   

7.
Two secondary alcohol glucosides, cyclohexyl-α-d-glucoside and cyclohexyl-β-d-glucoside, were synthesized via the condensation reaction of cyclohexanol with d-glucose in a biphase system catalyzed by α-glucosidase and β-glucosidase, respectively. The effects of pH, water content, glucose concentration and metal ions on the yield of glucosides were studied. The optimum catalytic conditions established for α-glucosidase was 25% (v/v) water content, 2.5 mol/L glucose concentration and pH 2.0, and for β-glucosidase was 30% (v/v) water content, 2.0 mol/L glucose and pH 5.0. The maximum yield of glucoside was 13.3 mg/mL for cyclohexyl-α-d-glucoside and 8.9 mg/mL for cyclohexyl-β-d-glucoside. Synthesis progress was monitored by TLC and quantitatively analyzed by pre-derived capillary gas chromatography (GC). The retention time was 12.34 min for the α isomer and 12.96 min for the β isomer, respectively. With an anomeric purity of more than 99.5%, the two glucosides display excellent site-specific catalysis by α- and β-glucosidase. Herein, we present a general method to produce anomerically pure glucosides via a one-step bio-reaction in a biphase system. This method could potentially be applied in glucosylation of primary and secondary alcohols or other reactions requiring glucosylation.  相似文献   

8.
The enhancement of enzyme complex produced by Penicillium echinulatum grown in several culture media components (bagasse sugarcane pretreated by various methods, soybean meal, wheat bran, sucrose, and yeast extract) was studied to increment FPase, xylanase, pectinase, and β-glucosidase enzyme activities. The present results indicated that culture media composed with 10 g/L of the various bagasse pretreatment methods did not have any substantial influence with respect to the FPase, xylanase, and β-glucosidase attained maximum values of, respectively, 2.68 FPU/mL, 2.04, and 115.4 IU/mL. On the other hand, proposed culture media to enhance β-glucosidase production composed of 10 g/L steam-exploded bagasse supplemented with soybean flour 5.0 g/L, yeast extract 1.0 g/L, and sucrose 10.0 g/L attained, respectively, 3.19 FPU/mL and 3.06 IU/mL while xylanase was maintained at the same level. The proteomes obtained from the optimized culture media for enhanced FPase, xylanase, pectinase, and β-glucosidase production were analyzed using mass spectrometry and a panel of GH enzyme activities against 16 different substrates. Culture medium designed to enhance β-glucosidase activity achieved higher enzymatic activities values (13 measured activities), compared to the culture media for FPase/pectinase (9 measured activities) and xylanase (7 measured activities), when tested against the 16 substrates. Mass spectrometry analyses of secretome showed a consistent result and the greatest number of spectral counts of Cazy family enzymes was found in designed β-glucosidase culture medium, followed by FPase/pectinase and xylanase. Most of the Cazy identified protein was cellobiohydrolase (GH6 and GH7), endoglucanase (GH5), and endo-1,4-β-xylanase (GH10). Enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse performed with β-glucosidase enhanced cocktail achieved 51.4 % glucose yield with 10 % w/v insoluble solids at enzyme load of 15 FPU/g material. Collectively the results demonstrated that it was possible to rationally modulate the GH activity of the enzymatic complex secreted by P. echinulatum using adjustment of the culture medium composition. The proposed strategy may contribute to increase enzymatic hydrolysis of lignocellulosic materials.  相似文献   

9.
A novel high-throughput screening method is proposed for the directed evolution of exoglucanase facilitated by the co-expression of β-glucosidase, using the glucose released from filter paper as the screening indicator. Three transformants (B1, D6 and G10) with improved activity were selected from 4,000 colonies. The specific activities of B1, D6 and G10 for releasing glucose were, respectively, 1.4-, 1.3- and 1.6-fold higher than that of the wild type. The engineered exoglucanase gene was inserted into an expression vector carrying the previously engineered endoglucanase and β-glucosidase genes, and transformed into Escherichia coli to form a completely engineered cellulase system that showed 8.2-fold increase in glucose production (relative activity) compared to the cells equipped with wild-type enzymes. To our knowledge, this is the first report for directed evolution of an exoglucanase using insoluble cellulose as the screening substrate.  相似文献   

