首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim SK  Bae H  Lee G  Jeong H  Woo HS  Han JB  Kim Y  Lee H  Shin MK  Hong MC  Jin YH  Min BI 《Peptides》2008,29(4):564-570
A major satiety hormone, cholecystokinin (CCK) is well known to be released by electroacupuncture (EA) stimulation at certain body sites which elicits profound psychophysiological responses. Previous clinical and animal studies have shown that EA stimulation reduces food intake and body weight in both normal and obese subjects. The aim of the present study was to elucidate the satiety effect of EA stimulation and its mechanism related to CCK in rats. Here we show that EA stimulation at "Zusanli" (ST36) acupoint significantly reduced 30-min and 60-min food intake in 48-h fasted Sprague-Dawley rats, and such effect was reversed by a lorglumide (CCK-1 receptor antagonist, 10mg/kg, i.p.) pretreatment. The ST36 EA stimulation-induced satiety was not observed in CCK-1 receptor knockout, Otsuka Long-Evans Tokushima Fatty rats, but in their controls, Long-Evans Tokushima Otsuka rats. Subdiaphragmatic vagotomy also blocked the satiety effect of ST36 EA stimulation in Sprague-Dawley rats. These results suggest that ST36 EA stimulation elicits satiety in rats and this is mediated by the endogenous CCK signaling pathway.  相似文献   

2.
Objective: The purpose of this study was to determine the effects of electroacupuncture (EA) ST36 on food intake and body weight in obese prone (OP) rats compared to obese resistant (OR) strain on a high fat diet. The influences of EA on mRNA levels of pro-opiomelanocortin (POMC), transient receptor potential vanilloid type-1 (TRPV1), and neuronal nitric oxide synthase (nNOS) were also examined in the medulla regions and ST36 skin tissue. Methods: Advanced EA ST36 was conducted in two sessions of 20 min separated by an 80 min interval for 7 days. Food intake and body weight were recorded in conscious rats every day. Real time PCR was conducted in the micropunches of the medulla regions and skin tissues at the end of the treatment. Results: Food intake and body weight were significantly reduced by advanced EA ST36 in OP rats, but slightly decreased in OR strain and sham-EA rats. Advanced EA ST36 produced a marked increase in POMC mRNA level in the nucleus tractus solitarius (NTS) and hypoglossal nucleus (HN) regions. TRPV1 and nNOS mRNAs were simultaneously increased in the NTS/gracile nucleus regions and in the ST36 skin regions by the EA treatment in OP rats. Conclusions: We conclude that advanced EA ST36 produces an up-regulation of anorexigenic factor POMC production in the NTS/HN, which inhibits food intake and reduces body weight. EA-induced expression of TRPV1-nNOS in the ST36 and the NTS/gracile nucleus is involved in the signal transduction of EA stimuli via somatosensory afferents-medulla pathways.  相似文献   

3.
We have previously demonstrated that running-wheel access normalizes the food intake and body weight of Otsuka Long-Evens Tokushima Fatty (OLETF) rats. Following 6 wk of running-wheel access beginning at 8 wk of age, the body weight of OLETF rats remains reduced, demonstrating a lasting effect on their phenotype. In contrast, access to a high-fat diet exacerbates the hyperphagia and obesity of OLETF rats. To determine whether diet modulates the long-term effects of exercise, we examined the effects of high-fat diet on food intake and body weight in OLETF rats that had prior access to running wheels for 4 wk. We found that 4 wk of running exercise significantly decreased food intake and body weight of OLETF rats. Consistent with prior results, 4 wk of exercise also produced long-lasting effects on food intake and body weight in OLETF rats fed a regular chow. When running wheels were relocked, OLETF rats stabilized at lower levels of body weight than sedentary OLETF rats. However, access to a high-fat diet offset these effects. When OLETF rats were switched to a high-fat diet following wheel relocking, they significantly increased food intake and body weight, so that they reached levels similar to those of sedentary OLETF rats fed a high-fat diet. Gene expression determination of hypothalamic neuropeptides revealed changes that appeared to be appropriate responses to the effects of diet and running exercise. Together, these results demonstrate that high-fat diet modulates the long-lasting effects of exercise on food intake and body weight in OLETF rats.  相似文献   

