首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizobium leguminosarum GF160 required iron for growth under aerobic conditions in a chemically defined medium. Maximal growth of bacteria previously depleted in iron was obtained with approximately 50 microM unchelated ferric iron and with glucose as the only carbon source. Growth under iron deficiency did not result in the production of detectable levels of siderophores of either the catechol or hydroxamate types. Growing cells released a Fe3+-reducing agent that was identified as anthranilic acid by paper and thin-layer chromatography, ultraviolet and nuclear magnetic resonance spectroscopy, and mass spectrometry. The amount of anthranilic acid secreted per unit of cell growth was inversely related to the iron concentration in the culture medium and reached concentrations up to 1 mM. Ferric but not ferrous ions were solubilized in the growth medium by anthranilic acid.  相似文献   

2.
Nine strains of Frankia isolated from six Casuarinaceae (including four Casuarina sp., one Allocasuarina and one Gymnostoma) and one Elaeagnaceae (Hippophae¨ rhamnoides) were screened for growth and production of siderophores in an iron-deficient liquid medium. Siderophore production was detected only in four strains (Cj, G2, CH and G82) using the CAS and Arnow assays. Salicylates formed more than 90% and dihydroxybenzoates formed less than 10% of all catechol-type siderophores produced. Growth of the former strains was less affected by iron deficiency than that of strains Rif, Thr, URU, BR and RT which do not produce siderophores. Optimal siderophore production by strain Cj was noted when iron concentration reached 0.5m and was completely inhibited at an iron concentration of 10m. The kinetics of siderophore production by strain Cj showed that siderophore synthesis was detectable during the growth stationary phase. Growth of Cj (a siderophore-producing strain) and of RT (a non-siderophore-producing strain) differed when 2,2-dipyridyl or ethylene di(o-hydroxyphenyl) acetic acid (EDDHA) was added to the iron-deficient growth medium. Frankia strain RT was the most sensitive to the detrimental effect of both iron chelators.  相似文献   

3.
Citrate as a siderophore in Bradyrhizobium japonicum.   总被引:14,自引:6,他引:8       下载免费PDF全文
Under iron-limiting conditions, many bacteria secrete ferric iron-specific ligands, generically termed siderophores, to aid in the sequestering and transport of iron. One strain of the nitrogen-fixing soybean symbiont Bradyrhizobium japonicum, 61A152, was shown to produce a siderophore when 20 B. japonicum strains were screened with all six chemical assays commonly used to detect such production. Production by strain 61A152 was detected via the chrome azurol S assay, a general test for siderophores which is independent of siderophore structure. The iron-chelating compound was neither a catechol nor a hydroxamate and was ninhydrin negative. It was determined to be citric acid via a combination of thin-layer chromatography and high-voltage paper electrophoresis; this identification was verified by a specific enzymatic assay for citric acid. The inverse correlation which was observed between citric acid release and the iron content of the medium suggested that ferric citrate could serve as an iron source. This was confirmed via growth and transport assays. Exogenously added ferric citrate could be used to overcome iron starvation, and iron-deficient cells actively transported radiolabeled ferric citrate. These results, taken together, indicate a role for ferric citrate in the iron nutrition of this strain, which has been shown to be an efficient nitrogen-fixing strain on a variety of soybean cultivars.  相似文献   

4.
Nine strains of Frankia isolated from six Casuarinaceae (including four Casuarina sp., one Allocasuarina and one Gymnostoma) and one Elaeagnaceae (Hippophae¨ rhamnoides) were screened for growth and production of siderophores in an iron-deficient liquid medium. Siderophore production was detected only in four strains (Cj, G2, CH and G82) using the CAS and Arnow assays. Salicylates formed more than 90% and dihydroxybenzoates formed less than 10% of all catechol-type siderophores produced. Growth of the former strains was less affected by iron deficiency than that of strains Rif, Thr, URU, BR and RT which do not produce siderophores. Optimal siderophore production by strain Cj was noted when iron concentration reached 0.5μm and was completely inhibited at an iron concentration of 10μm. The kinetics of siderophore production by strain Cj showed that siderophore synthesis was detectable during the growth stationary phase. Growth of Cj (a siderophore-producing strain) and of RT (a non-siderophore-producing strain) differed when 2,2-dipyridyl or ethylene di(o-hydroxyphenyl) acetic acid (EDDHA) was added to the iron-deficient growth medium. Frankia strain RT was the most sensitive to the detrimental effect of both iron chelators.  相似文献   

