首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
为研究蒙椴(Tilia mongolica Maxim.)树皮的化学成分,通过溶剂萃取、硅胶柱色谱、重结晶分离纯化,从蒙椴树皮中分离得到7个化合物,根据其红外光谱、质谱和核磁共振谱数据鉴定为β-香树脂醇乙酸酯(1),计曼尼醇乙酸酯(2),羽扇豆醇(3),二十四碳酸(4),三棕榈酸甘油酯(5),β-谷甾醇(6),胡萝卜苷(7)。其中化合物1-5、7均为首次从椴树属植物中分离得到,化合物6为首次从该植物中分离得到。  相似文献   

2.
白花蛇舌草化学成分的研究   总被引:2,自引:0,他引:2  
采用聚酰胺、Sepphadex LH-20、硅胶等多种色谱柱对白花蛇舌草的化学成分进行分离纯化,并根据化合物的理化性质和光谱数据鉴定其结构为:去乙酰车叶草甙(1)、车叶草甙(2)、鸡屎藤甙甲酯(3)、车叶草酸(4)、去乙酰车叶草酸甲酯(5)和dapbylloside(6)。其中化合物6为首次从该属植物中分离得到,化合物1,5、6为首次从该种植物中得到。  相似文献   

3.
中药大蓟化学成分的研究   总被引:3,自引:0,他引:3  
从大蓟的50%乙醇提取物中分离得到2个木脂素:(-)2-(3’-甲氧基4’-羟基-苯基)-3,4-二羟基4-(3"-4"-羟基-苄基)-3-四氢呋哺甲醇(1)和络石苷(2),以及另外6个化合物:蒙花苷(3)、柳穿鱼叶苷(4)、粗毛豚草素(5)、芹菜素(6)、咖啡酸(7)和对-香豆酸(8)。本文首次在蓟属植物中发现木脂素类成分,化合物7也为首次从本植物中分离得到,通过体外玻片法对化合物1—8进行凝血活性测定,发现化合物3、4具有一定的促凝血作用。  相似文献   

4.
暖地大叶藓化学成分的研究   总被引:1,自引:0,他引:1  
从真藓科大叶藓属植物暖地大叶藓Rhodobryum giganteum(schwaegr.)Par.的乙醇提取物中分离得到9个化合物,通过波谱分析鉴定其分别为麦角甾-7,22-双烯-3β,5α,6β-三醇(1),乌苏酸(2),琥珀酸(3),尿嘧啶(4),棕榈酸(5),槲皮素(6),碳二十九烷(7),β-谷甾醇(8),胡萝卜苷(9).化合物1~9均为首次从该植物中分离得到.  相似文献   

5.
云南金钱槭叶子中的酚性成分   总被引:2,自引:1,他引:1  
利用各种色谱技术从云南金钱槭(Dipteronia dyeriana)叶片中分离得到13个化合物。通过波谱学方法鉴定为11,12-诃子裂酸二甲酯(1),12,13-诃子裂酸二甲酯(2),11-诃子裂酸甲酯(3),12-诃子裂酸甲酯(4),13-诃子裂酸甲酯(5),鞣料云实素(6),类叶升麻苷(7),短叶苏木酚酸甲酯(8),3-O-没食子酰基莽草酸(9),樱桃苷(10),山萘酚-3-O-β-D-木糖基-(1→2)-β-D-葡萄糖苷(11),没食子酸(12),莽草酸(13)。所有化合物均首次从金钱槭属植物中分离得到。  相似文献   

6.
从黄檗落叶的95%乙醇提取物中分离鉴定了7个化合物,分别为phellodenol-A(1),茵芋苷(skimmin,2),phellodenol E(3),黄檗苷(amurensin,4),黄柏苷(phellamurin,5),(2R) -phellodensin-F(6)和clerosterol 3-Oβ-D-galactopyranoside (7).其中,化合物7为首次从黄柏属植物中分离得到,化合物3和6为首次从该植物中分离得到.  相似文献   

7.
枸骨叶的化学成分研究   总被引:1,自引:0,他引:1  
采用溶剂提取和柱层析色谱分离,根据化合物理化性质和光谱数据鉴定其结构.结果从枸骨叶中分离得到9个化合物,分别为羽扇豆醇(1)、3,28-乌苏酸二醇(2)、熊果酸(3)、异鼠李黄素(4)、山奈酚-3-O-β-D-葡萄糖苷(5)、地榆苷Ⅰ(6)、槲皮苷-3-O-β-D-葡萄糖苷(7)、异鼠李素-3-O-β-D-葡萄糖苷(8)、冬青苷Ⅱ(9).化合物7和8为首次从冬青属植物中分离得到,化合物5为首次从该植物中分离得到,同时首次报道了化合物9的13CNMR数据.  相似文献   

