首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
流式细胞术检测毕赤酵母发酵过程中胞内活性氧水平   总被引:5,自引:1,他引:4  
以2′,7′-二氢二氯荧光黄双乙酸钠(DCFH-DA)和碘化丙锭(PI)为标记探针,通过DCFH-DA/PI双染色与PI单染色的对照,检测毕赤酵母胞内活性氧(reactive oxygen species,ROS)的水平及其影响。研究发现发酵过程细胞活性下降与胞内ROS积累相关。在甘油生长期,细胞几乎没有ROS积累,细胞活性接近100%。在甲醇诱导初期,部分细胞积累少量的ROS,细胞活性仍然很高,死亡细胞所占比例只有1.5%。在甲醇诱导后期,94.0%的细胞积累了大量的ROS,高含量的ROS造成细胞损伤,引起部分细胞丧失了活性,在总共29.1%的死亡细胞中,高ROS积累的死亡细胞占了25.4%。  相似文献   

2.
The simultaneous production of intracellular esterase and extracellular protease from the strain Lysinibacillus fusiformis AU01 was studied in detail. The production was performed both under batch and fed-batch modes. The maximum yield of intracellular esterase and protease was obtained under full oxygen saturation at the beginning of the fermentation. The data were fitted to the Luedeking–Piret model and it was shown that the enzyme (both esterase and protease) production was growth associated. A decrease in intracellular esterase and increase in the extracellular esterase were observed during late stationary phase. The appearance of intracellular proteins in extracellular media and decrease in viable cell count and biomass during late stationary phase confirmed that the presence of extracellular esterase is due to cell lysis. Even though the fed-batch fermentation with different feeding strategies showed improved productivity, feeding yeast extract under DO-stat fermentation conditions showed highest intracellular esterase and protease production. Under DO-stat fed-batch cultivation, maximum intracellular esterase activity of 820?×?103 U/L and extracellular protease activity of 172?×?103 U/L were obtained at the 16th?hr. Intracellular esterase and extracellular protease production were increased fivefold and fourfold, respectively, when compared to batch fermentation performed under shake flask conditions.  相似文献   

3.
《Process Biochemistry》2007,42(1):25-33
Flow cytometry was used to monitor Escherichia coli cellular state during the biotransformation of crotonobetaine into l-carnitine using growing and resting cells in batch and high-cell-recycle continuous membrane reactors. The cell physiological state and the DNA, RNA and protein cell content were analyzed during the bioprocess. The cell growth cycle was followed by reference to cellular DNA concentration and the entry in the stationary phase resulted in an increase in intracellular protein. The biochemical activity of resting cells was assessed for the first time at the molecular level, protein synthesis being observed despite the absence of nutrients. Freely suspended growing, both in batch and continuous cultures, and, more importantly, resting E. coli cells were seen to be made up of subpopulations differing in reproductive ability, metabolic activity and membrane integrity. In the case of growing cells, biotransformation was mostly performed by fully viable cells (68–75%), while in a resting cell system, also dead cells (1–5%) and cells with doubtful viability (60–70%) appeared to be involved in the process; in later stages, a population made up of phantom cells, containing little or no cellular DNA, was detected. In cell-recycle continuous reactors, the recording of DNA (40 to 60 fg), RNA (50 to 120 fg) and protein (100 to 220 fg) levels per unit of cell, and the evolution of cell population heterogeneity (three different populations of cells) threw light on the stress conditions imposed by high cell densities. The use of FCM allowed to follow the recovery of cell catalytic activity for resting biotransformation batch processes, thus showing its potential for the optimization of bioprocesses.  相似文献   

4.
Single cell analysis is an important tool to gain deeper insights into microbial physiology for the characterization and optimization of bioprocesses. In this study a novel single cell analysis technique was applied for estimating viability and membrane potential (MP) of Bacillus megaterium cells cultured in minimal medium. Its measurement principle is based on the analysis of the electrical cell properties and is called impedance flow cytometry (IFC). Comparatively, state-of-the-art fluorescence-based flow cytometry (FCM) was used to verify the results obtained by IFC. Viability and MP analyses were performed with cells at different well-defined growth stages, focusing mainly on exponential and stationary phase cells, as well as on dead cells. This was done by PI and DiOC(2)(3) staining assays in FCM and by impedance measurements at 0.5 and 10 MHz in IFC. In addition, transition growth stages of long-term cultures and agar plate colonies were characterized with both methods. FCM and IFC analyses of all experiments gave comparable results, quantitatively and qualitatively, indicating that IFC is an equivalent technique to FCM for the study of physiological cell states of bacteria.  相似文献   

