首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Presented here is an engineered protein domain, based on Protein A, that displays a calcium-dependent binding to antibodies. This protein, ZCa, is shown to efficiently function as an affinity ligand for mild purification of antibodies through elution with ethylenediaminetetraacetic acid. Antibodies are commonly used tools in the area of biological sciences and as therapeutics, and the most commonly used approach for antibody purification is based on Protein A using acidic elution. Although this affinity-based method is robust and efficient, the requirement for low pH elution can be detrimental to the protein being purified. By introducing a calcium-binding loop in the Protein A-derived Z domain, it has been re-engineered to provide efficient antibody purification under mild conditions. Through comprehensive analyses of the domain as well as the ZCa–Fc complex, the features of this domain are well understood. This novel protein domain provides a very valuable tool for effective and gentle antibody and Fc-fusion protein purification.  相似文献   

2.
The performance of MabSelect SuRe and IgSelect affinity chromatography resins designed for process-scale purification of antibodies was investigated. Various antibodies (4 human monoclonal, 1 human polyclonal and 1 bovine polyclonal antibody and 1 Fc-fusion protein) were used to evaluate the elution pH and dynamic binding capacity of the resins. The elution pH for each human antibody was similar on MabSelect SuRe and IgSelect (pH 3.5–3.8). No significant differences in dynamic binding capacity were observed among human antibodies on MabSelect SuRe (∼20–40 mg/mL resin) and IgSelect (∼10–30 mg/mL resin). The binding capacity order for the human antibodies was the same on MabSelect SuRe and IgSelect. Using a linear pH gradient, both resins were able to partially separate monomeric and aggregated forms of the antibodies. The results indicate that these new affinity resins are powerful tools for the purification of human polyclonal antibodies from transgenic animals and oligoclonal antibodies from CHO cell cultures.  相似文献   

3.
To rapidly find “best-in-class” antibody therapeutics, it has become essential to develop high throughput (HTP) processes that allow rapid assessment of antibodies for functional and molecular properties. Consequently, it is critical to have access to sufficient amounts of high quality antibody, to carry out accurate and quantitative characterization. We have developed automated workflows using liquid handling systems to conduct affinity-based purification either in batch or tip column mode. Here, we demonstrate the capability to purify >2000 antibodies per day from microscale (1 mL) cultures. Our optimized, automated process for human IgG1 purification using MabSelect SuRe resin achieves ~70% recovery over a wide range of antibody loads, up to 500 µg. This HTP process works well for hybridoma-derived antibodies that can be purified by MabSelect SuRe resin. For rat IgG2a, which is often encountered in hybridoma cultures and is challenging to purify via an HTP process, we established automated purification with GammaBind Plus resin. Using these HTP purification processes, we can efficiently recover sufficient amounts of antibodies from mammalian transient or hybridoma cultures with quality comparable to conventional column purification.  相似文献   

4.
Staphylococcal protein A chromatography is an established core technology for monoclonal antibody purification and capture in the downstream processing. MabSelect SuRe involves a tetrameric chain of a recombinant form of the B domain of staphylococcal protein A, called the Z-domain. Little is known about the stoichiometry, binding orientation, or preferred binding. We analyzed small-angle X-ray scattering data of the antibody–protein A complex immobilized in an industrial highly relevant chromatographic resin at different antibody concentrations. From scattering data, we computed the normalized radial density distributions. We designed three-dimensional (3D) models with protein data bank crystallographic structures of an IgG1 (the isoform of trastuzumab, used here; Protein Data Bank: 1HZH) and the staphylococcal protein A B domain (the native form of the recombinant structure contained in MabSelect SuRe resin; Protein Data Bank: 1BDD). We computed different binding conformations for different antibody to protein A stoichiometries (1:1, 2:1, and 3:1) and compared the normalized radial density distributions computed from 3D models with those obtained from the experimental data. In the linear range of the isotherm we favor a 1:1 ratio, with the antibody binding to the outer domains in the protein A chain at very low and high concentrations. In the saturation region, a 2:1 ratio is more likely to occur. A 3:1 stoichiometry is excluded because of steric effects.  相似文献   