4.
Tian N  Wang F  Tian DR  Zou Y  Wang SW  Guan LL  Shi YS  Chang JK  Yang J  Han JS 《Peptides》2006,27(9):2313-2320
Electroacupuncture (EA) has been reported to reduce body weight in overweight subjects in clinical practice, as well as in rats and mice with diet-induced obesity. In the present study, this effect of EA was tested in lean rats subjected to long-term food restriction (FR, food was offered only 1 h/day). Two hertz EA administered once every other day produced a further reduction in body weight in FR rats. Exploration of the mechanism involved revealed significant downregulation of the orexigenic peptides: ghrelin in the stomach, and neuropeptide Y (NPY) but not Agouti-related peptide (AgRP) in the hypothalamus, which was in line with the reduction in food intake in rats receiving EA stimulation as compared with those receiving restraint only. Uncoupling protein 3 (UCP3), involved in accelerating energy expenditure, was not significantly altered. These results suggest that the EA-induced body weight reduction was due mainly to a decrease in food intake rather than an increase in energy expenditure. A reduction in the orexigenic peptides ghrelin and NPY may be involved in the underlying mechanism.  相似文献   

5.
LAUER, JOAN B., GEORGE W. REED, AND JAMES O. HILL. Effects of weight cycling induced by diet cycling in rats differing in susceptibility to dietary obesity. Obes Res. Objective Although the majority of evidence in rodents does not support the view that weight cycling (consisting of bouts of food restriction and refeeding) promotes obesity, the effects of weight cycling on body weight regulation remain controversial. We have previously demonstrated that some rats within a strain are more susceptible to develop obesity than others when given free access to a high-fat diet. In this study, we tested the hypothesis that rats most susceptible to weight gain on a high-fat diet would also be most susceptible to weight gain as a consequence of weight cycling. Research Methods and Procedures Rats were provided a low-fat diet (12% corn oil) for 2 weeks, then given a high-fat diet (45% corn oil) for 2 weeks to identify those most (obesity prone) and least (obesity resistant) susceptible to weight gain. Half of each group was then subjected to three 30-day cycles of food restriction (10 days) and refeeding (20 days) [weight cycler (WC) rats]. The other half were allowed free access to the high-fat diet [control (CO) rats]. All rats were then followed for an additional 10 weeks, with free access to the high-fat diet. Results When considering the entire 160 days of the study, we found no evidence that WC rats relative to CO rats had increased body weight, increased body fat content, or elevated energy efficiency. We found no evidence that rats most prone to dietary obesity were also prone to weight gain after weight cycling. During the weight cycling phase (days 1 to 90), weight cycled groups consumed less energy and gained less weight than controls. During the follow-up phase, WC and CO rats did not differ significantly in weight gain or energy intake. Discussion In this study, weight cycling did not exacerbate the obesity produced by high-fat diet feeding.  相似文献   

6.
White CL  Ishii Y  Mendoza T  Upton N  Stasi LP  Bray GA  York DA 《Peptides》2005,26(11):2331-2338
An orexin-1 receptor antagonist decreases food intake whereas orexin-A selectively induces hyperphagia to a high-fat diet. In the present study, we evaluated the effect of an orexin antagonist in two strains of rats that differ in their sensitivity to becoming obese while eating a high-fat diet. Male Osborne-Mendel (OM) and S5B/Pl (S5B) rats were treated acutely with an orexin-1 receptor antagonist (SB-334867), after adaptation to either a high-fat (56% fat energy) diet or a low-fat (10% fat energy) diet that were equicaloric for protein (24% energy). Ad libitum fed rats were injected intraperitoneally with SB-334867 at doses of 3, 10 or 30 mg/kg, or vehicle at the beginning of the dark cycle, and food intake and body weight were measured. Hypothalamic prepro-orexin and orexin-1 receptor mRNA expression were analyzed in OM and S5B rats fed at a high-fat or low-fat diet for two weeks. SB-334867 significantly decreased food intake in both strains of rats eating the high-fat diet but only in the OM rats eating the low fat diet. The effect was greatest at 12 and 24 h. Body weight was also reduced in OM rats 1d after injection of SB-334867 but not in the S5B rats. Prepro-orexin and orexin-1 receptor expression levels did not differ between strains or diets. These experiments demonstrate that an orexin antagonist (SB-334867) reduces food intake and has a greater effect in a rat strain that is susceptible to dietary-induced obesity, than in a resistant strain.  相似文献   