5.
This study aimed at examining and comparing the relevance of various methods in order to discriminate different cellular states of Lactobacillus bulgaricus CFL1 and to improve knowledge on the dynamics of the cellular physiological state during growth and acidification. By using four fluorescent probes combined with multiparametric flow cytometry, membrane integrity, intracellular esterase activity, cellular vitality, membrane depolarization, and intracellular pH were quantified throughout fermentations. Results were compared and correlated with measurements of cultivability, acidification activity (Cinac system), and cellular ability to recover growth in fresh medium (Bioscreen system). The Cinac system and flow cytometry were relevant to distinguish different physiological states throughout growth. Lb. bulgaricus cells maintained their high viability, energetic state, membrane potential, and pH gradient in the late stationary phase, despite the gradual decrease of both cultivability and acidification activity. Viability and membrane integrity were maintained during acidification, at the expense of their cultivability and acidification activity. Finally, this study demonstrated that the physiological state during fermentation was strongly affected by intracellular pH and the pH gradient. The critical pHi of Lb. bulgaricus CFL1 was found to be equal to pH 5.8. Through linear relationships between dpH and cultivability and pHi and acidification activity, pHi and dpH well described the time course of metabolic activity, cultivability, and viability in a single analysis.  相似文献   

6.
应用流式细胞术检测毕赤酵母的细胞活性   总被引:5,自引:0,他引:5  
选取两种细胞活性染色试剂二乙酸荧光素(fluoresceindiacetate,FDA)和碘化丙锭(propidiumiodide,PI),应用流式细胞术(flowcytometry,FCM)检测毕赤酵母细胞活性。比较FDA/PI双染色与PI单染色的FCM图谱,后者能够很好地将死活细胞区分开来并得到正确的比例。利用PI单染色检测发酵过程细胞活性的变化,甘油补料阶段几乎没有细胞死亡,进入甲醇补料阶段后,随着细胞密度的增加,细胞的活性不断降低,发酵88h时细胞活性仅为73.8%。  相似文献   

7.
The diphenylamine assay used to estimate the absolute mass of DNA/cell as well as absolute differences in DNA content between cell populations is based upon the assumption that all of the cells are in the G0 or G1 phase of the DNA synthetic cycle. However, if cells are in exponential growth and synthesizing DNA, portions of the population will be in S or G2 phases and the diphenylamine assay will overestimate the total mass of DNA/cell. Conversely, flow cytometry (FCM) can estimate relative differences in total DNA/cell and the proportions of an exponentially growing population in G1, S, and G2 but cannot estimate absolute mass or differences in DNA/cell. In this report, we describe a methodology of combined diphenylamine and FCM assays of total DNA/cell which is applicable to any eukaryotic cell population. The method involves using the two assay methods concurrently and correcting the diphenylamine data for the FCM-derived distribution of the cells within the DNA synthetic cycle. The methodology was tested on single-cell-derived stocks of the obligate intracellular protozoan parasite Trypanosoma cruzi which displays marked but stable intraspecific heterogeneity.  相似文献   

8.
Flow cytometry provides a rapid, sensitive and accurate analytical means to monitor hybridoma cell cultures. The use of flow cytometry has enabled us to study the changes in DNA, RNA, protein, IgG, mitochondrial activity and cell size that take place during the growth cycle of batch culture. The temporal changes in the levels of these analytes and their heterogeneity have been related to the growth/death kinetics. The maximum proportion of S-cells was reached early in the growth phase while a population of low fluorescence cells with lower polidy than G1, dead cells and fragmented nuclei emerged during the death phase. Supplementation with amino acids during the exponential phase prolonged the growth cycle by enhancing cell proliferation. The fraction of S/G2 cells was much reduced by a reduction in serum concentration but was maintained during the prolonged non-proliferating "stationary" phase. The magnitude of Rhodamine 123 staining showed a consistent and general decrease during late exponential and decline phases. This trend was accompanied by an increase in the fraction of the Propidium Iodide-stained population which reflected the deteriorating metabolic and membrane integrity. Decrease in mean fluorescence intensity for DNA, RNA, protein and intracellular IgG was noted at the decline phase. Intracellular immunofluorescence was a more reliable indicator of antibody productivity than surface immunofluorescence.  相似文献   