10.
Using chromatography on different matrixes, three β-glucosidases (120, 116, and 70 kDa) were isolated from enzymatic complexes of the mycelial fungi Aspergillus japonicus, Penicillium verruculosum, and Trichoderma reesei, respectively. The enzymes were identified by MALDI-TOF mass-spectrometry. Substrate specificity, kinetic parameters for hydrolysis of specific substrates, ability to catalyze the transglucosidation reaction, dependence of the enzymatic activity on pH and temperature, stability of the enzymes at different temperatures, adsorption ability on insoluble cellulose, and the influence of glucose on catalytic properties of the enzymes were investigated. According to the substrate specificity, the enzymes were shown to belong to two groups: i) β-glucosidase of A. japonicus exhibiting high specific activity to the low molecular weight substrates cellobiose and pNPG (the specific activity towards cellobiose was higher than towards pNPG) and low activity towards polysaccharide substrates (β-glucan from barley and laminarin); ii) β-glucosidases from P. verruculosum and T. reesei exhibiting relatively high activity to polysaccharide substrates and lower activity to low molecular weight substrates (activity to cellobiose was lower than to pNPG).  相似文献   

11.
《New biotechnology》2008,25(6):437-441
Fungal cellulases are well-studied enzymes and are used in various industrial processes. Much of the knowledge of enzymatic depolymerization of cellulosic material has come from Trichoderma cellulase system. Species of Trichoderma can produce substantial amounts of endoglucanase and exoglucanase but very low levels of β-glucosidase. This deficiency necessitates screening of fungi for cellulytic potential. A number of indigenously isolated fungi were screened for cellulytic potential. In the present study, the kinetics of cellulase production from an indigenous strain of Aspergillus niger MS82 is reported. Product formation parameters of endoglucanase and β-glucosidase (Qp + Yp/s) indicate that A. niger MS82 is capable of producing moderate to high levels of both endoglucanase and β-glucosidase when grown on different carbon containing natural substrates, for example, grass, corncob, bagasse along side purified celluloses. Furthermore, it was observed that the production of endoglucanase reaches its maximum during exponential phase of growth, while β-glucosidase during the Stationary phase. Enzyme production by solid-state fermentation was also investigated and found to be promising. Highest production of cellulase was noted at pH 4.0 at 35 °C under submerged conditions. Growth and enzyme production was affected by variations in temperature and pH.  相似文献   

12.
The green rice leafhopper, Nephotettix cincticeps (Uhler), is an insect pest of rice and discharges β-glucosidase (EC 3.2.1.21) from its salivary glands during feeding. To investigate the biological function of this enzyme, we purified it from the heads of 18,000 adult females by acetone precipitation and a series of chromatography steps: gel filtration, cation-exchange chromatography, metal-affinity chromatography and hydrophobic interaction chromatography. During cation-exchange chromatography, β-glucosidases were eluted in three peaks (isozymes). These β-glucosidases were monomeric proteins of 58 kDa as estimated by SDS-PAGE and 62 kDa based on gel filtration. All of the purified β-glucosidase isozymes exhibited maximum activity for p-nitrophenyl β-glucoside (NPGlc) and p-nitrophenyl β-galactopyranoside (NPGal) at pH 5.5 and 5.0, respectively. There was no significant difference in substrate specificity among the three isozymes. The Km values were estimated to be 0.13 μM for NPGlc and 0.9 μM for NPGal. Among the oligosaccharide substrates examined, laminaribiose (Glc β1-3 Glc) was the most extensively hydrolyzed, sophorose (Glc β1-2 Glc) and cellobiose (Glc β1-4 Glc) were comparatively well hydrolyzed, and gentiobiose (Glc β1-6 Glc), lactose (Gal β1-4 Glc), laminaritriose, cellotriose and cellotetraose were poorly hydrolyzed. Among the glycoside substrates examined, salicin was considerably well hydrolyzed. β-Glucosidase was detected in the salivary sheaths by activity staining with a fluorescent substrate. The salivary β-glucosidase of N. cincticeps may be involved in the hydrolysis of a phenol glucoside present in the saliva, which is a step in the solidification of gelling saliva to form salivary sheaths.  相似文献   

