首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
H Ozkan  M Feldman 《Génome》2001,44(6):1000-1006
The Ph1 gene has long been considered the main factor responsible for the diploid-like meiotic behavior of polyploid wheat. This dominant gene, located on the long arm of chromosome 5B (5BL), suppresses pairing of homoeologous chromosomes in polyploid wheat and in their hybrids with related species. Here we report on the discovery of genotypic variation among tetraploid wheats in the control of homoeologous pairing. Compared with the level of homoeologous pairing in hybrids between Aegilops peregrina and the bread wheat cultivar Chinese Spring (CS), significantly higher levels of homoeologous pairing were obtained in hybrids between Ae. peregrina and CS substitution lines in which chromosome 5B of CS was replaced by either 5B of Triticum turgidum ssp. dicoccoides line 09 (TTD09) or 5G of Triticum timopheevii ssp. timopheevii line 01 (TIMO1). Similarly, a higher level of homoeologous pairing was found in the hybrid between Ae. peregrina and a substitution line of CS in which chromosome arm 5BL of line TTD140 substituted for 5BL of CS. It appears that the observed effect on the level of pairing is exerted by chromosome arm 5BL of T turgidum ssp. dicoccoides, most probably by an allele of Ph1. Searching for variation in the control of homoeologous pairing among lines of wild tetraploid wheat, either T turgidum ssp. dicoccoides or T timopheevii ssp. armeniacum, showed that hybrids between Ae. peregrina and lines of these two wild wheats exhibited three different levels of homoeologous pairing: low, low intermediate, and high intermediate. The low-intermediate and high-intermediate genotypes may possess weak alleles of Ph1. The three different T turgidum ssp. dicoccoides pairing genotypes were collected from different geographical regions in Israel, indicating that this trait may have an adaptive value. The availability of allelic variation at the Ph1 locus may facilitate the mapping, tagging, and eventually the isolation of this important gene.  相似文献   

2.
K. S. Gill  B. S. Gill  T. R. Endo    Y. Mukai 《Genetics》1993,134(4):1231-1236
The diploid-like chromosome pairing in polyploid wheat is controlled by the Ph1 (pairing homoeologous) gene that is located on chromosome arm 5BL. By using a combination of cytogenetic and molecular techniques, we report the physical location of the Ph1 gene to a submicroscopic chromosome region (Ph1 gene region) that is flanked by the breakpoints of two deletions (5BL-1 and ph1c) and is marked by a DNA probe (XksuS1). The Ph1 gene region is present distal to the breakpoint of deletion 5BL-1 but proximal to the C-band 5BL2.1. Two other DNA probes (Xpsr128 and Xksu75) flank the region-Xpsr128 being proximal and Xksu75 being distal. The estimated size of the region is less than 3 Mb. The chromosome region around the Ph1 gene is high in recombination as the genetic distance of the region between 5BL-1 breakpoint and C-band 5BL2.1 (not resolved by the microscope) is at least 9.3 cM.  相似文献   

3.
The frequency of interlocking bivalents at first meiotic metaphase of common wheat Triticum aestivum L., which is normally very low, is significantly increased by raising the dosage (from two to three, four and six) of the Ph1 gene, located on the long arm of chromosome 5B (5BL). In several cells more than three bivalents were interlocked in one chain configuration indicating involvement of non-homoeologous bivalents. Plants with reduced dose (one or zero) of Ph1 also exhibited an increased frequency of interlocking but to a lesser extent than those with high gene dosage. However, chains of more than three interlocked bivalents were never observed in these plants, suggesting that with one or zero doses of Ph1 interlocking is restricted to homoeologous bivalents only. Chromosomal arm 5BS affected interlocking in an opposite manner to 5BL; namely, two and four doses of 5BS markedly reduced interlocking frequency. The modification in the frequency of interlocking bivalents by these genetic manipulations represents the first successful attempt to affect interlocking by genetic means. The results are explained on the basis of the hypothesis that this gene system controls somatic and premeiotic association of both homologous and homoeologous chromosomes.  相似文献   

