首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
该研究选取六个多年生苦荞新品系,对春季、秋季直播与秋季再生其主要农艺性状进行调查。结果表明:(1)不同播种季节对多年生苦荞新品系主花序的花粉可育率、总结实率、有效结实率、植株株高、主茎粗、主茎分枝数、主茎节数、籽粒百粒重、单株粒数、单株产量的影响均达到显著或极显著水平;秋播主花序花粉可育率、总结实率、有效结实率、植株主茎分枝数、籽粒百粒重、单株粒数、单株产量均极显著高于春播;植株株高、主茎粗、主茎节数均极显著低于春播;主花序花朵大小、籽粒种子长宽比无显著差异。(2)不同种植方式对主花序花粉可育率、有效结实率、植株主茎节数及籽粒百粒重的影响达到显著或极显著水平;秋季再生主花序花粉可育率、籽粒单株粒数显著高于秋季直播;主花序有效结实率、植株主茎粗、主茎节数、籽粒百粒重显著低于秋季直播;主花序花朵大小、总结实率、植株株高、主茎分枝数、籽粒种子长宽比、单株产量无显著差异;相关分析表明,各生长季节下主花序有效结实率及单株粒数与单株产量的相关系数均最高。(3)所有参试品系中,1612-241秋季直播的单株产量显著高于其他品系; 1612-16、1612-33秋季再生单株产量较正季优势显著。该研究结果有助于筛选出适宜一季播种两季收获的优良品系,为今后多年生苦荞的选择育种提供线索基础。  相似文献   

2.
Inflorescence effects have been poorly studied, in spite of the functional relevance of the inflorescence in fruit and seed ecology. The present study focused on the effects of inflorescence size and phenology, and flower position within the inflorescence, in relation to fruit and seed production of the Mediterranean shrub Ononis fruticosa. Variability in fruit and seed production, seed weight and germination were estimated and modelled. Results confirmed that the most important predictors in seed production were inflorescence flowering time and flower position within the inflorescence. Thus, the number of mature seeds per fruit was higher in earlier inflorescences and in basal positions. On the other hand, predation was higher in fruits in basal positions. In fact, seed predation seemed to be the most important factor controlling final seed production. Models at the plant level suggested a negative incidence of geitonogamous pollination and resource limitation, which were also observed at the fruit level. This study confirmed the relevance of inflorescence effects on the reproductive output of O. fruticosa. Although the underlying processes could not be identified, our results provide several hypotheses for future experimental studies.  相似文献   

3.
Cereal crop yield is determined by different yield components such as seed weight, seed number per spike and the tiller number and spikes. Negative correlations between these traits are often attributed to resource limitation. However, recent evidence suggests that the same genes or regulatory modules can regulate both inflorescence branching and tillering. It is therefore important to explore the role of genetic correlations between different yield components in small grain cereals. In this work, we studied pleiotropic effects of row type genes on seed size, seed number per spike, thousand grain weight, and tillering in barley to better understand the genetic correlations between individual yield components. Allelic mutants of nine different row type loci (36 mutants), in the original spring barley varieties Barke, Bonus and Foma and introgressed in the spring barley cultivar Bowman, were phenotyped under greenhouse and outdoor conditions. We identified two main mutant groups characterized by their relationships between seed and tillering parameters. The first group comprises all mutants with an increased number of seeds and significant change in tiller number at early development (group 1a) or reduced tillering only at full maturity (group 1b). Mutants in the second group are characterized by a reduction in seeds per spike and tiller number, thus exhibiting positive correlations between seed and tiller number. Reduced tillering at full maturity (group 1b) is likely due to resource limitations. In contrast, altered tillering at early development (groups 1a and 2) suggests that the same genes or regulatory modules affect inflorescence and shoot branching. Understanding the genetic bases of the trade-offs between these traits is important for the genetic manipulation of individual yield components.  相似文献   

4.
5.
Resource allocation is a major determinant of plant fitness and is influenced by external as well as internal stimuli. We have investigated the effect of cell wall invertase activity on the transition from vegetative to reproductive growth, inflorescence architecture, and reproductive output, i.e. seed production, in the model plant Arabidopsis thaliana by expressing a cell wall invertase under a meristem-specific promoter. Increased cell wall invertase activity causes accelerated flowering and an increase in seed yield by nearly 30%. This increase is caused by an elevation of the number of siliques, which results from enhanced branching of the inflorescence. On the contrary, as cytosolic enzyme, the invertase causes delayed flowering, reduced seed yield, and branching. This demonstrates that invertases not only are important in determining sink strength of storage organs but also play a role in regulating developmental processes.  相似文献   