5.
This contribution describes strategies to purify monoclonal antibodies from Chinese hamster ovary (CHO) cell culture supernatant using newly designed multimodal membranes (MMMs). The MMMs were used for the capture step purification of human IgG1 following a size‐exclusion desalting column to remove chaotropic salts that interfere with IgG binding. The MMM column attained higher dynamic binding capacity than a Protein A resin column at an equivalent residence time of 1 min. The two‐step MMM chromatography process achieved high selectivity for capturing hIgG1 from the CHO cell culture supernatant, though the desalting step resulted in product dilution. Product purity and host cell protein (HCP) level in the elution pool were analyzed and compared to results from a commercial Protein A column. The product purity was >98% and HCP levels were <20 ppm for both purification methods. In addition, hIgG1 could be eluted from the MMM chromatography column at neutral pH, which is important for limiting the formation of aggregates; although slow elution dilutes the product. Overall, this paper shows that MMMs are highly effective for capture step purification of proteins and should be considered when Protein A cannot be used, e.g., for pH sensitive mAbs or proteins lacking an Fc binding domain. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:658–665, 2017  相似文献   

6.
In this paper, a wide range of antibodies from various subclasses and subfamilies are employed to evaluate the creation of generic separation processes using Protein A chromatography. The reasons for elution pH differences amongst several IgG1s, IgG2s, antibody fragments, and Fc-fusion proteins during Protein A chromatography are investigated using several complimentary techniques. The results indicate that variable region interactions play a major role in determining elution pH for VH3 subfamily antibodies while using traditional protein A chromatographic materials. On the other hand, experiments with a resin which employs a ligand consisting solely of B domain of Protein A indicate that variable region interactions can be mitigated, enabling the use of a single elution pH for a range of antibodies. Finally, the moderation of elution conditions associated with this engineered ligand are shown to minimize problems associated with low pH induced aggregation. It is expected that the findings reported in this paper will facilitate faster process development cycle times for this important class of human therapeutics.  相似文献   

7.
Protein A chromatography is currently the industry gold‐standard for monoclonal antibody and Fc‐fusion protein purification. The high cost of Protein A, however, makes resin lifetime and resin reuse an important factor for process economics. Typical resin lifetime studies performed in the industry usually examine the effect of resin re‐use on binding capacity, yield, and product quality without answering the fundamental question of what is causing the decrease in performance. A two part mechanistic study was conducted in an attempt to decouple the effect of the two possible factors (resin hydrolysis and/or degradation vs. resin fouling) on column performance over lifetime of the most commonly used alkali‐stable Protein A resins (MabSelect SuRe and MabSelect SuRe LX). The change in binding capacity as a function of sodium hydroxide concentration (rate of hydrolysis), temperature, and stabilizing additives was examined. Additionally, resin extraction studies and product cycling studies were conducted to determine cleaning effectiveness (resin fouling) of various cleaning strategies. Sodium hydroxide‐based cleaning solutions were shown to be more effective at preventing resin fouling. Conversely, cold temperature and the use of stabilizing additives in conjunction with sodium hydroxide were found to be beneficial in minimizing the rate of Protein A ligand hydrolysis. An effective and robust cleaning strategy is presented here to maximize resin lifetime and thereby the number of column cycles for future manufacturing processes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:708–715, 2017  相似文献   

8.
The genomics revolution has created a need for increased speed and generality for recombinant protein production systems as well as general methods for conducting biochemical assays with the purified protein products. 9E10 is a well-known high-affinity antibody that has found use in a wide variety of biochemical assays. Here we present a standardized system for purifying proteins with a simple epitope tag based on c-myc peptide using an antibody affinity column. Antibodies with binding parameters suitable for protein purification have been generated and characterized. To purify these antibodies from serum-containing medium without carrying through contaminating immunoglobulin G, a peptide-based purification process was developed. A fluorescence polarization binding assay was developed to characterize the antigen-antibody interaction. Protein purification protocols were optimized using a fluorescein-labeled peptide as a surrogate "protein." Binding and elution parameters were evaluated and optimized and basic operating conditions were defined. Several examples using this procedure for the purification of recombinant proteins are presented demonstrating the generality of the system. In all cases tested, highly pure final products are obtained in good yields. The combination of the antibodies described here and 9E10 allow for almost any biochemical application to be utilized with a single simple peptide tag.  相似文献   