8.
紫花苜蓿化学成分的研究(英文)   总被引:1,自引:0,他引:1  
为研究紫花苜蓿(Medicago scttiva L.)地上部位的化学成分,通过溶剂萃取、硅胶柱色谱、凝胶柱色谱分离纯化,从紫花苜蓿地上部分分离得到9个化合物,根据质谱和核磁共振数据鉴定为小檗碱(1)、大黄素(2)、大黄素8-O-β-D-葡萄糖苷(3)、soyαsαpogenol B-3-O-β-glcA(4)、邻羟基苯甲酸(5)、反式对羟基肉挂酸(6)、顺式对羟基肉桂酸(7)、正三十烷醇(8)和β-胡萝卜苷(9)。其中化合物1—4为首次从苜蓿属植物中分离得到。  相似文献   

9.
扁桃叶的化学成分研究   总被引:2,自引:0,他引:2  
从芒果属植物扁桃(Mangifera persiciformis C.Y.Wu et T.L.Ming)叶乙醇提取物乙酸乙酯萃取部位中分离得到7个化合物,经波谱鉴定为没食子酸甲酯(1),没食子酸(2),3,4-二羟基苯甲酸(3),槲皮素(4),山奈酚-3-O-β-D-葡萄糖苷(5),槲皮素-3-O-β-D-葡萄糖苷(6)和芒果苷(7).其中化合物1、3、5、6为首次从该植物中分离得到.  相似文献   

10.
荔枝核化学成分的研究   总被引:6,自引:0,他引:6  
利用硅胶柱色谱、聚酰胺柱色谱、制备薄层色谱等方法,从荔枝(Litchi chinensis Sonn.)核乙醇提取物中分离出9个化合物,根据理化性质和波谱分析鉴定了7个化合物,分别为胡萝卜苷(daucosterol,1)、原儿茶醛(protocatechuic aldehyde,2)、原儿茶酸(protoeatechuic acid,3)、表儿茶素((-)-epicafichin,4)、procyanidin A2(5)、procyanidin A1(6)、芦丁(rulin,7)。化合物2,4-7为首次从荔枝核中分得,化合物2.4、5为首次从该属植物中分离得到。  相似文献   

11.
Chromosome numbers and karyotypes of species of Orobanche, Cistanche, and Diphelypaea (Orobanchaceae) were investigated, and 108 chromosome counts of 53 taxa, 19 counted for the first time, are presented with a thorough compilation of previously published data. Additionally, karyotypes of representatives of these genera, including Orobanche sects. Orobanche and Trionychon, are reported. Cistanche (x = 20) has large meta- to submetacentric chromosomes, while those of Diphelypaea (x = 19) are medium-sized submeta- to acrocentrics. Within three analyzed sections of Orobanche, sects. Myzorrhiza (x = 24) and Trionychon (x = 12) possess medium-sized submeta- to acrocentrics, while sect. Orobanche (x = 19) has small, mostly meta- to submetacentric, chromosomes. Polyploidy is unevenly distributed in Orobanche and restricted to a few lineages, e.g., O. sect. Myzorrhiza or Orobanche gracilis and its relatives (sect. Orobanche). The distribution of basic chromosome numbers supports the groups found by molecular phylogenetic analyses: Cistanche has x = 20, the Orobanche-group (Orobanche sect. Orobanche, Diphelypaea) has x = 19, and the Phelipanche-group (Orobanche sects. Gymnocaulis, Myzorrhiza, Trionychon) has x = 12, 24. A model of chromosome number evolution in Orobanche and related genera is presented: from two ancestral base numbers, x(h) = 5 and x(h) = 6, independent polyploidizations led to x = 20 (Cistanche) and (after dysploidization) x = 19 (Orobanche-group) and to x = 12 and x = 24 (Phelipanche-group), respectively.  相似文献   

12.
A new tropone,3,8-dimethyl-5-isopropyl-2,3- dihydro(1H)azulen-6-one, named orobanone, has been isolated for the first time from a plant (Orobanche rapum-genistae, Orobanchaceae). This tropone is synthesized by the parasite and exists, with other related compounds, in various species of broom-rapes.  相似文献   

