首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain active and metabolically stable analogues, peptide backbone modifications have been incorporated into many biologically active peptides. In this study, we designed and synthesized pseudopeptides corresponding to the antimicrobial peptide that acted on the lipid membrane of the pathogen. Most pseudopeptides exhibited a longer half-life than the peptide in the presence of serum as well as a considerable activity against test bacteria and fungi. Circular dichroism spectra and retention times of the pseudopeptides helped us to elucidate the effect of the incorporation of backbone modifications on the structural parameters necessary for the activity, indicating that alpha-helical structure was the most important factor for the activity and hydrophobicity had a considerable effect on the activity. Backbone modifications employed in this study can be a useful tool for structure-activity relationship studies and the development of therapeutic agents from membrane-active antimicrobial peptides.  相似文献   

2.
Aims:  To characterize antifungal principles from the methanol extract of Magnolia obovata and to evaluate their antifungal activities against various plant pathogenic fungi.
Methods and Results:  Four neolignans were isolated from stem bark of M. obovata as antifungal principles and identified as magnolol, honokiol, 4-methoxyhonokiol and obovatol. In mycelial growth inhibition assay, both magnolol and honokiol displayed more potent antifungal activity than 4-methoxyhonokiol and obovatol. Both magnolol and honokiol showed similar in vivo antifungal spectrum against seven plant diseases tested; both compounds effectively suppressed the development of rice blast, tomato late blight, wheat leaf rust and red pepper anthracnose. 4-Methoxyhonokiol and obovatol were highly active to only rice blast and wheat leaf rust respectively.
Conclusions:  The extract of M. obovata and four neolignans had potent in vivo antifungal activities against plant pathogenic fungi.
Significance and Impact of the Study:  Neolignans from Magnolia spp. can be used and suggested as a novel antifungal lead compound for the development of new fungicide and directly as a natural fungicide for the control of plant diseases such as rice blast and wheat leaf rust.  相似文献   

3.
Pleurocidin (Ple) is a 25-residue peptide which is derived from the skin mucous secretion of the winter flounder (Pleuronectes americanus). In this study, we investigated antifungal effects and its mode of action of Ple on human pathogenic fungi. Ple showed potent antifungal activity with low hemolytic activity. To investigate the antifungal mechanisms of Ple, the cellular localization and membrane interaction of Ple were examined. Protoplast regeneration and membrane-disrupting activity by DPH-labeled membrane support the idea, that Ple exerts fungicidal activity against the human pathogenic fungus Candida albicans with the disruption of a plasma membrane. To aim for which was the application of a therapeutic agent, we designed a synthetic enantiomeric peptide composed of all-d-amino acids to enhance proteolytic resistance. The synthetic all-d-Ple also displayed two-fold more potent antifungal activity than that of all-l-Ple, and its antifungal activity showed proteolytic resistance against various proteases. Therefore, these results suggest a therapeutic potential of all-d-Ple with regard to its proteolytic resistance against human fungal infections.  相似文献   

4.
Pleurocidin (Ple) is a 25-residue peptide which is derived from the skin mucous secretion of the winter flounder (Pleuronectes americanus). In this study, we investigated antifungal effects and its mode of action of Ple on human pathogenic fungi. Ple showed potent antifungal activity with low hemolytic activity. To investigate the antifungal mechanisms of Ple, the cellular localization and membrane interaction of Ple were examined. Protoplast regeneration and membrane-disrupting activity by DPH-labeled membrane support the idea, that Ple exerts fungicidal activity against the human pathogenic fungus Candida albicans with the disruption of a plasma membrane. To aim for which was the application of a therapeutic agent, we designed a synthetic enantiomeric peptide composed of all-d-amino acids to enhance proteolytic resistance. The synthetic all-d-Ple also displayed two-fold more potent antifungal activity than that of all-l-Ple, and its antifungal activity showed proteolytic resistance against various proteases. Therefore, these results suggest a therapeutic potential of all-d-Ple with regard to its proteolytic resistance against human fungal infections.  相似文献   