9.
Immunoaffinity chromatography is a powerful method for purification of proteins because of the high selectivity and avidity of antibodies. Due to the strength of antigen–antibody binding, however, elution of proteins bound to antibodies that are covalently immobilized on the column is performed by temporary denaturation of the antibody. Therefore, the development of milder elution conditions could improve the recovery of the antibodies and prolong the life of the immunoaffinity column. We describe the design and construction of an antibody that changes its affinity in response to external stimuli. The heavy chain and light chain of a single chain Fv of the D1.3 antibody against hen egg-white lysozyme (HEL) were fused at the N- and C-termini, respectively, of the calmodulin-M13 fusion protein. The affinity of this fusion protein for HEL could be modulated by changing the Ca2+ concentration.  相似文献   

10.
Protein A affinity chromatography is a central part of most commercial monoclonal antibody and Fc‐fusion protein purification processes. In the last couple years an increasing number of new Protein A technologies have emerged. One of these new Protein A technologies consists of a novel, alkaline‐tolerant, Protein A ligand coupled to a macroporous polymethacrylate base matrix that has been optimized for immunoglobulin (Ig) G capture. The resin is interesting from a technology perspective because the particle size and pore distribution of the base beads are reported to have been optimized for high IgG binding and fast mass transfer, while the Protein A ligand has been engineered for enhanced alkaline tolerance. This resin was subjected to a number of technical studies including evaluating dynamic and static binding capacities, alkaline stability, Protein A leachate propensity, impurity clearance, and pressure–flow behavior. The results demonstrated similar static binding capacities as those achieved with industry standard agarose Protein A resins, but marginally lower dynamic binding capacities. Removal of impurities from the process stream, particularly host cell proteins, was molecule dependent, but in most instances matched the performance of the agarose resins. This resin was stable in 0.1 M NaOH for at least 100 h with little loss in binding capacity, with Protein A ligand leakage levels comparable to values for the agarose resins. Pressure–flow experiments in lab‐scale chromatography columns demonstrated minimal resin compression at typical manufacturing flow rates. Prediction of resin compression in manufacturing scale columns did not suggest any pressure limitations upon scale up. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1125–1136, 2014  相似文献   

11.
Advances in cell culture expression levels in the last two decades have resulted in monoclonal antibody titers of ≥10 g/L to be purified downstream. A high capacity capture step is crucial to prevent purification from being the bottleneck in the manufacturing process. Despite its high cost and other disadvantages, Protein A chromatography still remains the optimal choice for antibody capture due to the excellent selectivity provided by this step. A dual flow loading strategy was used in conjunction with a new generation high capacity Protein A resin to maximize binding capacity without significantly increasing processing time. Optimum conditions were established using a simple empirical Design of Experiment (DOE) based model and verified with a wide panel of antibodies. Dynamic binding capacities of >65 g/L could be achieved under these new conditions, significantly higher by more than one and half times the values that have been typically achieved with Protein A in the past. Furthermore, comparable process performance and product quality was demonstrated for the Protein A step at the increased loading. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1335–1340, 2014  相似文献   

12.
The complex molecular formats of recent therapeutic antibodies, including bispecific antibodies, antibody fragments, and other fusion proteins, makes the task of purifying the desired molecules in a limited number of purification steps more and more challenging. Manufacturing these complicated biologics can be substantially improved in the affinity capture stage if the simple bind-and-elute mode is accompanied by targeted removal of the impurities, such as mis-paired antibodies and oligomers or aggregates. Here, we report a method, based on the binding valency to Protein L resin, of separating proteins during the elution step by simply controlling the conductivity at low pH. We show that the method efficiently separated targeted antibodies from mis-paired and aggregated species. Notably, the number of Protein L binding sites can be built into the molecule by design to facilitate the purification. This method may be useful for purifying various antibody formats at laboratory and manufacturing scales.  相似文献   

13.
Antibody-binding fragments (Fab) are generated from whole antibodies by treatment with papain and can be separated from the Fc component using Protein-A affinity chromatography. Commercial kits are available, which facilitate the production and purification of Fab fragments; however, the manufacturer fails to report that this method is inefficient for antibodies with VH3 domains as a result of the intrinsic variable region affinity for Protein-A. A commercially available, modified Protein-A resin (MabSelect SuRe) has been engineered for greater stability. Here, we report that an additional consequence of the modified resin is the ability to purify VH3 family Fab fragments, which cannot be separated effectively from other components of the papain digest by traditional Protein-A resin. This improvement of a commonly used procedure is of significance, as increasingly, therapeutic antibodies are being derived from human origin, where VH3 is the most abundantly used variable region family.  相似文献   