13.
Four β-glucosidase enzymes were extensively purified from the culture filtrates of Sclerotium rolfsii and some of their physicochemical properties studied. All the enzymes showed a single protein band in sodium dodecyl sulfate-gel electrophoresis and in disc gel electrophoresis at pH 8.9 and 4.3. The purified β-glucosidases were free of endoglucanase (carboxymethyl cellulose viscosity-lowering activity). All the enzymes are glycoproteins and are composed of one polypeptide chain. The molecular weight of the four β-glucosidases varies between 90,000 and 107,000. The pH and temperature optima of the four β-glucosidases are 4.2 and 68 °C with p-nitrophenyl-β-d-glucoside and 4.5 and 65 °C with cellobiose as substrate. The isoelectric points for the enzymes are 4.10, 4.55, 5.10, and 5.55, respectively. The specific activities of the enzymes with cellobiose as substrate are 55, 78, 175, and 51 μmol glucose released per minute per milligram protein, respectively. The enzymes are inhibited by the reaction product glucose, and by glucono-δ-lactone and nojirimycin. A carboxylate group is implicated in the catalysis of β-glucosidase.  相似文献   

14.
Ginsenoside Rg3, a known anti-cancer agent, is usually prepared by enzyme-mediated and acid hydrolysis of ginsenoside Rb1 and Rd. In this study, we used the bacterium Cellulosimicrobium cellulans sp. 21 to transform Rb1 into Rg3. When Rb1 was used as the sole substrate, the transformation products included Rg3, Rh2, C-K and PPD. However, when Rb1 and Re were mixed, the yield of Rg3 was significantly higher, indicating that Re attenuates the activity of β-1,2-glucosidase secreted by C. cellulans sp. 21. β-1,2-glucosidase hydrolyzes the β-1,2-glucose moiety at the C-3 position of Rb1, but Re dose not modify enzymes that produce Rg3 by hydrolyzing glucose at the C-20 position in aglycon. We also tested the inhibitory effects from various ginsenosides on β-1,2-glucosidase, and discovered that sugar chains played key roles in inhibiting β-1,2 glucosidase activity, whereas aglycones of protopanaxadiol and protopanaxatriol had little inhibitory effects. Some sugar chains with different linkages, such as C-20, C-3 and C-6, exhibited different inhibitory effects. Overall, our findings demonstrate that a combination of substrates, in addition to microorganism-secreted enzymes, can be used for selective biotransformation. This approach provides a novel strategy for natural product preparations via microbial transformation.  相似文献   

15.
β-Glucosidases are of pivotal importance in bioconversion of carbonic biomass into fermentable and other useful metabolites, food industry, biotransformation, glyco-trimming of metabolome, etc. Trichoderma citrinoviride when grown on delignified Lantana camara produced a β-glucosidase and secreted it out in the medium. The extracellularly secreted β-glucosidase of T. citrinoviride was homogeneity purified and then characterized for its kinetic properties and proteomic characteristics. The 90 kDa enzyme was monomeric in nature, optimally active at pH 5.5 and the catalytic reaction rate was highest at 55°C. Uniquely, the enzyme was insensitive to inhibition by glucose (up to 5 mM). It also possessed catalytic ability of transglycosylation, as it could catalyze conversion of geraniol into its glucoside. MALDI-TOF assisted proteomic analysis revealed its high degree of sequence similarity with family 3 glycoside hydrolases.  相似文献   

16.
17.
【目的】分离获得β-葡萄糖苷酶高产菌株,确定该菌分类地位,并对其所产β-葡萄糖苷酶的酶学性质进行初步研究。【方法】采用七叶灵显色法从土壤样品中筛选β-葡萄糖苷酶产生菌,再用对硝基苯基-β-D-吡喃葡萄糖苷(PNPG)显色法进行复筛;通过形态特征、生理生化特征及16S rDNA序列相似性分析等方法确定其分类学地位;利用超滤、疏水层析、阴离子层析、分子筛层析法对β-葡萄糖苷酶进行分离纯化;以PNPG为底物,测定β-葡萄糖苷酶的最适反应pH及最适反应温度,通过双倒数作图法确定β-葡萄糖苷酶催化不同底物水解的米氏常数Km值。【结果】从土壤样品中筛选得到一株β-葡萄糖苷酶高产菌株ZF-6C,初步鉴定为Bacillus korlensis;芽胞杆菌ZF-6C所产β-葡萄糖苷酶的分子量约为90 kD,最适反应pH和温度分别为7.0和40°C,该酶具有水解β(1,4)糖苷键的活性,最适底物为邻硝基苯-β-D-吡喃葡萄糖苷,Km值为0.73 mmol/L。金属离子Ca2+、Pb2+增强酶活,而Cu2+、Fe2+抑制酶活。【结论】首次报道从Bacillus korlensis中分离得到β-葡萄糖苷酶,Bacillus korlensis ZF-6C所产β-葡萄糖苷酶在分子量、最适反应条件及底物特异性等方面均不同于已知酶,可能为一结构新颖且催化效率较高的β-葡萄糖苷酶。  相似文献   