5.
The resistance of pathogenic fungi and failure of drug therapy increased dramatically. Numerous studies have reported the individual or synergistic antifungal potency of natural and synthesized flavonoids, especially against drug-resistant fungi. This brief review summarizes the structure and individual or synergistic antifungal activity of natural and synthesized flavonoids (literatures mainly cover the past 10 years 2009–2019), with a special focus on the antifungal spectra, structure–activity relationship and mechanisms of actions. These may contribute to a better understanding of flavonoids as multi-target agents in the treatment of mycoses and provide some ideas on the development of novel flavonoids-based antifungals.  相似文献   

6.
In the course of screening for novel naturally occurring fungicides from mushrooms in Yunnan province, China, the ethanol extract of the fruiting bodies of Albatrellus dispansus was found to show antifungal activity against plant pathogenic fungi. The active compound was isolated from the fruiting bodies of A. dispansus by bioassay-guided fractionation of the extract and identified as grifolin by IR, 1H and 13C NMR and mass spectral analysis. Its antifungal activities were evaluated in vitro against 9 plant pathogenic fungi and in vivo against the plant disease of Erysiphe graminis. In vitro, Sclerotinina sclerotiorum and Fusarium graminearum were the most sensitive fungi to grifolin, and their mycelial growth inhibition were 86.4 and 80.9% at 304.9 microM, respectively. Spore germination of F. graminearum, Gloeosporium fructigenum and Pyricularia oryzae was almost completely inhibited by 38.1microM grifolin. In vivo, the curative effect of grifolin against E. graminis was 65.5% at 304.9 microM after 8 days.  相似文献   

7.
About 312 actinomycetes were isolated from soil samples on chitin agar. All these isolates were purified and screened for their antifungal activity against pathogenic fungi. Out of these, 22% of the isolates exhibited activity against fungi. One promising isolate with strong antifungal activity against pathogenic fungi was selected for further studies. This isolate was from Pune, and was active against both yeasts and molds. Various fermentation parameters were optimized. Based on morphological and biochemical parameters, the isolate was identified as Streptomyces. The correlation of antifungal activity with growth indicated growth dependent production of antimetabolite. Maximum antifungal metabolite production (600 units/ml) was achieved in the late log phase, which remained constant during stationery phase, and it was extracellular in nature.  相似文献   

8.
Piscidin 2 (P2), a 22-residue cationic peptide isolated from the mast cells of hybrid striped bass, has potent antibacterial activities. However, its antifungal properties are not completely understood. In the current study, we investigated the antifungal effects and mode of action of P2. P2 exhibited potent antifungal activity against human pathogenic fungi. To understand the fungicidal properties of P2, we focused on a membrane-active mechanism of the peptide by in vivo and in vitro testing. Flow cytometric analysis using bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] and protoplast regeneration experiments showed that P2 caused fungal membrane damage. Furthermore, fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH) revealed that P2 created pores in fungal membranes. These results were confirmed with dye leakage tests by using liposomes composed of phosphatidylcholine/phosphatidylserine (3:1, w/w), which mimicked fungal membranes. The present study indicated that P2 exerts its fungicidal effects by perturbing membrane activities.  相似文献   

9.
By incorporating carbamate bond(s) into a cytolytic peptide, novel pseudopeptides with potent antibacterial activity and low hemolytic activity were synthesized. Circular dichroism spectra suggested that the incorporation of carbamate bond(s) decrease the alpha helical conformation of the peptide in lipid membrane circumstances, which must be regarded as a major factor for the separation of antibacterial activity from cytotoxic activity for mammalian cell. Experiments in which dye was released from vesicles indicated that the potent antibacterial activity and low hemolytic activity of the pseudopeptides must be due to their great lipid membrane selectivity. The present result suggest that backbone modifications can be a great tool for developing pseudopeptides with improved biological activity and bioavailability from cytolytic peptides.  相似文献   