5.
Summary Cells of the fungusNeurospora crassa were grown under iron-deficient and iron-sufficient conditions and their plasma membrane proteins were compared. Three strains were studied:N. crassa 74A (wild type), a siderophore-free mutantN. crassa (arg-5 ota aga) as well as a slime variant ofN. crassa which lacks a cell wall. Plasma membranes were purified, solubilized and analyzed by one-dimensional SDS/polyacrylamide gel electrophoresis yielding approximately 50 distinct protein bands with molecular masses in the range 14–160 kDa. Iron-sufficient and iron-deficient growth resulted in nearly identical plasma membrane protein profiles in all strains. Although minor alterations in the proportion of certain proteins could be detected, significant overproduction of certain membrane proteins during iron limitation could not be observed. Transport of55 Fe-labeled siderophores seems to be correlated to the degree of iron limitation. For example, transport rates were enhanced five-fold after 16 h of growth in iron-deficient medium compared to growth in iron-sufficient medium. Extraction and HPLC measurement of siderophores from conidiospores yielded approximately 10–15 mol/spore, indicating that germination tubes and young cells used for transport measurements are not iron-deficient. It is suggested that the putative transport systems for siderophores in fungal plasma membranes are constitutively expressed and enhanced uptake of siderophores during iron limitation is rather the result of cellular transport regulation mechanisms.  相似文献   

6.
Cyanobacteria vary in their ability to grow in media contaning low amounts of biologically available iron. Some strains, such as Oscillatoria tenuis, are well adapted to thrive in low-iron environments. We investigated the mechanism of iron scavenging in O. tenuis and found that this cyanobacterium has a siderophore-mediated iron transport system that differs significantly from the traditional hydroxamate-siderophore transport system reported from other cyanobacteria. Unlike other cyanobacteria, this strain produces two types of siderophores, a hydroxamate-type siderophore and a catechol-type siderophore. Production of these two siderophores is expressed at two different iron levels in the medium, suggesting two different iron regulated uptake systems. We compared the production of each siderophore with the growth rate of the culture and found that the production of the catechol siderophore enhances the growth rate of the cyanobacterium, whereas the cells maintain lower than maximal growth rates when only the hydroxamate-type siderophore is being produced.Abbreviation EDDA ethylene diamine di-(o-hydroxyphenylacetic acid)  相似文献   

7.
The sodium-dependent strain 184 of Azotobacter chroococcum was unable to grow significantly in iron-limited medium, but did produce iron-repressible outer membrane proteins. Siderophores were not produced under these conditions. Citric acid was excreted, but not in response to iron limitation. This strain, however, was able to grow in insoluble mineral iron sources, and under these conditions the cells produced a hydroxamate. Growth on minerals and hydroxamate production was dependent on a low level of freely exchangeable iron. Optimal hydroxamate production was observed with 0.75 μM ferric citrate, and hydroxamate production was repressed by >5 μM iron. Despite this iron requirement, hyroxamate was only formed during internal iron limitation of the cells. Iron-containing cells were able to grow in iron-limited medium but only produced hydroxamate when their iron-per-cellular-protein content was low. These results, the spectral changes observed upon Fe3+ addition, and iron-uptake coincident with hydroxamate production suggested that the hydroxamate was a siderophore.  相似文献   

8.
Twenty-eight strains of Rhizobium spp. were tested for their ability to grow in chemically-defined medium lacking growth factors. Two strains, R. meliloti GR4B and Rhizobium spp. ( Acacia ) GRH28, were selected, on the basis of their good growth under the conditions imposed, for further quantification of the production of water-soluble vitamins (thiamine, niacin, riboflavin, pantothenic acid and biotin) in chemically defined media amended with different compounds (mannitol, glucose or sodium succinate) as sole carbon sources. Qualitative and quantitative production of vitamins in chemically-defined media was significantly affected by the use of C sources of a different nature and the age of the cultures. Strain GRH28 produced all the vitamins analysed, and high biological levels of biotin (14 ng ml–1 culture) were detected after 6 d of culture in mineral medium amended with mannitol. Pantothenic acid was the vitamin detected in the highest amounts (up to 1 μg ml–1 of culture) in culture supernatant fluids of strain GR4B grown for 6 d with succinate as sole carbon source.  相似文献   