14.
There is strong interest in the design of bispecific monoclonal antibodies (bsAbs) that can simultaneously bind 2 distinct targets or epitopes to achieve novel mechanisms of action and efficacy. Multiple bispecific formats have been proposed and are currently under development. Regeneron's bispecific technology is based upon a standard fully human IgG antibody in order to minimize immunogenicity and improve the pharmacokinetic profile. A single common light chain and 2 distinct heavy chains combine to form the bispecific molecule. One of the heavy chains contains a chimeric Fc sequence form (called Fc*) that ablates binding to Protein A via the constant region. As a result of co-expression of the 2 heavy chains and the common light chain, 3 products are created, 2 of which are homodimeric for the heavy chains and one that is the desired heterodimeric bispecific product. The Fc* sequence allows selective purification of the FcFc* bispecific product on commercially available affinity columns, due to intermediate binding affinity for Protein A compared to the high avidity FcFc heavy chain homodimer, or the weakly binding Fc*Fc* homodimer. This platform requires the use of Protein A chromatography in both a capture and polishing modality. Several challenges, including variable region Protein A binding, resin selection, selective elution optimization, and impacts upon subsequent non-affinity downstream unit operations, were addressed to create a robust and selective manufacturing process.  相似文献   

15.
Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca2+ translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously, GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better separation of oligomers present, during size exclusion chromatography. The optimised method for expression and purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies. This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for recombinant production of multi-domain eukaryotic membrane proteins.  相似文献   

16.
In this work, we investigated the feasibility of using phenyl boronate (PB) chromatography for the direct capture of monoclonal antibodies from a CHO cell supernatant. Preliminary results, using pure protein solutions have shown that PB media can bind to human antibodies, not only at strong alkaline conditions but also at acidic pH values. In fact, antibodies have been found to bind in the pH range 5.5-8.5. On the other hand, insulin and human serum albumin did not bind at alkaline pH but at lower pH, which reflects the importance of non-specific interactions with the matrix. Different binding and eluting buffers were evaluated for the capture of immunoglobulin G (IgG) from a CHO cell supernatant and the most promising results were obtained using 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid at pH 8.5 as binding buffer and 1.5 M Tris-HCl as eluting buffer. Using a step elution, all IgG was recovered in the elution pool with a maximum purification factor of 56. A gradient elution allowed a further increase of the final purity, yet achieving a slightly lower yield. IgG recovery was around 85% and the purification factor was 76. The highest purity was obtained when the pH of the cell supernatant feed was previously adjusted to 8.5. Starting from an initial protein purity of 1.1% and high-performance liquid chromatography (HPLC) purity of 2.2%, after PB adsorption, a final protein purity of 85% and a HPLC purity of 88% was achieved.  相似文献   

17.
In good manufacturing practice (GMP) facilities in the biopharmaceutical industry, chromatography resins are largely underutilized during purification of single drug products during clinical production. Chromatography resins are dedicated to a specific product and disposed of, after only a fraction of their lifetime due to concerns of potential product carryover from one program to another. In this study, we follow a resin lifetime methodology typically used for commercial submissions and apply it to determine the feasibility of purifying different products on a Protein A MabSelect PrismA™ resin. Three distinct monoclonal antibodies were used as model molecules. Column performance was monitored through chromatogram profiles, yield, clearance capability of selected media components, pressure and product quality. A protein carryover study was designed to demonstrate that the column cleaning procedures reduced protein carryover to safe cleanliness levels regardless of multiple product contact cycles and the order in which the mAbs are captured. Data show that up to 90 total cycles (30 cycles per antibody), there was negligible protein carryover and impact on process performance. Product quality was consistent, with the only meaningful trends found for the leached Protein A ligand, without affecting the conclusion of the study. While the study was restricted to three antibodies, the proof of concept for resin reuse was demonstrated.  相似文献   