7.
8.
Hypothalamic insulin inhibits food intake, preventing obesity. High-fat feeding with polyunsaturated fats may be obesogenic, but their effect on insulin action has not been elucidated. The present study evaluated insulin hypophagia and hypothalamic signaling after central injection in rats fed either control diet (15% energy from fat) or high-fat diets (50% energy from fat) enriched with either soy or fish oil. Soy rats had increased fat pad weight and serum leptin with normal body weight, serum lipid profile and peripheral insulin sensitivity. Fish rats had decreased body and fat pad weight, low leptin and corticosterone levels, and improved serum lipid profile. A 20-mU dose of intracerebroventricular (ICV) insulin inhibited food intake in control and fish groups, but failed to do so in the soy group. Hypothalamic protein levels of IR, IRS-1, IRS-2, Akt, mTOR, p70S6K and AMPK were similar among groups. ICV insulin stimulated IR tyrosine phosphorylation in control (68%), soy (36%) and fish (34%) groups. Tyrosine phosphorylation of the pp185 band was significantly stimulated in control (78%) and soy (53%) rats, but not in fish rats. IRS-1 phosphorylation was stimulated only in control rats (94%). Akt serine phosphorylation was significantly stimulated only in control (90%) and fish (78%) rats. The results showed that, rather than the energy density, the fat type was a relevant aspect of high-fat feeding, since blockade of hypothalamic insulin signal transmission and insulin hypophagia was promoted only by the high-fat soy diet, while they were preserved in the rats fed with the high-fat fish diet.  相似文献   

9.
Chronic administration of anorexigenic substances to experimental animals by injections or continuous infusion typically produces either no effect or a transient reduction in food intake and body weight. Our aim here was to identify an intermittent dosing strategy for intraperitoneal infusion of peptide YY(3-36) [PYY(3-36)] that produces a sustained reduction in daily food intake and adiposity in diet-induced obese rats. Rats (665+/-10 g body wt, 166+/-7 g body fat) with intraperitoneal catheters tethered to infusion swivels had free access to a high-fat diet. Vehicle-treated rats (n=23) had relatively stable food intake, body weight, and adiposity during the 9-wk test period. None of 15 PYY(3-36) dosing regimens administered in succession to a second group of rats (n=22) produced a sustained 15-25% reduction in daily food intake for >5 days, although body weight and adiposity were reduced across the 9-wk period by 12% (594+/-15 vs. 672+/-15 g) and 43% (96+/-7 vs. 169+/-9 g), respectively. The declining inhibitory effect of PYY(3-36) on daily food intake when the interinfusion interval was >or=3 h appeared to be due in part to an increase in food intake between infusions. The declining inhibitory effect of PYY(3-36) on daily food intake when the interinfusion interval was <3 h suggested possible receptor downregulation and tolerance to frequent PYY(3-36) administration; however, food intake significantly increased when PYY(3-36) treatments were discontinued for 1 day following apparent loss in treatment efficacies. Together, these results demonstrate the development of a potent homeostatic response to increase food intake when PYY(3-36) reduces food intake and energy reserves in diet-induced obese rats.  相似文献   

10.
Intracerebroventricular interleukin-6 treatment decreases body fat in rats   总被引:14,自引:0,他引:14  
Recently we found that interleukin-6 (IL-6) knockout mice develop mature-onset obesity and that a single intracerebroventricular (ICV) injection of IL-6 increases energy expenditure. In the present study we investigated if chronic ICV treatment with IL-6 can suppress body fat mass. IL-6 was injected ICV daily for two weeks to rats fed a high-fat diet. IL-6 treatment but not saline treatment decreased body weight by 8.4% and decreased the relative weights of mesenteric and retroperitoneal fat pads. Consistent with this, circulating leptin levels were decreased by 40% after IL-6 treatment but not after saline treatment. Average food intake per day was decreased in the IL-6 treated group compared to the saline treated rats. IL-6 treatment did not change hepatic expression of the acute-phase protein haptoglobin, serum levels of insulin or insulin-like growth factor-I, or the weights of the heart, liver, kidneys, adrenals, and spleen. We conclude that centrally administered IL-6 can decrease body fat in rats without causing acute-phase reaction.  相似文献   