6.
Members of the plant-specific gibberellic acid-stimulated Arabidopsis (GASA) gene family play roles in hormone response, defense and development. We have identified six new Arabidopsis GASA genes, bringing the total number of family members to 14. Here we show that these genes all encode small polypeptides that share the common structural features of an N-terminal putative signal sequence, a highly divergent intermediate region and a conserved 60 amino acid C-terminal domain containing 12 conserved cysteine residues. Analysis of promoter::GUS (beta-glucuronidase) transgenic plants representing six different GASA loci reveals that the promoters are activated in a variety of stage- and tissue-specific patterns during development, indicating that the GASA genes are involved in diverse processes. Characterization of GASA4 shows that the promoter is active in the shoot apex region, developing flowers and developing embryos. Phenotypic analyses of GASA4 loss-of-function and gain-of-function lines indicate that GASA4 regulates floral meristem identity and also positively affects both seed size and total seed yield.  相似文献   

7.
8.
Enhancer trap is a powerful approach for identifying tissue- and stage-specific gene expression in plants and animals. For Arabidopsis research, beta-glucuronidase (GUS) enhancer-trap lines have been created and successfully used to identify tissue-specific gene expression in many plant organs. However, limited applications of these lines for seed germination research have been reported. This is probably due to the impermeability of the testa to the GUS substrate. By focusing on the stages between testa and endosperm rupture, we were able to circumvent the testa barrier to the GUS substrate and observe diverse tissue-specific gene expression during germination sensu stricto. One hundred and twenty-one positive subpools of 10 lines out of 1130 were isolated. Approximately 4500 plants from these subpools were grown in a greenhouse and one to seven individual plants exhibiting GUS expression in seeds were isolated for each subpool. This library of the Arabidopsis seed enhancer-trap lines is an efficient tool for identifying seed germination-associated genes. The individual lines from this library will be provided to the international seed biology research community. International collaboration to identify the trapped genes using genome-walking PCR and to characterize the gene functions using knockout plants will significantly enhance our understanding of the molecular mechanisms of seed germination.  相似文献   

9.
Variation in flowering time of Arabidopsis thaliana was studied in an experiment with mutant lines. The pleiotropic effects of flowering time genes on morphology and reproductive yield were assessed under three levels of nutrient supply. At all nutrient levels flowering time and number of rosette leaves at flowering varied among mutant lines. The relationship between these two traits depended strongly on nutrient supply. A lower nutrient supply first led to an extension of the vegetative phase, while the mean number of leaves at flowering was hardly affected. A further reduction resulted in no further extension of the vegetative phase and, on average, plants started flowering with a lower leaf number. At low nutrients, early flowering affected the timing of production of siliques rather than the total output, whereas late flowering was favorable at high nutrients. This may explain the fact that many plant species flower at a relatively small size under poor conditions. Flowering time genes had pleiotropic effects on the leaf length, number of rosette and cauline leaves, and number of axillary flowering shoots of the main inflorescence. Silique production was positively correlated with the number of axillary shoots of the main inflorescence; the number of axillary primordia appeared to have a large impact on reproductive yield.  相似文献   

10.
Abstract Fruit and seed set in a dioecious tree, Phellodendron amurense var. sachalinense grown in isolation, were studied for three years in Hokkaido, northern Japan. Hand pollination did not affect fruit set during the three years, but did affect seed-set by increasing the proportion of fruits with higher seed numbers. Artificial defoliation resulted in decreased mean seed mass, but caused no significant differences in mean seed number per fruit. Total seed mass per infructescence increased with inflorescence size except with artificial defoliation where it reached an upper limit. Although the results of the artificial defoliation treatment indicate that resources are most important for fruit and seed set, it is concluded that fruit and seed set of the tree are not limited by resources, since the number of fruits increased with inflorescence size and an artificial defoliation treatment did not decrease seed-number.  相似文献   