9.
Poly-beta-hydroxybutyrate (PHB) accumulates in individual cells of Alcaligenes eutrophus in the form of refractile bodies which alter the light-scattering properties of individual cells. Flow cytometry has been applied to measure the distributions of single-cell light-scattering intensity in Alc. eutrophus populations during batch cultivation of the organism. These measurements clearly identify heterogeneities in the inoculum which influence the lag interval prior to beginning of exponential growth. Light-scattering distributions show greater homogeneity and are extremely similar during balanced, exponential growth. After exhaustion of the nitrogen source and with carbon source still available, significant PHB accumulations occur and the flow cytometry measurements reveal extreme heterogeneity in single-cell light-scattering properties. These measurements clearly demonstrate the potential advantages of single-cell light-scattering measurements by flow cytometry for analysis and control of certain fermentation processes. Single-cell light-scat light-scattering measurements in conjunction with flow sorting instrumentation have been applied to demonstrate enrichment of PHB-producing cells, initially present in a number concentration of 0.01%by a factor of 300 in a single pass. Flow cytometry-cell sorting technology should find significant application in strain improvement and mutant selection.  相似文献   

10.
3-Hydroxypropionaldehyde (3-HPA) is a toxic intermediary metabolite in the biological route of 1,3-propanediol biosynthesis from glycerol. 3-HPA accumulated in culture medium would arouse an irreversible cessation of the fermentation process. The role of substrate (glycerol) on 3-HPA accumulation in aerobic fermentation was investigated in this paper. 1,3-Propanediol oxidoreductase and glycerol dehydratase, two key enzyme catalyzing reactions of 3-HPA formation and consumption, were sensitive to high concentration of 3-HPA. When the concentration of 3-HPA increased to a higher level in medium (ac 10 mmol/L), the activity of 1,3-propanediol oxidoreductase in cell decreased correspondingly, which led to decrease of the 3-HPA conversion rate, then the 3-HPA concentration increasing was accelerated furthermore. 3-HPA accumulation in culture medium was triggered by this positive feedback mechanism. In the cell exponential growth phase, the reaction catalyzed by 1,3-propanediol oxidoreductase was the rate limiting step in 1,3-propanediol production. The level of 3-HPA in culture medium could be controlled by the substrate (glycerol) concentration, and lower level of glycerol could avoid 3-HPA accumulating to a high, lethal concentration. In fed batch fermentation, under the condition of initial glycerol concentration 30 g/L, and keeping glycerol concentration lower than 7–8 g/L in cell exponential growth phase, 3-HPA accumulation could not be incurred. Based on this result, a glycerol feeding strategy was set up in fed batch fermentation. Under the optimized condition, 50.1 g/L of 1,3-propanediol was produced in 24 h, and 73.1 g/L of final 1,3-propanediol concentration was obtained in 54 h.  相似文献   

11.
Phototrophic microorganisms like cyanobacteria show growth curves in batch culture that differ from the corresponding growth curves of chemotrophic bacteria. Instead of the usual three phases, i.e., lag-, log-, and stationary phase, phototrophs display four distinct phases. The extra growth phase is a phase of linear, light-limited growth that follows the exponential phase and is often ignored as being different. Results of this study demonstrate marked growth phase-dependent alterations in the photophysiology of the cyanobacterium Synechocystis sp. PCC 6803 between cells harvested from the exponential and the linear growth phase. Notable differences are a gradual shift in the energy transfer of the light-harvesting phycobilisomes to the photosystems and a distinct change in the redox state of the plastoquinone pool. These differences will likely affect the result of physiological studies and the efficiency of product formation of Synechocystis in biotechnological applications. Our study also demonstrates that the length of the period of exponential growth can be extended by a gradually stronger incident light intensity that matches the increase of the cell density of the culture.  相似文献   

12.
AIMS: The aim of this study was to improve knowledge about the dynamics of the physiological states of Lactococcus lactis ssp. cremoris SK11, a chain-forming bacterium, during growth, and to evaluate whether flow cytometry (FCM) combined with fluorescent probes can assess these different physiological states. METHODS AND RESULTS: Cellular viability was assessed using double labelling with carboxyfluorescein diacetate and propidium iodide. FCM makes it possible to discriminate between three cell populations: viable cells, dead cells and cells in an intermediate physiological state. During exponential and stationary phases, the cells in the intermediate physiological state were culturable, whereas this population was no longer culturable at the end of the stationary phase. CONCLUSIONS, AND IMPACT OF THE STUDY: We introduced a new parameter, the ratio of the means of the fluorescence cytometric index to discriminate between viable culturable and viable nonculturable cells. Finally, this work confirms the relevance of FCM combined with two fluorescent stains to evaluate the physiological states of L. lactis SK11 cells during their growth and to distinguish viable cells from viable but not culturable cells.  相似文献   