11.
Wang H  Pan Y  Xue B  Wang X  Zhao F  Jia J  Liang X  Wang X 《PloS one》2011,6(5):e19790
Accumulating evidence indicates that oxidative stress plays a critical role in Parkinson's disease (PD). Our previous work has shown that 100 Hz electro-acupuncture (EA) stimulation at ZUSANLI (ST36) and SANYINJIAO (SP6) protects neurons in the substantia nigra pars compacta from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in male C57BL/6 mice, a model of PD. In the present study we administered 100 Hz EA stimulation at the two acupoints to MPTP-lesioned mice for 12 sessions starting from the day prior to the first MPTP injection. We found that in the striatum of MPTP treated mice 100 Hz EA stimulation effectively inhibited the production of hydrogen peroxide and malonaldehyde, and increased glutathione concentration and total superoxide dismutase activity through biochemical methods. However, it decreased glutathione peroxidase activity via biochemical analysis and did not affect the level of 1-methyl-4-phenylpyridinium in the striatum revealed by high performance liquid chromatography with ultraviolet detection. These data suggest that 100 Hz EA stimulation at ST36 and SP6 has antioxidative effects in the MPTP model of PD. This data, along with our previous work, indicates that 100 Hz EA stimulation at ST36 and SP6 protects the nigrostriatal system by multiple mechanisms including antioxidation and antiapoptosis, and suggests that EA stimulation is a promising therapy for treating PD.  相似文献   

12.
α-Melanocyte-stimulating hormone (α-MSH) is a critical regulator of energy metabolism. Prolyl carboxypeptidase (PRCP) is an enzyme responsible for its degradation and inactivation. PRCP-null mice (PRCP(gt/gt)) showed elevated levels of brain α-MSH, reduced food intake, and a leaner phenotype compared with wild-type controls. In addition, they were protected against diet-induced obesity. Here, we show that PRCP(gt/gt) animals have improved metabolic parameters compared with wild-type controls under a standard chow diet (SD) as well as on a high-fat diet (HFD). Similarly to when they are exposed to SD, PRCP(gt/gt) mice exposed to HFD for 13 wk showed a leaner phenotype due to decreased fat mass, increased energy expenditure, and locomotor activity. They also showed improved insulin sensitivity and glucose tolerance compared with WT controls and a significant reduction in fasting glucose levels. These improvements occured before changes in body weight and composition were evident, suggesting that the beneficial effect of PRCP ablation is independent of the adiposity levels. In support of a reduced gluconeogenesis, liver PEPCK and G-6-Pase mRNA levels were reduced significantly in PRCP(gt/gt) compared with WT mice. A significant decrease in liver weight and hepatic triglycerides were also observed in PRCP(gt/gt) compared with WT mice. Altogether, our data suggest that PRCP is an important regulator of energy and glucose homeostasis since its deletion significantly improves metabolic parameters in mice exposed to both SD and HFD.  相似文献   

13.
Dietary induced obesity in rodents is associated with a resistance to leptin. We have investigated the hypothesis that dietary fat per se alters the feeding response to peripheral leptin in rats that were fed either their habitual high- or low-fat diet or were naively exposed to the alternative diet. Osborne-Mendel rats were adapted to either high- or low-fat diet. Food-deprived rats were given either leptin (0.5 mg/kg body wt ip) or saline, after which they were provided with either their familiar diet or the alternative diet. Food intake of rats adapted and tested with the low-fat diet was reduced 4 h after leptin injection, whereas rats adapted and tested with a high-fat diet did not respond to leptin. Leptin was injected again 1 and 5 days after the high-fat diet-adapted rats were switched to the low-fat diet. Leptin reduced the food intake on both days. In contrast, when low-fat diet-adapted rats were switched to a high-fat diet, the leptin inhibitory response was present on day 1 but not observed on day 5. Peripheral injection of leptin increased serum corticosterone level and decreased hypothalamic neuropeptide Y mRNA expression in rats fed the low-fat but not the high-fat diet for 20 days. The data suggest that dietary fat itself, rather than obesity, may induce leptin resistance within a short time of exposure to a high-fat diet.  相似文献   