4.
Durum and bread wheat need transgenic traits such as herbicide and disease resistance due to recent evolution of herbicide resistant grass weeds and an intractable new strain of stem rust. Transgenic wheat varieties have not been commercialized partly due to potential transgene movement to wild/weedy relatives, which occurs naturally to closely related Aegilops and other spp. Recombination does not occur in the F1 hybrid between wheat and its relatives due to the presence of the Ph1 gene on wheat chromosome arm 5BL, which acts as a chaperone, preventing promiscuous homoeologous pairing to similar, but not homologous chromosomes of the wild/weedy species. Thus recombination must occur during backcrossing after the wheat Ph1 gene has been eliminated. Based on these findings, we speculate that Ph1 could be used to prevent gene introgression into weedy relatives. We propose two methods to prevent such transgene establishment: (1) link the transgene in proximity to the wheat Ph1 gene and (2) insert the transgene in tandem with the lethal barnase on any chromosome arm other than 5BL, and insert barstar, which suppresses barnase on chromosome arm 5BL in proximity to Ph1. The presence of Ph1 in backcross plants containing 5BL will prevent the homoeologous establishment of barnase coupled to the desired transgene in the wild population. 5BL itself will be eliminated during repeated backcrossing to the wild parent, and progeny bearing the desired transgene in tandem with barnase but without the Ph1-barstar complex will die.  相似文献   

5.
K. S. Gill  B. S. Gill 《Genetics》1991,129(1):257-259
Bread wheat is an allohexaploid consisting of three genetically related (homoeologous) genomes. The homoeologous chromosomes are capable of pairing but strict homologous pairing is observed at metaphase 1. The diploid-like pairing is regulated predominantly by Ph1, a gene mapped on long arm of chromosome 5B. We report direct evidence that a mutant of the gene (ph1b) arose from a submicroscopic deletion. A probe (XksuS1-5) detects the same missing fragment in two independent mutants ph1b and ph1c and a higher intensity fragment in a duplication of the Ph1 gene. It is likely that XksuS1-5 lies adjacent to Ph1 on the same chromosome fragment that is deleted in ph1b and ph1c. XksuS1-5 can be used to tag Ph1 gene to facilitate incorporation of genetic material from homoeologous genomes of the Triticeae. It may also be a useful marker in cloning Ph1 gene by chromosome walking.  相似文献   

6.
Allopolyploid wheat (Triticum aestivum L.) carries three pairs of homoeologous genomes but its meiotic pairing is diploid-like. This is the effect of the Ph (pairing homoeologous) system which restricts chromosome pairing to strictly homologous. Ph1 is the locus with the strongest effect. Disabling Ph1 permits pairing between homoeologues and is routinely used in chromosome engineering to introgress alien variation into breeding stocks. Whereas the efficiency of Ph1 and the general pattern of homoeologous crossovers in its absence are quite well known from numerous studies, other characteristics of such crossovers remain unknown. This study analyzed the crossover points in four sets of the ph1b-induced recombinants between wheat homologues as well as between three wheat and rye (Secale cereale) homoeologous chromosome arms, and compared them to crossovers between homologues in a reference wheat population. The results show the Ph1 locus also controls crossing over of homologues, and the general patterns of homologous (with Ph1) and homoeologous (with ph1b) crossing over are the same. In all intervals analyzed, homoeologous crossovers fell within the range of frequency distribution of homologous crossovers among individual families of the reference population. No specific DNA sequence characteristics were identified that could be recognized by the Ph1 locus; the only difference between homologous and homoeologous crossing over appears to be in frequency. It is concluded that the Ph1 locus likely recognizes DNA sequence similarity; crossing over is permitted between very similar sequences. In the absence of Ph1 dissimilarities are ignored, in proportion to the level of the sequence divergence.  相似文献   

7.
The Ph1 locus in hexaploid wheat (Triticum aestivum L.) enforces diploid-like behavior in the first metaphase of meiosis. To test the hypothesis that this chromosome pairing control is exercised by affecting the degree of chromatin condensation, the dispersion of rye chromatin in interphase nuclei in somatic tissues of wheat-rye chromosome translocations 1RS.1BL, 2RS.2BL, 2BS.2RL, 3RS.3DL and 5RS.5BL was compared in Ph1 and ph1b isogenic backgrounds. No significant differences in rye chromatin condensation that could be attributed to the Ph1 locus were detected. Regardless of the Ph1 status, each rye chromosome arm tested conformed to the general Rabl's orientation and occupied portions of the nuclei proportional to their length. Earlier observations that indicated the involvement of Ph1 locus in rye chromatin condensation in wheat could have been due either to specific loci on the studied 5RL rye arm that control the chromosome condensation process or to damage to the genetic system controlling chromatin condensation in the existing ph1b stocks of wheat. That damage might have been caused by homoeologous recombination and uneven disjunction of chromosomes from multivalents.  相似文献   