13.
Measuring the physiological heterogeneity of natural and industrial microbial populations is essential to studying, modelling and monitoring of microbial populations. It was discovered that populations of Escherichia coli and Bacillus megaterium growing in medium with ethanol as an external source of energy have two actively respiring but physiologically different subpopulations. Cells of one subpopulation have negligibly low alcohol dehydrogenase (ADH) activity (ADH-L cells) and cells of the other have high ADH activity (ADH-H cells). The subpopulation of ADH-H bacterial cells was measured using 10 min incubations of cells in a 1% solution of allyl alcohol for fast selective killing of cells with high activity of ADH and flow cytometry detection of dead cells after this incubation. The content of ADH-H cells during exponential phase of batch culture varied from 9 % to 90 % and lowered to zero for a few hours during starvation of the population. ADH-L cells are actively respiring cells and not depolarized cells. The simultaneous presence of ADH-L and ADH-H cells growing in the medium with ethanol can be explained by the fact that ADH-H cells oxidize actively external ethanol whereas ADH-L cells oxidize only intracellular storage carbohydrates. The method for enumeration of cells with high ADH activity can be used to monitor the heterogeneity of bacterial populations consuming ethanol as a sole source of carbon and energy.  相似文献   

14.
The principal objective of this study was to assess the effects of culture modes including batch culture, pulse fed-batch culture, constant feeding rate fed-batch culture, and exponential fed-batch culture on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Batch cultures had the highest levels of HA productivity, whereas fed-batch cultures were more favorable with regard to cell growth, and exponential fed-batch cultures evidenced the highest cell concentrations. A two-step culture model was proposed to enhance HA production: an exponential fed-batch culture was conducted prior to 8 h and then sucrose supplementation was applied for 8 h to start the batch fermentation of S. zooepidemicus. HA production and productivity were increased by 36 and 37% in the proposed two-step culture process as compared with that observed in the batch culture, respectively. The proposed two-step culture model can be applied in the production of secondary metabolites, and particularly of the exopolysaccharides.  相似文献   

15.
《Process Biochemistry》2014,49(4):554-562
Rhodosporidium toruloides NCYC 921 batch growth was monitored as a means to evaluate the yeast biomass potential as a source for the production of carotenoids and other lipids.Carotenoid content, cell viability and size were assessed by multiparameter flow cytometry. The saponifiable lipid fraction was assayed by gas–liquid chromatography.The carotenoid production increased during the stationary phase, reaching 78 μg/g while the total fatty acid content attained 32% (w/w) at the end of the fermentation. The fatty acid profile was suitable for biodiesel purposes.As the yeast cells entered the stationary phase, the proportion of cells with depolarised mitochondrial membrane and cells with permeabilised cytoplasmic membrane increased, attaining 65% and 14%, respectively. Nevertheless, a high proportion of cells (82%) showed esterase activity.These results demonstrated that flow cytometry can be a powerful at-line technique to monitor the total carotenoids and cell viability during the yeast growth, being useful for the yeast process optimisation at lab and pilot scales.  相似文献   

16.
Solid phase cytometry in conjunction with fluorescent probe was applied to rapidly quantify cellular esterase activity of Listeria monocytogenes cells. Viability of cells stressed by several treatments (starvation, NaCl, lactic acid and peracetic acid) was assessed simultaneously by their esterase activity estimated by fluorescence intensity and by their ability to multiply in liquid and solid, non-selective and selective, culture media. It was determined that cell physiological state has a significant impact on the cellular fluorescence intensity which was very dependent on the stress suffered by cells. No general relationship was observed between the bacterial populations observed by cytometry and the populations able to grow on culture media. The link between the cell culturability in non-selective and selective media and the esterase activity was always dependent on the stress suffered. Nevertheless, it was also established that solid phase cytometry is an efficient, sensitive and accurate tool to characterize the ability of non-selective and selective enrichment broths to allow the repair of stressed L. monocytogenes cells by examining the increase in the fraction of the most esterase active cells during the course of resuscitation.  相似文献   