11.
The roles of herbivory and pollination success in plant reproduction have frequently been examined, but interactions between these two factors have gained much less attention. In three field experiments, we examined whether artificial defoliation affects allocation to attractiveness to pollinators, pollen production, female reproductive success and subsequent growth in Platanthera bifolia L. (Rich.). We also recorded the effects of inflorescence size on these variables. We studied the effects of defoliation on reproductive success of individual flowers in three sections of inflorescence. Defoliation and inflorescence size did not have any negative effects on the proportion of opened flowers, spur length, nectar production or the weight of pollinia. However, we found that hand-pollination increased relative seed production and defoliation decreased seed set in most cases. Interactions between hand-pollination and defoliation were non-significant indicating that defoliation did not affect female reproductive success indirectly via decreased pollinator attraction. Plants with a large inflorescence produced relatively more seeds than plants with a small inflorescence only after hand-pollination. The negative effect of defoliation on relative capsule production was most clearly seen in the upper sections of the inflorescence. In addition to within season effects of leaf removal, defoliated P. bifolia plants may also have decreased lifetime fitness as a result of lower seed set within a season and because of a lower number of reproductive events due to decreased plant size (leaf area) following defoliation. Our study thus shows that defoliation by herbivores may crucially affect reproductive success of P. bifolia.  相似文献   

12.
SUMMARY: It is becoming increasingly vital to improve the yield of seed crops to feed an expanding population and, more recently, for biofuel production. One strategy to increase the yield is to increase the seed size, provided that there is not a concomitant decrease in seed number. In a previous study, we described a mutant in the auxin response factor 2 (ARF2) gene which produced extra cells in the seed coat and, subsequently, enlarged seeds. However, arf2 mutant plants also show severely reduced self-fertility caused, in part, by over-elongated sepals that prevent flower opening. As a low seed set increases individual seed size, a meaningful comparison of the yield in arf2 and wild-type plants could not be conducted. In this study, we show that targeted expression of wild-type ARF2 in the sepals and petals of arf2-9 mutant flowers restores flower opening and dramatically increases seed set. The restored plants retain both enlarged integuments and increased seed size, reinforcing previous evidence that arf2 mutations increase seed weight through their effect on integuments and not only via reduced fertility. We also show that the measurement of the harvest index in Arabidopsis is useful in assessing the impact of introduced traits on the yield.  相似文献   

13.
The existence of genetic variation in offspring size in plants and animals is puzzling because offspring size is often strongly associated with fitness and expected to be under stabilizing selection. An explanation for variation in seed size is conflict between parents and between parents and offspring. However, for this hypothesis to be true, it must be shown that the offspring genotype can affect its own size. The existence of paternal effects would support this hypothesis, but these have rarely been shown. Using a diallel cross among four natural accessions of Arabidopsis thaliana we show that maternal, paternal and positional effects jointly influence seed size, number and the frequency of seed abortion. We found that seed abortion (%) depends on the combination of maternal and paternal genotypes, suggesting the existence of mate choice or epistatic incompatibility among accessions of A. thaliana. In addition, since paternal genotype explains approximately 10 per cent of the variation in seed size, we propose that A. thaliana''s offspring must influence the amount of resources allocated to themselves. Identification of paternal effects in Arabidopsis should facilitate dissection of the genetic mechanisms involved in paternal effects.  相似文献   

14.
15.
Plant laccase (LAC) enzymes belong to the blue copper oxidase family and polymerize monolignols into lignin. Recent studies have established the involvement of microRNAs in this process; however, physiological functions and regulation of plant laccases remain poorly understood. Here, we show that a laccase gene, LAC4, regulated by a microRNA, miR397b, controls both lignin biosynthesis and seed yield in Arabidopsis. In transgenic plants, overexpression of miR397b (OXmiR397b) reduced lignin deposition. The secondary wall thickness of vessels and the fibres was reduced in the OXmiR397b line, and both syringyl and guaiacyl subunits are decreased, leading to weakening of vascular tissues. In contrast, overexpression of miR397b‐resistant laccase mRNA results in an opposite phenotype. Plants overexpressing miR397b develop more than two inflorescence shoots and have an increased silique number and silique length, resulting in higher seed numbers. In addition, enlarged seeds and more seeds are formed in these miR397b overexpression plants. The study suggests that miR397‐mediated development via regulating laccase genes might be a common mechanism in flowering plants and that the modulation of laccase by miR397 may be potential for engineering plant biomass production with less lignin.  相似文献   