10.
几种药用植物内生真菌抗真菌活性的初步研究   总被引:52,自引:0,他引:52  
从三尖杉,南方红豆杉及香榧中分离出172株内生真菌,对其进行抗菌活性检测,结果表明共90株内生真菌对一种或多种植物病原真菌,如红色面孢霉(Neurospora sp.),木霉(Trichoderma sp.),镰刀菌(Fusarium sp.)等有抑制作用,来自三尖杉、南方红豆杉和香榧的抗菌活性菌株比例分别为40%,54.2%及57.1%。其中平板抑菌圈直径大于15mm的高抗菌株有35株。按Ainsworth等鉴定系统和方法进行鉴定,具有抗菌活性的内生真菌主要分布于心青霉属、镰孢菌属等18个属中。  相似文献   

11.
霉克舒对致病性浅部真菌的体外抑菌作用研究   总被引:1,自引:0,他引:1  
从湛江地区 15 4例癣病患者分离真菌 ,评价一种新的抗真菌药—霉克舒对上述真菌菌株的体外抑菌活性。应用琼脂稀释法测定霉克舒对浅部真菌的最小抑菌浓度 (MIC) ,同时以兰美抒作为对照药物。从 15 4例癣病患者中分离出 14 1株真菌 ,其中以红色毛癣菌和须癣毛癣菌为主 ,分别占 6 6 .7%和 14 .2 %。霉克舒的抑菌作用与兰美抒相比略强或相当 ;对霉克舒各单一成分的初步抑菌效果进行比较 ,复合物的抑菌作用明显强于水杨酸或特比萘芬等单一成分。上述结果显示 ,霉克舒在体外对常见致病性浅部真菌具有较强的抗菌活性。  相似文献   

12.
A strain of Streptomyces purpeofuscus CM 1261 isolated from a sample of compost collected locally was found to possess strong antagonistic activity against 4 human pathogenic fungi i.e., Candida albicans, Aspergillus niger, Microsporum gypseum and Trichophyton sp. The active antifungal compound produced by it was found to be a heptaene group of polyene antifungal antibiotic.  相似文献   

13.
Yan X  Zhong J  Liu H  Liu C  Zhang K  Lai R 《Gene》2012,492(2):368-374
A novel cathelicidin-like antimicrobial peptide was identified by mining genome of panda. This peptide (cathelicidin-AM) was synthesized. It showed potential antimicrobial activities against wide spectrum of microorganisms including Gram-negative and -positive bacteria, and fungi. It had similar antimicrobial abilities against both standard and clinically isolated drug-resistant strains. Cathelicidin-AM could rapidly exert its antibacterial activities. It just took less than 1 h to kill all Staphylococcus sciuri at the concentration of 2, 4 or 10 times of minimal inhibitory concentration (MIC) while clindamycin took 6 h. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis indicated that cathelicidin-AM killed bacteria by directly affecting bacterial cell wall and membrane. Phylogenetic analysis revealed that the panda cathelicidin had the nearest evolution relationship with dog cathelicidin. The current work provides a novel cathelicidin-like peptide with strong antimicrobial abilities.  相似文献   

14.
Volatiles produced by mycelia of mushrooms with aromatic odour were investigated for their antifungal activity against plant‐pathogenic fungi. The results of the screening of 23 species of basidiomycetes revealed that volatile substances from mycelia of Mycoleptodonoides aitchisonii (TUFC10099), an edible mushroom, strongly inhibited the mycelial growth, spore germination and lesion formation on host leaves of some plant‐pathogenic fungi including Alternaria alternata, A. brassicicola, A. brassicae, Colletotrichum orbiculare and Corynespora cassiicola. The volatile compounds were isolated from the culture filtrate of M. aitchisonii, and 1‐phenyl‐3‐pentanone was identified as a major antifungal volatile. The compound had significantly inhibitory activity against plant‐pathogenic fungi at 35 ppm. This is the first report that the volatile compound produced by mycelia of M. aitchisonii has antifungal activity against plant‐pathogenic fungi.  相似文献   