8.
Dvorak J  Lukaszewski AJ 《Chromosoma》2000,109(6):410-414
Chiasmate pairing between homoeologous chromosomes at metaphase I (MI) of meiosis in wheat is prevented by the activity of the Ph1 locus on chromosome 5B. Several hypotheses have been proposed sharing the assumption that Ph1 regulates MI chromosome pairing by regulating centromere-mediated chromosome alignment before the onset of meiosis. To test the relevance of the putative predetermination of chromosome pairing at MI by the centromere-mediated chromosome association prior to meiosis, a 2BL.2RL homoeoisochromosome was constructed and its MI pairing was assessed in the presence and absence of the Ph1 locus. Although the 2BL and 2RL arms of the homoeoisochromosome paired with each other at MI in the absence of Ph1, they never paired with each other at MI in the presence of Ph1. Since the two arms were permanently associated in the homoeoisochromosome via a common centromere, it is unlikely that Ph1 predetermines MI pairing between homoeologous chromosomes solely by controlling premeiotic association of centromeres. These findings are consistent with the idea that Ph1 determines the chromosome pairing pattern at MI by scrutinizing homology across the entire chromosome.  相似文献   

9.
A crossover (CO) and its cytological signature, the chiasma, are major features of eukaryotic meiosis. The formation of at least one CO/chiasma between homologous chromosome pairs is essential for accurate chromosome segregation at the first meiotic division and genetic recombination. Polyploid organisms with multiple sets of homoeologous chromosomes have evolved additional mechanisms for the regulation of CO/chiasma. In hexaploid wheat (2n = 6× = 42), this is accomplished by pairing homoeologous (Ph) genes, with Ph1 having the strongest effect on suppressing homoeologous recombination and homoeologous COs. In this study, we observed homoeologous COs between chromosome 5Mg of Aegilops geniculata and 5D of wheat in plants where Ph1 was fully active, indicating that chromosome 5Mg harbors a homoeologous recombination promoter factor(s). Further cytogenetic analysis, with different 5Mg/5D recombinants, showed that the homoeologous recombination promoting factor(s) may be located in proximal regions of 5Mg. In addition, we observed a higher frequency of homoeologous COs in the pericentromeric region between chromosome combination of rec5Mg#2S·5Mg#2L and 5D compared to 5Mg#1/5D, which may be caused by a small terminal region of 5DL homology present in chromosome rec5Mg#2. The genetic stocks reported here will be useful for analyzing the mechanism of Ph1 action and the nature of homoeologous COs.  相似文献   

10.
he genomic DNA of common wheat (Triticum aestivum L.) “Chinese Spring” (CS) and its ph1b mutant were analyzed by using 19 sequence tagged site PCR (STS-PCR) primers, which derived from RFLP probes from barley (Hordeum vulgare L.) chromosome 5H. One marker was identified on wheat chromosome 5BL, which is 5.7 cM (centiMorgan) proximal to Ph1 gene, using the CS homoeologous group 5 nullisomic-tetrasomic, ditelosomic 5BL line and an F2 population from CS×ph1b mutant. This linked PCR marker was converted into a more specific sequence characterized amplified region (SCAR) marker. To obtain a new winter wheat line containing ph1b gene, the authors used a nullisomic 5B line of “Abbodanza”as a bridge parent and crossed respectively with the CS ph1b mutant (donor) and a winter wheat variety, “Jing 411” (recipient). The meiotic chromosome pairing was checked in the progeny of each cross, as well as using the marker-assistant selection of the SCAR marker identified for ph1b gene. After three inter-crossing and one selfing, a relatively stable ph1b substitution line of winter wheat with “Jing 411” background was obtained.  相似文献   