17.
The growth and product formation of a Savinase-producing Bacillus clausii were investigated in high-cell-density fed-batch cultivations with both linear and exponential feed profiles. The highest specific productivity of Savinase was observed shortly after the end of the initial batch phase for all feed profiles applied and, in addition, there was a time-dependent decrease in specific productivity. The specific glucose uptake rate increased with time for constant specific growth rate indicating that the maintenance requirements increased with time, possibly due to a decreasing K(+) concentration. The physiological state of the cells was monitored during the cultivations using a flow cytometry assay based on the permeability of the cell membrane to propidium iodide. In the latter parts of the fed-batch cultures with a linear feed profile, a large portion of the cell population was found to have a permeable membrane, indicating a large percentage of dead cells. By assuming that only cells with a nonpermeable membrane contributed to growth and product formation, the physiological properties of this subpopulation were calculated.  相似文献   

18.
PrsA2 is a conserved posttranslocation chaperone and a peptidyl prolyl cis-trans isomerase (PPIase) that contributes to the virulence of the Gram-positive intracellular pathogen Listeria monocytogenes. One of the phenotypes associated with a prsA2 mutant is decreased activity of the broad-range phospholipase C (PC-PLC). PC-PLC is made as a proenzyme whose maturation is mediated by a metalloprotease (Mpl). The proforms of PC-PLC and Mpl accumulate at the membrane-cell wall interface until a decrease in pH triggers their maturation and rapid secretion into the host cell. In this study, we examined the mechanism by which PrsA2 regulates the activity of PC-PLC. We observed that in the absence of PrsA2, the proenzymes are secreted at physiological pH and do not mature upon a decrease in pH. The sensitivity of the prsA2 mutant to cell wall hydrolases was modified. However, no apparent changes in cell wall porosity were detected. Interestingly, synthesis of PC-PLC in the absence of its propeptide lead to the secretion of a fully active enzyme in the cytosol of host cells independent of PrsA2, indicating that neither the propeptide of PC-PLC nor PrsA2 is required for native folding of the catalytic domain, although both influence secretion of the enzyme. Taken together, these results suggest that PrsA2 regulates compartmentalization of Mpl and PC-PLC, possibly by influencing cell wall properties and interacting with the PC-PLC propeptide. Moreover, the ability of these proproteins to respond to a decrease in pH during intracellular growth depends on their localization at the membrane-cell wall interface.  相似文献   

19.
Yeast extract addition to reconstituted apple juice had a positive impact on the development of the malolactic starter culture used to ensure malolactic fermentation in cider, using active but non-proliferating cells. In this work, the reuse of fermentation lees from cider is proposed as an alternative to the use of commercial yeast extract products. Malolactic enzymatic assays, both in whole cells and cell-free extracts, were carried out to determine the best time to harvest cells for use as an inoculum in cider. Cells harvested at the late exponential phase, the physiological stage of growth corresponding to the maximum values of specific malolactic activity, achieved a good rate of malic acid degradation in controlled cider fermentation. Under the laboratory conditions used, malic acid degradation rates in the fermentation media turned out to be near 2.0 and 2.5 times lower, compared with the rates obtained in whole-cell enzymatic assays, as useful data applicable to industrial cider production.  相似文献   

20.
目的观察乳酸杆菌DM9811发酵滤液对宫颈癌细胞株Hela细胞的细胞周期和细胞凋亡的影响,探索乳酸杆菌发酵滤液对宫颈癌细胞作用的可能机制。方法用光镜、电镜和流式细胞仪分析不同浓度乳酸杆菌DM9811发酵滤液对Hela细胞凋亡的诱导效果;用流式细胞仪分析不同浓度乳酸杆菌DM9811发酵滤液对Hela细胞细胞周期的影响。结果(1)乳酸杆菌DM9811发酵滤液可诱导宫颈癌Hela细胞凋亡。形态学观察处理后的Hela细胞,可见细胞变形,细胞皱缩,体积变小,细胞间隙增大,细胞核固缩。流式细胞仪分析,1%、2%的乳酸杆菌DM9811发酵滤液在48、72h可诱导Hela细胞凋亡;5%的乳酸杆菌发酵滤液在24、48和72h均可诱导Hela细胞凋亡。(2)乳酸杆菌DM9811发酵滤液阻滞宫颈癌Hela细胞于S期,不同浓度的乳酸杆菌发酵滤液作用24、48和72h均可使S期细胞比阴性对照组增多。结论乳酸杆菌DM9811发酵滤液可诱导部分Hela细胞凋亡,其对Hela细胞的生长抑制作用可能通过S期阻滞实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号