13.
We are interested in developing a control strategy efficient at the early stages of subterranean development of Orobanche in the inhibition of mannose 6-phosphate reductase (M6PR, EC 1.1.1.224), the key enzyme of mannitol production in the parasite. We examined M6PR gene expression during pre-conditioning, germination, procaulome growth, underground shoot development and emergence of Orobanche ramosa L. attached to tomato roots, the enzyme activity at each of the above stages and the level of stored mannitol in the parasite. A 1120-pb length cDNA isolated by 3' and 5'RACE was identified as a M6PR sequence by cDNA expression in E. coli and M6PR activity measurement. Only one M6PR gene was detected in O. ramosa following southern blot analysis. M6PR expression, analysed by RT-PCR, was constant from the pre-conditioned seed to the emergence of broomrape, i.e. M6PR expression is constitutive in Orobanche . M6PR activity was also detected in pre-conditioned seeds and attachment to tomato roots resulted in a two-fold increase in enzyme activity during tubercle enlargement and crown root formation. Hexose and mannitol accumulation was strongly enhanced in the attached parasite, with accumulation primarily in the shoot. These results support the prospect of utilizing M6PR inhibitors as early applied herbicides to control this parasite in the early stages of its development.  相似文献   

14.
Activities of the cell-wall degrading enzymes cellulase (EC 3. 2. 1. 4). poly-galacturonase (EC 3. 2. 1. 15) and xylanase (EC 3. 2. 1. 8), and also that of protease (EC 3. 4. 21. 14) have been determined in the parasite Orobanche aegyiptiaca Pers. and in the roots of infected and control host plants of Brassica campestris L. var. rapa Hartm. Shoots, roots and root-freed tubers of Orobanche showed pronounced activities of these enzymes. When expressed in terms of specific activity, protease, cellulase and polygalacturonase activities were higher and xylanase lower in all parts of Orobanche than in the roots of infected or control host plants. Orobanche roots had higher activities of cellulase, polygalacturonase and protease than tuber or shoot. While xylanase activity was higher in the shoot than in roots or tuber. Infection by Orobanche significantly enhanced the cellulase activity of host roots. Cellulase and polygalacturonase in the Orobanche roots appear as the main enzymes involved in establishing haustorial connection with the host root. Protease might be involved in degrading proteins and lipoproteins of the cell walls and membranes of the host tissues.  相似文献   

15.
The morphological characters in the genus Orobanche were evaluated from the taxonomic point of view. The author finds that the plants of this genus are relatively similar to each other in respect to characters of vegetative organs, fruits and seeds. But the differences in the floral structures can be served as a basis for delimitating infrageneric taxa. The seed coat of 18 species and pollen grains of 6 species were also examined under scanning electron microscope (SEM). They seem to have little significance for distinguishing species. The result supports G. Beck’s (1930) division of the genus Orobanche into 4 sections, of which 2 occur in China, based on the characters of the inflorescence, bracteoles and calyx. The author considers that some characters, such as anther hairy or not, upper lip of corolla entire or not, lower lip longer or shorter than the upper one, the state of corolla-tube inflec tion and the hair type of filaments and plants, are important in distinguishing Chinese species. A key to the species of Orobanche in China is given. This genus consists of about 100 species, and is mostly confined to Eurasia, with over 60 species found in Caucasus and Middle Asia of USSR, where may be the mordern distribu tional centre. Orobanche L. in China is represented by 23 species, 3 varieties and l forma. As shown in Table 1, most species (12 species) are found in Xinjiang, which clearly shows a close floristic relationship between this region and Middle Asia of USSR. 6 species are endemic to China, of which 4 are confined to the Hengduan Mountains (Yangtze-Mekong-Salwin divide). The relationships between this genus and related ones of Orobanchaceae are also discussed. The author holds the following opinions: the genus Phelypaea Desf. should be considered as a member of Orobanche L. Sect. Gymnocaulis G. Beck, the monotypic genus, Necranthus A. Gilli endemic to Turkey, is allied with Orobanche L. Sect. Orobanche, the monotypic genus, Platypholis Maxim, endemic to Bonin Is. of Japan, is far from Orobanche L. in relation and should be regarded as a separate genus. The 11 OTU’s, including all the sections of Orobanche L. and 7 genera of Orobanchaceae, and 15 morphological characters were used in the numerical taxonomic treatment to test the above-mentioned suggestions. After standardization of characters, the correlation matrices were computerized. The correlation matrices were made to test the various clustering methods. At last the UPGMA clustering method was chosen and its result is shown in a phenogram. The result of numerical analysis is basically in accordance with the suggestions.  相似文献   