16.
淫羊藿种子产量与生境的关系   总被引:2,自引:0,他引:2  
以四川省南充市金城山的淫羊藿为研究对象,对小檗科淫羊藿产果数量,种子生产和种子质量与生境的关系进行了研究。研究表明:不同生境的淫羊藿植株高度和花序长度不同,单株结果率也不同,单果产种量差异较小,出种量一般在1~8粒之间,但每个生境单果主要出种量不同。对千粒重和不同果枝结果率单因素方差分析表明,不同生境的淫羊藿种子千粒重有显著差异,不同生境的淫羊藿植株的主次果枝结果率也有显著差异。不同生境中的淫羊藿果实的虫食率也不同。淫羊藿种子的低种子数,小粒种子,而不同生境的结实率虽有差异,但是总体偏低,是导致淫羊藿种子难以收集的主要内因,也导致种群受干扰后不易恢复。  相似文献   

17.
大豆籽粒大小的发育遗传分析   总被引:2,自引:0,他引:2  
籽粒大小是大豆产量的一个重要因素。有关大豆籽粒的遗传学和生理生态学研究已有一些研究,而对于籽粒发育过程中的遗传效应却报道很少。文章采用种子广义遗传模型,分析了大豆双列杂交组合3个世代遗传材料8个时期的鲜籽粒大小和干籽粒大小的数据,应用非条件和条件遗传方差及相关方法分析了发育遗传规律。8个时期的亲本、F1、F2的鲜籽粒大小和干籽粒大小的平均数分别在9/6和9/13达到最高值,鲜籽粒大小在9/6后迅速下降,干籽粒大小在9/13后区于稳定。非条件方差分析表明在整个生育期中,胚遗传效应、细胞质遗传效应和母体植株遗传效应对大豆鲜籽粒大小和干籽粒大小有影响。在多数生育阶段中,细胞质和母体植株的遗传效应对鲜籽粒大小和干籽粒大小影响较大。条件方差分析表明,在大豆生育期中,各遗传体系的基因间断性表达。在多数生育阶段中,细胞质和母体植株的净遗传效应高于胚净遗传效应。不同时期的各遗传体系的基因效应可以单独或同时影响鲜籽粒大小和干籽粒大小的最终表现。8/16的胚加性效应、8/9和8/16的胚显性效应、8/2和8/16的母体植株显性效应影响到鲜籽粒大小的最终表现。8/2和9/13的胚加性效应、8/9的细胞质效应、8/2的母体植株显性效应对干籽粒大小的最终表现有影响。  相似文献   

18.
19.
Abstract Total seed yield per plant in one season was differentiated neither between Epimedium diphyllum and the E. grandiflorum complex ( E. grandiflorum and E. sempervirens ), nor between these two groups and one of their hybrid derived species, E. trifoliatobinatum . Total ovules per plant and seed-set rate per capsule ( SR ) did not vary greatly between these species, and seed weight ( SW ) was almost the same between them. The number of flowers per inflorescence ( F ) was also constant. However, the remaining reproductive component characters, ovule number per ovary ( O ) and inflorescence number per plant ( I ), were differentiated between the three taxa. These two characters were negatively correlated and a trade-off relationship occurred under the constant total seed yield (= O × F × I × SR × SW ). Ovule number per ovary was highly correlated with spur length of the flower. During the course of the hybrid speciation of E. trifoliatobinatum , selection pressure by pollinators on intermediate spur length seems to have favored plants with an intermediate ovule number. On the other hand, this selection pressure counteracted the increase of the inflorescence number under the trade-off. The resultant seed yield of E. trifoliatobinatum did not differ from that of the parental species, but the pattern of ovule allocation to ovaries (capsules) was altered.  相似文献   

20.
Soybean (Glycine max) produces seeds that are rich in unsaturated fatty acids and is an important oilseed crop worldwide. Seed oil content and composition largely determine the economic value of soybean. Due to natural genetic variation, seed oil content varies substantially across soybean cultivars. Although much progress has been made in elucidating the genetic trajectory underlying fatty acid metabolism and oil biosynthesis in plants, the causal genes for many quantitative trait loci (QTLs) regulating seed oil content in soybean remain to be revealed. In this study, we identified GmFATA1B as the gene underlying a QTL that regulates seed oil content and composition, as well as seed size in soybean. Nine extra amino acids in the conserved region of GmFATA1B impair its function as a fatty acyl–acyl carrier protein thioesterase, thereby affecting seed oil content and composition. Heterogeneously overexpressing the functional GmFATA1B allele in Arabidopsis thaliana increased both the total oil content and the oleic acid and linoleic acid contents of seeds. Our findings uncover a previously unknown locus underlying variation in seed oil content in soybean and lay the foundation for improving seed oil content and composition in soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号