11.
Induction of recombination between rye chromosome 1RL and wheat chromosomes   总被引:2,自引:0,他引:2  
Summary The ph1b mutant in bread wheat has been used to induce homoeologous pairing and recombination between chromosome arm 1RL of cereal rye and wheat chromosome/s. A figure of 2.87% was estimated for the maximal frequency of recombination between a rye glutelin locus tightly linked to the centromere and the heterochromatic telomere on the long arm of rye chromosome 1R in the progeny of ph1b homozygotes. This equates to a gametic recombination frequency of 1.44%. This is the first substantiated genetic evidence for homoeologous recombination between wheat and rye chromosomes. No recombinants were confirmed in control populations heterozygous for ph1b. The ph1b mutant was also observed to generate recombination between wheat homoeologues.  相似文献   

12.
J M Vega  M Feldman 《Genetics》1998,148(3):1285-1294
The cytologically diploid-like meiotic behavior of hexaploid wheat (i.e., exclusive bivalent pairing of homologues) is largely controlled by the pairing homoeologous gene Ph1. This gene suppresses pairing between homoeologous (partially homologous) chromosomes of the three closely related genomes that compose the hexaploid wheat complement. It has been previously proposed that Ph1 regulates meiotic pairing by determining the pattern of premeiotic arrangement of homologous and homoeologous chromosomes. We therefore assume that Ph1 action may be targeted at the interaction of centromeres with spindle microtubules--an interaction that is critical for movement of chromosomes to their specific interphase positions. Using monosomic lines of common wheat, we studied the effect of this gene on types and rates of centromere division of univalents at meiosis. In the presence of the normal two doses of Ph1, the frequency of transverse breakage (misdivision) of the centromere of univalent chromosomes was high in both first and second meiotic divisions; whereas with zero dose of the gene, this frequency was drastically reduced. The results suggest that Ph1 is a trans-acting gene affecting centromere-microtubules interaction. The findings are discussed in the context of the effect of Ph1 on interphase chromosome arrangement.  相似文献   

13.
Rye B chromosomes, which are supernumerary chromosomes dispensable for the host but increase in number by non-disjunction after meiosis, have been reported to affect meiotic homoeologous pairing in wheat-rye hybrids. The effect of a rye B chromosome (B) and its segments (B-9 and B-10) on homoeologous pairing was studied in hybrids between common wheat (2n=42) and Aegilops variabilis (2n=28), with reference to the Ph1 gene located on wheat chromosome 5B. The B-9 and B-10 chromosomes are derived from reciprocal translocations between a wheat and the B chromosomes, and the former had the B pericentromeric segment and the latter had the B distal segment. Both the B and B-9 chromosomes suppressed homoeologous pairing when chromosome 5B was absent. On the other hand, the B-9 and B-10 chromosomes promoted homoeologous pairing when 5B was present. On pairing suppression, B-9 had a greater effect in one dose than in two doses, and B-9 had a greater effect than B-10 had in one dose. These results suggested that the effect of the B chromosomes on homoeologous pairing was not confined to a specific region and that the intensity of the effect varied depending on the presence or absence of 5B and also on the segment and dose of the B chromosome. The mean chiasma frequency (10.23) in a hybrid (2n=36) possessing 5B and one B-9 was considerably higher than that (2.78) of a hybrid (2n=35) possessing 5B alone, and was comparable with that (14.09) of a hybrid (2n=34) lacking 5B. This fact suggested that the B chromosome or its segment can be used in introducing alien genes into wheat by inducing homoeologous pairing between wheat and alien chromosome.  相似文献   

14.
Barley yellow dwarf virus (BYDV) can cause significant losses of wheat worldwide. The long arm segment ofThinopyrum intermedium chromosome 7Ai#1 carrying the BYDV resistance geneBdv2 was translocated to the distal region of the long arm of wheat chromosome 7D in translocation line Yw642. In this study, 40 wheat EST sequences located in the distal region of 7DL were explored to identify specific PCR markers for theBdv2 region on the basis of the homoeologous relationship between wheat chromosome 7D and Th.intermedium chromosome 7Ai# 1. Our results revealed 8 novel EST-PCR markers specific to theBdv2 region, including 5 EST-STS markers of BE404744, BE498985, BE591497, BG606695 and BQ161842, and 3 EST-SSCP markers of BE404953, BG312663 and BE498985. These EST-PCR markers could distinguishBdv2 from another BYDV-resistance gene located onTh.intermedium chromosome 2Ai-2. These specific bands for theBdv2 region were further cloned and sequenced. The sequencing analysis indicated that the specific sequences for theBdv2 region were highly homologous with the original wheat EST sequences that were used to design primers, and encode respectively a protein kinase, P450, centrin, transducin, and a hypothetical protein. This study created a starting point for eventual cloning of theBdv2 gene and understanding the defense mechanism.  相似文献   