16.
Root parasites of the genus Orobanche are serious weeds in agriculture. An aseptic infection system of host roots using calli of three Orobanche species was developed for the study of host-parasite interaction. The response of calli to various hormonal combinations was studied, because a requirement for infection is the differentiation of root-like protrusions, which are capable of producing haustorial connections to the host. Infectious root-like protrusions develop under the influence of 0.5-1.0 mg l(-1) IAA, and under the combination of 0.2 mg l(-1) NAA with 5.0 mg l(-1) kinetin. These protocols produced root protrusions with pad-like structures that resembled attachment organs of Orobanche seedlings, and proved effective in parasitizing host roots. Direct contact with the medium inhibited haustorium development and prevented infection. To overcome this problem, certain root portions were isolated from the medium by inserting thin glass plates underneath. Calli were then placed on the raised root portions and successfully infected the roots and developed young Orobanche tubercles with vascular system that directly connected to the host.  相似文献   

17.
蓝桉果实中的脂溶性成分   总被引:2,自引:0,他引:2  
从蓝桉(Eucalyptus globulusLabill.)果实乙醇提取物的石油醚部位分离鉴定出6个化合物,通过理化和波谱分析结构鉴定为:5-羟基-4′,7-二甲氧基-6-甲基黄酮(1)、blumenol A(2)、蓝桉醇(3)、绿花白千层醇(4)、β-谷甾醇(5)、二十二烷酸(6),其中化合物1~4和化合物6系首次从该植物中分离得到,化合物1和2首次从桉属植物中分离得到.  相似文献   

18.
从青蕨的乙酸乙酯提取物中分离得到6个化合物,通过化学方法及波谱分析,分别将其结构鉴定为木香素Ⅲ(1),7-甲氧基鬼灯擎素(2),扶桑甾醇(3),5-(3′-甲基丁基)-8-甲氧基呋喃香豆素(4),2-(3′-羟基-3′-甲基)丁基-4-羟基-5-甲氧基苯酚-1-O-β-D匍吡喃糖苷(青蕨素Ⅰ)(5)和2-(3′-羟基-3′-甲基)丁基-4-羟基-3,6-二甲氧基苯酚-1-O-β-D-匍吡喃糖苷(青蕨素Ⅱ)(6)。化合物5和6为新化合物,化合物1,2,3和4为首次从该植物中分离得到。  相似文献   

19.
Orobanche spp. (broomrape) are parasitic plants which subsist on the roots of a wide range of hosts, including tomato, causing severe losses in yield quality and quantity. Large amounts of mannitol accumulate in this parasitic weed during development. Mannose 6-phosphate reductase (M6PR) is a key enzyme in mannitol biosynthesis, and it has been suggested that mannitol accumulation may be very important for Orobanche development. Therefore, the Orobanche M6PR gene is a potential target for efforts to control this parasite. Transgenic tomato plants were produced bearing a gene construct containing a specific 277-bp fragment from Orobanche aegyptiaca M6PR-mRNA, in an inverted-repeat configuration. M6PR-siRNA was detected in three independent transgenic tomato lines in the R1 generation, but was not detected in the parasite. Quantitative RT-PCR analysis showed that the amount of endogenous M6PR mRNA in the tubercles and underground shoots of O. aegyptiaca grown on transgenic host plants was reduced by 60%–80%. Concomitant with M6PR mRNA suppression, there was a significant decrease in mannitol level and a significant increase in the percentage of dead O. aegyptiaca tubercles on the transgenic host plants. The detection of mir390, which is involved with cytoplasmic dsRNA processing, is the first indication of the existence of gene-silencing mechanisms in Orobanche spp. Gene silencing mechanisms are probably involved with the production of decreased levels of M6PR mRNA in the parasites grown on the transformed tomato lines.  相似文献   

20.
The seeds of parasitic plants of the genera Striga and Orobanche will only germinate after induction by a chemical signal exuded from the roots of their host. Up to now, several of these germination stimulants have been isolated and identified in the root exudates of a series of host plants of both Orobanche and Striga spp. In most cases, the compounds were shown to be isoprenoid and belong to one chemical class, collectively called the strigolactones, and suggested by many authors to be sesquiterpene lactones. However, this classification was never proven; hence, the biosynthetic pathways of the germination stimulants are unknown. We have used carotenoid mutants of maize (Zea mays) and inhibitors of isoprenoid pathways on maize, cowpea (Vigna unguiculata), and sorghum (Sorghum bicolor) and assessed the effects on the root exudate-induced germination of Striga hermonthica and Orobanche crenata. Here, we show that for these three host and two parasitic plant species, the strigolactone germination stimulants are derived from the carotenoid pathway. Furthermore, we hypothesize how the germination stimulants are formed. We also discuss this finding as an explanation for some phenomena that have been observed for the host-parasitic plant interaction, such as the effect of mycorrhiza on S. hermonthica infestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号