15.
Defensins are a group of small, cationic, antimicrobial proteins found in the cytoplasmic granules of neutrophils and macrophages of a variety of mammalian species. One such defensin, NP-1, isolated from rabbit neutrophils, has been shown to consist of 33 amino acids rich in arginine and cysteine residues. We have synthesized NP-1 on an Applied Biosystems Model 431A peptide synthesizer using FastMoc chemistry involving HBtu [2-1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate] activation for coupling amino acids. The linear peptide was folded by air oxidation to the biologically active form containing three disulfide bonds and purified by reverse phase chromatography. The amino acid sequence of the synthetic peptide was confirmed by Edman degradation. Molecular weight determination by plasma desorption mass spectroscopy (PDMS) gave a value of 3898.6, in agreement with the expected molecular weight of 3898. The biological activity of the synthetic peptide, as measured by its antifungal activity against several pathogenic fungi, was indistinguishable from that of the natural NP-1. Also, the CD spectrum was equivalent to that of natural NP-1, indicating conformational identity of the two species.  相似文献   

16.
Recent studies reported that an first generation azole (tioconazole) was active against Candida glabrata petite mutants, a fluconazole- and voriconazole- resistant strain of fungi characterized as most azole resistant yeast by an overexpression of the efflux pumps. Therefore, monosubstituted 1-[2-(2,4-dichlorophenyl)ethyl]-1H-imidazoles differing from tioconazole by the nature of the linker and of the aromatic ring in their side-chain were synthesized and evaluated against the mutant and the wild-type strain of C. glabrata. New 2-aryl-1-azolyl-3-thienylbutan-2-ols were then designed and synthesized, and their antifungal activity was evaluated against both strains of C. glabrata and two other major human pathogenic fungi, C. albicans and Aspergillus fumigatus. These new compounds exhibited a broad spectrum activity, as well as good efficiency against the petite mutant, suggesting that they may overcome the increased expression of the efflux pumps usually observed in clinical yeast isolates resistant to current azoles.  相似文献   

17.
Versicolin is a new antifungal agent isolated from the culture broth of a new strain of Aspergillus versicolor. The antibiotic is specifically active against pathogenic fungi, particularly Trichophyton rubrum which causes 90% of the skin infections occurring in Calcutta and eastern India.  相似文献   

18.
Aims: The aim of the present study was to purify and characterize a natural antimicrobial compound from Bacillus sp. strain N associated with a novel rhabditid entomopathogenic nematode. Methods and Results: The cell‐free culture filtrate of a bacterium associated with a novel entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by column chromatography, and two bioactive compounds were isolated and their chemical structures were established based on spectral analysis. The compounds were identified as 3,4′,5‐trihydroxystilbene (1) and 3,5‐dihydroxy‐4‐isopropylstilbene (2). The presence of 3,4′,5‐trihydroxystilbene (resveratrol) is reported for the first time in bacteria. Compound 1 showed antibacterial activity against all the four test bacteria, whereas compound 2 was effective against the Gram‐positive bacteria only. Compounds 1 and 2 were active against all the five fungi tested and are more effective than bavistin, the standard fungicide. The antifungal activity of the compounds against the plant pathogenic fungi, Rhizoctonia solani is reported for the first time. Conclusions: Cell‐free extract of the bacterium and isolated stilbenes demonstrated high antibacterial activity against bacteria and fungi especially against plant pathogenic fungi. We conclude that the bacterium‐associated EPN are promising sources of natural bioactive secondary metabolites. Significance and Impact of the Study: Stilbene compounds can be used for the control of fungi and bacteria.  相似文献   

19.
Wang H  Yan Y  Wang J  Zhang H  Qi W 《PloS one》2012,7(1):e29452
Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds.  相似文献   

20.
The antifungal activity of alkyl gallates against plant pathogenic fungi was evaluated. All of the fungi tested in this study were susceptible to some alkyl gallates, and the effect of linear alkyl gallates against plant pathogenic fungi was similar to the previously reported effects against Gram-negative and Gram-positive bacteria. We found that branched alkyl gallates showed stronger activity than did linear alkyl gallates with similar log P values. In addition, the antifungal activity of alkyl gallates was correlated with gallate-induced inhibition of the activity of mitochondrial complex II. The antifungal activity of alkyl gallates likely originates, at least in part, from their ability to inhibit the membrane respiratory chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号