15.
A study of homoeologous recombination along almost the complete genetic length of two homoeologous chromosomes in the Triticeae was conducted. Sears' phlb mutant was used to induce homoeologous pairing between chromosomes 7A of common wheat and 7Ai–l of Agropyron intermedium. 390 ph1b ph1b homozygous F3 progeny were screened using six co-dominant DNA markers (RFLP loci). 63 of the progeny (16%) were putative recombinants, showing dissociation of RFLP markers within the arm(s). Progeny tests of self-fertile putative recombinants confirmed the dissociation phenotypes observed in the F3 progeny. No recombination could be confirmed in 117 F3 progeny plants having the Ph1– allele (control population). Frequencies and distribution of chiasmata along the chromosome arm 7AS were analysed using additional RFLP markers. The patterns of recombination between the two homoeologous chromosomes were found similar to those reported for homologous recombination between the same markers on short arms of group 7 chromosomes of Triticeae.  相似文献   

16.
Genomic in situhybridization (GISH) to root-tip cells at mitotic metaphase, using genomic DNA probes from Thinopyrum intermedium and Pseudoroegneria strigosa, was used to examine the genomic constitution of Th. intermedium, the 56-chromosome partial amphiploid to wheat called Zhong 5 and disease-resistant derivatives of Zhong 5, in a wheat background. Evidence from GISH indicated that Th. intermedium contained seven pairs of St, seven JS and 21 J chromosomes; three pairs of Th. intermedium chromosomes with satellites in their short arms belonging to the St, J, J genomes and homoeologous groups 1, 1, and 5 respectively. GISH results using different materials and different probes showed that seven pairs of added Th. intermedium chromosomes in Zhong 5 included three pairs of St chromosomes, two pairs of JS chromosomes and two pairs of St-JS reciprocal tanslocation chromosomes. A pair of chromosomes, which substituted a pair of wheat chromosomes in Yi 4212 and in HG 295 and was added to 21 pairs of wheat chromosomes in the disomic additions Z1, Z2 and Z6, conferred BYDV-resistance and was identical to a pair of St-JS tanslocation chromosomes (StJS) in Zhong 5. The StJS chromosome had a special GISH signal pattern and could be easily distinguished from other added chromosomes in Zhong 5; it has not yet been possible to locate the BYDV-resistant gene(s) of this translocated chromosome either in the St chromosome portion belonging to homoeologous group 2 or in the JS chromosome portion whose homoeologous group relationship is still uncertain. Among 22 chromosome pairs in disomic addition line Z3, the added chromosome pair had satellites and belonged to the St genome and homoeologous group 1. Disomic addition line Z4 carried a pair of added chromosomes which was composed of a group-7 JS chromosome translocated with a wheat chromosome; this chromosome was different to 7 Ai-1, but was identical to 7 Ai-2. The leaf rust and stem rust resistance genes were located in the distal region of the long arm, whereas the stripe rust resistance gene(s) was located in the short arm or in the proximal region of the long arm of 7 Ai-2. A pair of JS-wheat translocation chromosomes, which originated from the WJS chromosomes in Z4, was added to the disomic addition line Z5; the added chromosomes of Z5 carried leaf and stem rust resistance but not stripe rust resistance; Z5 is a potentially useful source for rust resistance genes in wheat breeding and for cloning these novel rust-resistant genes. GISH analysis using the St genome as a probe has proved advantageous in identifying alien Th. intermedium in wheat. Received: 17 May 1999 / Accepted: 22 June 1999  相似文献   