14.
Leptin-resistant rats, when given a high-fat (HF) diet, have a delayed normalization of caloric intake and greater weight gain than those on a chow diet. Because aged, obese rats are leptin resistant, these data predict that they will also have a delayed normalization of caloric intake and exacerbated weight gain when provided a HF diet. To investigate this hypothesis, along with the consequences of a HF diet on voluntary wheel running, we compared various ages of rats on a HF or chow diet. HF-fed young rats spontaneously divided into diet-induced obese and diet-resistant rats. However, all aged rats were susceptible to the weight-gaining effects of HF feeding. Rate of initial weight gain was proportional to age, and peak caloric intake on the HF diet and the days required to normalize caloric intake to basal levels increased with age. Responsiveness to peripheral leptin before HF feeding revealed a dose-response decrease in food intake and body weight in the young but no responses in the aged to even the highest dose, 0.5 mg/day. In addition, both age and HF feeding decreased the tendency for wheel running, suggesting the propensity for inactivity with age and HF feeding may contribute to age-related obesity and accelerate the rate of diet-induced obesity. These results demonstrate that aged rats are more susceptible to the detrimental effects of a HF diet.  相似文献   

15.
The ability of amylin to reduce acute food intake in rodents is well established. Longer-term administration in rats (up to 24 days) shows a concomitant reduction in body weight, suggesting energy intake plays a significant role in mediating amylin-induced weight loss. The current set of experiments further explores the long-term effects of amylin (4-11 wk) on food preference, energy expenditure, and body weight and composition. Furthermore, we describe the acute effect of amylin on locomotor activity and kaolin consumption to test for possible nonhomeostatic mechanisms that could affect food intake. Four-week subcutaneous amylin infusion of high-fat fed rats (3-300 microg.kg(-1).day(-1)) dose dependently reduced food intake and body weight gain (ED(50) for body weight gain = 16.5 microg.kg(-1).day(-1)). The effect of amylin on body weight gain was durable for up to 11 wks and was associated with a specific loss of fat mass and increased metabolic rate. The body weight of rats withdrawn from amylin (100 microg.kg(-1).day(-1)) after 4 wks of infusion returned to control levels 2 wks after treatment cessation, but did not rebound above control levels. When self-selecting calories from a low- or high-fat diet during 11 wks of infusion, amylin-treated rats (300 microg.kg(-1).day(-1)) consistently chose a larger percentage of calories from the low-fat diet vs. controls. Amylin acutely had no effect on locomotor activity or kaolin consumption at doses that decreased food intake. These results demonstrate pharmacological actions of amylin in long-term body weight regulation in part through appetitive-related mechanisms and possibly via changes in food preference and energy expenditure.  相似文献   

16.
Chronic mild stress (CMS) has been often associated to the pathogenesis of many diseases including obesity. Indeed, visceral obesity has been linked to the development of metabolic syndrome features and constitutes a serious risk factor for cardiovascular diseases and diabetes. In order to study possible mechanistic relationships between stress and the onset of obesity, we developed during 11 weeks a model of high-fat dietary intake (cafeteria diet) together with a CMS regimen in male Wistar rats. During the experimental period, basal metabolism by indirect calorimetry, rectal temperature, food intake, and locomotive markers were specifically analyzed. After 77 days, animals were sacrificed and body, adiposity and plasma biochemical profiles were also examined. As expected, cafeteria diet in unstressed animals induced a significative increase in body weight, adiposity, and insulin resistance markers. Locomotive variables, specifically distance, rearing and meander, were significantly increased by CMS on the first weeks of stress. Moreover, this model of CMS in Wistar rats increased significantly energy expenditure, and apparently interplayed with the dietary treatment on the muscle weight/fat weight ratio. In summary, this chronic stress model did not affected weight gain in control and high fat fed animals, but induced an interaction concerning the metabolic muscle/fat repartitioning.  相似文献   

17.
Several studies have suggested that oxidative stress might cause and aggravate the inflammatory state associated with obesity and could be the link between excessive weight gain and its related disorders such as insulin resistance and cardiovascular diseases. Thus, antioxidant treatment has been proposed as a therapy to prevent and manage obesity and associated complications. Therefore, the aim of the present study was to investigate the effects of supplementation of a standard or high fat diet with the antioxidant lipoic acid (LA) during 56 days, on body weight gain, adiposity, feed efficiency and intestinal sugar absorption, in male Wistar rats. LA supplementation induced a lower body weight gain and adipose tissue size in both control or high fat fed rats accompanied by a reduction in food intake. The group fed on a high fat diet and treated with LA (OLIP group) showed a lower body weight gain than its corresponding Pair-Fed (PF) group (P<0.05), which received the same amount of food than LA-treated animals but with no LA. In fact, LA induced a reduction on feed efficiency and also significantly decreased intestinal α-methylglucoside (α-MG) absorption both in lean and obese rats. These results suggest that the beneficial effects of dietary supplementation with LA on body weight gain are mediated, at least in part, by the reduction observed in food intake and feed efficiency. Furthemore, the inhibitory action of LA on intestinal sugar transport could explain in part the lower feed efficiency observed in LA-treated animals and therefore, highlighting the beneficial effects of LA on obesity.  相似文献   