18.
Production and utilization of cellulosic ethanol has been limited, partly due to the difficulty in degradation of cellulosic feedstock. β-Glucosidases convert cellobiose to glucose in the final step of cellulose degradation, but they are inhibited by high concentrations of glucose. Thus, in this study, we have screened, isolated, and characterized three β-glycosidases exhibiting highly glucose-tolerant property from Aspergillus niger ASKU28, namely β-xylosidase (P1.1), β-glucosidase (P1.2), and glucan 1,3-β-glucosidase (P2). Results from kinetic analysis, inhibition study, and hydrolysis of oligosaccharide substrates supported the identification of these enzymes by both LC/MS/MS analysis and nucleotide sequences. Moreover, the highly efficient P1.2 performed better than the commercial β-glucosidase preparation in cellulose saccharification, suggesting its potential applications in the cellulosic ethanol industry. These results shed light on the nature of highly glucose-tolerant β-glucosidase activities in A. niger, whose kinetic properties and identities have not been completely determined in any prior investigations.  相似文献   

19.
Understanding the order that enzymes are secreted during lignocellulosic degradation is relevant both to better understanding basic fungal degradation mechanisms and to industrial attempts to control reactions for biofuels production and other bioprocessing technology. Much is known about the enzymes that are produced and their effect on individual substrates, but little is known about temporal variation and relative enzyme activity on different lignocellulosics substrates. Wood decay fungi Trametes versicolor and Postia placenta were grown in liquid culture with different substrates (aspen, pine, corn stover, prairie grass and alfalfa) over a 16-week period. Samples of liquid media were taken every 2 weeks for endoglucanase, β-glucosidase and xylanase activity measurement. Endoglucanase:β-glucosidase:xylanase ratios varied for both fungi over the sampling period. T. versicolor showed large differences in cellulase enzyme (total cellulase:endoglucanase:β-glucosidase) composition when grown on woody substrates compared with non-woody substrates; there were also difference between the two wood types. This research presents evidence that the ratio of carbohydrate-hydrolyzing enzymes secreted by fungi is not influenced solely by lignin:carbohydrate content of the substrate and other factors including cell anatomy and constituent composition have some control on enzyme production. This provides a useful and broad survey of natural adaptations to various plant tissues relevant to bioenergy and general bioprospecting.  相似文献   

20.
Cao  Huifang  Zhang  Yueqi  Shi  Pengjun  Ma  Rui  Yang  Hong  Xia  Wei  Cui  Ying  Luo  Huiying  Bai  Yingguo  Yao  Bin 《Journal of industrial microbiology & biotechnology》2018,45(6):369-378

In the feed industry, β-glucosidase has been widely used in the conversion of inactive and bounded soybean isoflavones into active aglycones. However, the conversion is frequently inhibited by the high concentration of intestinal glucose in monogastric animals. In this study, a GH1 β-glucosidase (AsBG1) with high specific activity, thermostability and glucose tolerance (IC50 = 800 mM) was identified. It showed great glucose tolerance against substrates with hydrophobic aryl ligands (such as pNPG and soy isoflavones). Using soybean meal as the substrate, AsBG1 exhibited higher hydrolysis efficiency than the GH3 counterpart Bgl3A with or without the presence of glucose in the reaction system. Furthermore, it is the first time to find that the endogenous β-glucosidase of soybean meal, mostly belonging to GH3, plays a role in the hydrolysis of soybean isoflavones and is highly sensitive to glucose. These findings lead to a conclusion that the GH1 rather than GH3 β-glucosidase has prosperous application advantages in the conversion of soybean isoflavones in the feed industry.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号