17.
When a crop hybridizes with a wild relative, the potential for stable transmission to the wild of any crop gene is directly related to the frequency of crop–wild homoeologous pairing for the chromosomal region where it is located within the crop genome. Pairing pattern at metaphase I (MI) has been examined in durum wheat × Aegilops geniculata interspecific hybrids (2n=4x=ABUgMg) by means of a genomic in-situ hybridization procedure that resulted in simultaneous discrimination of A, B and wild genomes. The level of MI pairing in the hybrids varied greatly depending on the crop genotype. However, their pattern of homoeologous association was very similar, with a frequency of wheat–wild association close to 60% in all genotype combinations. A–wild represented 80–85% of wheat–wild associations which supports that, on average, A genome sequences are much more likely to be transferred to this wild relative following interspecific hybridization and backcrossing. Combination of genomic DNA probes and the ribosomal pTa71 probe has allowed to determine the MI pairing behaviour of the major NOR-bearing chromosomes in these hybrids (1B, 6B, 1Ug and 5Ug), in addition to wheat chromosome 4A which could be identified with the sole use of genomic probes. The MI pairing pattern of the wild chromosome arms individually examined has confirmed a higher chance of gene escape from the wheat A genome. However, a wide variation regarding the amount of wheat–wild MI pairing among the specific wheat chromosome regions under analysis suggests that the study should be extended to other homoeologous groups.  相似文献   

18.
19.
Extracts of mature grains of a large number of aneuploid derivatives of Triticum aestivum cv. Chinese Spring and of the members of five wheat-alien chromosome addition series were subjected to isoelectric focusing in polyacrylamide gels in order to study the genetic control of superoxide dismutase (SOD). Evidence was obtained that homologous structural genes for the mitochondrial form of SOD are located in the long arms of the homoeologous group 2 chromosomes of Chinese Spring and in chromosome 2R of Secale cereale cv. Imperial. The SOD gene loci located in chromosomes 2A, 2B, 2D, and 2R were designated Sod-A1, Sod-B1, Sod-D1, and Sod-R1, respectively. Chromosome-arm pairing data indicate that 2DL is not homoeologous to either 2AS or 2BL. The results of this study suggest, however, that 2BL is partially homoeologous to both 2AL and 2DL.Technical article No. 21074 of the Texas Agricultural Experiment Station. This work was supported by USDA Grant 83-CRCR-1-1322 to GEH.  相似文献   

20.
Wild grasses in the tribe Triticeae, some in the primary or secondary gene pool of wheat, are excellent reservoirs of genes for superior agronomic traits, including resistance to various diseases. Thus, the diploid wheatgrasses Thinopyrum bessarabicum (Savul. and Rayss) A. Love (2n = 2x = 14; JJ genome) and Lophopyrum elongatum (Host) A. Love (2n = 2x = 14; EE genome) are important sources of genes for disease resistance, e.g., Fusarium head blight resistance that may be transferred to wheat. By crossing fertile amphidiploids (2n = 4x = 28; JJEE) developed from F1 hybrids of the 2 diploid species with appropriate genetic stocks of durum wheat, we synthesized trigeneric hybrids (2n = 4x = 28; ABJE) incorporating both the J and E genomes of the grass species with the durum genomes A and B. Trigeneric hybrids with and without the homoeologous-pairing suppressor gene, Ph1, were produced. In the absence of Ph1, the chances of genetic recombination between chromosomes of the 2 useful grass genomes (JE) and those of the durum genomes (AB) would be enhanced. Meiotic chromosome pairing was studied using both conventional staining and fluorescent genomic in situ hybridization (fl-GISH). As expected, the Ph1-intergeneric hybrids showed low chromosome pairing (23.86% of the complement), whereas the trigenerics with ph1b (49.49%) and those with their chromosome 5B replaced by 5D (49.09%) showed much higher pairing. The absence of Ph1 allowed pairing and, hence, genetic recombination between homoeologous chromosomes. Fl-GISH analysis afforded an excellent tool for studying the specificity of chromosome pairing: wheat with grass, wheat with wheat, or grass with grass. In the trigeneric hybrids that lacked chromosome 5B, and hence lacked the Ph1 gene, the wheat-grass pairing was elevated, i.e., 2.6 chiasmata per cell, a welcome feature from the breeding standpoint. Using Langdon 5D(5B) disomic substitution for making trigeneric hybrids should promote homoeologous pairing between durum and grass chromosomes and hence accelerate alien gene transfer into the durum genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号