18.
Peptide YY(3-36) [PYY(3-36)] is a gut-brain peptide that decreases food intake when administered by intravenous infusion to lean and obese humans and rats. However, chronic administration of PYY(3-36) by osmotic minipump to lean and obese rodents produces only a transient reduction in daily food intake and weight gain. It has recently been shown that 1-h intravenous infusions of PYY(3-36) every other hour for 10 days produced a sustained reduction in daily food intake, body weight, and adiposity in lean rats. Here, we determined whether intermittent delivery of PYY(3-36) can produce a similar response in diet-induced obese rats. During a 21-day period, obese rats (body fat >25%) received twice daily intraperitoneal infusion of vehicle (n = 18) or PYY(3-36) (n = 24) during hours 1-3 and 7-9 of the dark period. Rats had free access to both a 45% fat solid diet and a 29% fat liquid diet; intakes were determined from continuous computer recording of changes in food container weights. To sustain a 15-25% reduction in daily caloric intake, the initial PYY(3-36) dose of 30 pmol.kg(-1).min(-1) was reduced to 10 pmol.kg(-1).min(-1) on day 10 and then increased to 17 pmol.kg(-1).min(-1) on day 13. This dosing strategy produced a sustained reduction in daily caloric intake of 11-32% and prevented body weight gain (8 +/- 6 vs. 51 +/- 11 g) and fat deposition (4.4 +/- 7.6 vs. 41.0 +/- 12.8 g). These results indicate that intermittent intraperitoneal infusion of PYY(3-36) can produce a sustained reduction in food intake and adiposity in diet-induced obese rodents consuming palatable high-fat foods.  相似文献   

19.
We evaluated the effects of difructose anhydride III (DFAIII) on body weights of ovariectomized rats, which are a good model for obesity by estrogen deficiency-induced overeating. Female rats (10 weeks old) were subjected to ovariectomy or sham operation and then fed with or without a diet containing 3% or 6% DFAIII for 33 days or pair-fed control diet during the same period. Rats fed DFAIII showed significantly decreased food intake, energy intake, body weight gain, body energy accumulation, and fat tissue weight than control group, regardless of ovariectomy. DFAIII may decrease body fat dependent of reduced food/energy intake. Compared with the respective pair feeding groups, rats fed DFAIII showed significantly decreased body energy and fat tissue weight, regardless of ovariectomy, suggesting its potential as a low-energy substitute for high-energy sweeteners. The low energy of DFAIII may contribute to decreased body fat, which may not be dependent on obesity.  相似文献   

20.
In this study, susceptibility of inbred C57BL/6 and outbred NMRI mice to monosodium glutamate (MSG) obesity or diet-induced obesity (DIO) was compared in terms of food intake, body weight, adiposity as well as leptin, insulin and glucose levels. MSG obesity is an early-onset obesity resulting from MSG-induced lesions in arcuate nucleus to neonatal mice. Both male and female C57BL/6 and NMRI mice with MSG obesity did not differ in body weight from their lean controls, but had dramatically increased fat to body weight ratio. All MSG obese mice developed severe hyperleptinemia, more remarkable in females, but only NMRI male mice showed massive hyperinsulinemia and an extremely high HOMA index that pointed to development of insulin resistance. Diet-induced obesity is a late-onset obesity; it developed during 16-week-long feeding with high-fat diet containing 60 % calories as fat. Inbred C57BL/6 mice, which are frequently used in DIO studies, both male and female, had significantly increased fat to body weight ratio and leptin and glucose levels compared with their appropriate lean controls, but only female C57BL/6 mice had also significantly elevated body weight and insulin level. NMRI mice were less prone to DIO than C57BL/6 ones and did not show significant changes in metabolic parameters after feeding with high-fat diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号