18.
Immunoglobulins IgG and sIgA actively hydrolyzing histone H1 have been detected on analyzing proteolytic activity of antibodies isolated by chromatography on Protein A-agarose from blood serum of patients with multiple sclerosis and from colostrum of healthy mothers. These antibodies hydrolyze other histones less actively and virtually failed to cleave lysozyme of chicken egg. By gel filtration at acidic pH and subsequent analysis of protease activity of chromatographic fractions, it was shown that IgG and sIgA molecules were responsible for hydrolysis of histone H1. Anti-histone H1 antibodies of IgG and sIgA classes were purified by affinity chromatography on histone H1-Sepharose from catalytically active antibody preparations. The protease activity of anti-histone H1 IgG antibodies was inhibited by serine proteinase inhibitors, whereas anti-histone H1 sIgA antibodies were insensitive to inhibitors of serine, asparagine, and cysteine proteases.  相似文献   

19.
Production of therapeutic monoclonal antibodies using genetically modified plants may provide low cost, high scalability and product safety; however, antibody purification from plants presents a challenge due to the large quantities of biomass that need to be processed. Protein A column chromatography is widely used in the pharmaceutical industry for antibody purification, but its application is limited by cost, scalability and column fouling problems when purifying plant-derived antibodies. Protein A-oleosin oilbodies (Protein A-OB), expressed in transgenic safflower seeds, are relatively inexpensive to produce and provide a new approach for the capture of monoclonal antibodies from plants. When Protein A-OB is mixed with crude extracts from plants engineered to express therapeutic antibodies, the Protein A-OB captures the antibody in the oilbody phase while impurities remain in the aqueous phase. This is followed by repeated partitioning of oilbody phase against an aqueous phase via centrifugation to remove impurities before purified antibody is eluted from the oilbodies. We have developed this purification process to recover trastuzumab, an anti-HER2 monoclonal antibody used for therapy against specific breast-cancers that over express HER2 (human epidermal growth factor receptor 2), from transiently infected Nicotiana benthamiana. Protein A-OB overcomes the fouling problem associated with traditional Protein A chromatography, allowing for the development of an inexpensive, scalable and novel high-resolution method for the capture of antibodies based on simple mixing and phase separation.  相似文献   

20.
Biotinylation is an established method of labeling antibody molecules for several applications in life science research. Antibody functional groups such as amines, cis hydroxyls in carbohydrates or sulfhydryls may be modified with a variety of biotinylation reagents. Solution-based biotinylation is accomplished by incubating antibody in an appropriate buffered solution with biotinylation reagent. Unreacted biotinylation reagent must be removed via dialysis, diafiltration or desalting. Disadvantages of the solution-based approach include dilution and loss of antibody during post-reaction purification steps, and difficulty in biotinylation and recovery of small amounts of antibody. Solid-phase antibody biotinylation exploits the affinity of mammalian IgG-class antibodies for nickel IMAC (immobilized metal affinity chromatography) supports. In this method, antibody is immobilized on a nickel-chelated chromatography support and derivitized on-column. Excess reagents are easily washed away following reaction, and biotinylated IgG molecule is recovered under mild elution conditions. Successful solid phase labeling of antibodies through both amine and sulfhydryl groups is reported, in both column and mini-spin column formats. Human or goat IgG was bound to a Ni-IDA support. For sulfhydryl labeling, native disulfide bonds were reduced with TCEP, and reduced IgG was biotinylated with maleimide-PEO(2) biotin. For amine labeling, immobilized human IgG was incubated with a solution of NHS-PEO(4) biotin. Biotinylated IgG was eluted from the columns using a buffered 0.2 M imidazole solution and characterized by ELISA, HABA/avidin assay, probing with a streptavidin-alkaline phosphatase conjugate, and binding to a monomeric avidin column. The solid phase protocol for sulfhydryl labeling is significantly shorter than the corresponding solution phase method. Biotinylation in solid phase is convenient, efficient and easily applicable to small amounts of antibody (e.g. 100 microg). Antibody biotinylated on-column was found to be equivalent in stability and antigen-recognition ability to antibody biotinylated in solution. Solid-phase methods utilizing Ni-IDA resin have potential for labeling nucleic acids, histidine-rich proteins and recombinant proteins containing polyhistidine purification tags, and may also be applicable for other affinity systems and labels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号