9.
Iron is a micronutrient required by almost all living organisms, including fungi. Although this metal is abundant, its bioavailability is low either in aerobic environments or within mammalian hosts. As a consequence, pathogenic microorganisms evolved high affinity iron acquisition mechanisms which include the production and uptake of siderophores. Here we investigated the utilization of these molecules by species of the Paracoccidioides genus, the causative agents of a systemic mycosis. It was demonstrated that iron starvation induces the expression of Paracoccidioides ortholog genes for siderophore biosynthesis and transport. Reversed-phase HPLC analysis revealed that the fungus produces and secretes coprogen B, which generates dimerumic acid as a breakdown product. Ferricrocin and ferrichrome C were detected in Paracoccidioides as the intracellular produced siderophores. Moreover, the fungus is also able to grow in presence of siderophores as the only iron sources, demonstrating that beyond producing, Paracoccidioides is also able to utilize siderophores for growth, including the xenosiderophore ferrioxamine. Exposure to exogenous ferrioxamine and dimerumic acid increased fungus survival during co-cultivation with macrophages indicating that these molecules play a role during host-pathogen interaction. Furthermore, cross-feeding experiments revealed that Paracoccidioides siderophores promotes growth of Aspergillus nidulans strain unable to produce these iron chelators. Together, these data denote that synthesis and utilization of siderophores is a mechanism used by Paracoccidioides to surpass iron limitation. As iron paucity is found within the host, siderophore production may be related to fungus pathogenicity.  相似文献   

10.
Siderophore production by Aeromonas salmonicida.   总被引:4,自引:0,他引:4  
Growth under conditions of iron-restriction and the production of siderophores was examined in 21 typical and 14 atypical strains of Aeromonas salmonicida. With the exception of one atypical strain, all strains grew and multiplied in the presence of the high-affinity iron chelators ethylenediamine di(o-hydroxyphenylacetic acid), alpha, alpha'-dipyridyl or transferrin. Chrome azurol S agar was used to screen bacterial strains growing under these conditions for the production of siderophores. Siderophore production was detected only in the typical strains. Siderophores were also detected in the iron-restricted culture supernatants of typical strains. Siderophores were also detected in the iron-restricted culture supernatants of typical strains, where they were associated with an iron-binding activity. The siderophore was extracted from iron-restricted culture supernatant of one strain by adsorption onto an XAD-7 resin; it behaved as a 2,3-diphenol-catechol in several colorimetric assays. The results indicate that although both typical and atypical strains of A. salmonicida grow and multiply under conditions of iron-restriction, they use different iron-uptake mechanisms, siderophore-mediated and siderophore-independent, respectively. In cross-feeding assays, growth of typical strains was stimulated only by homologous iron-restricted supernatant, suggesting strain differences in the siderophore produced. However, one strain produced a culture supernatant with growth-stimulating activity for other typical and also atypical strains.  相似文献   

11.
Since N-acyl homoserine lactones (AHLs) are key mediators of cell density-dependent regulation of traits involved in virulence and epiphytic fitness in gram-negative bacteria such as Pseudomonas syringae, a variety of plant species were examined to determine their production of leaf surface compounds that could interact with these signaling systems. Leaf washings of 17 of 52 plant species tested stimulated or inhibited AHL-dependent traits in at least one of the bacterial reporter strains used. The active compounds from most plants could be distinguished from known AHLs due to different patterns of mobility during C8 and C18 reverse-phase thin-layer chromatography (TLC) and normal-phase TLC compared to the patterns for authentic bacterial AHLs. All plant extracts were also tested to determine their abilities to sequester iron and trigger bacterial siderophore synthesis on a medium containing abundant iron. Leaf washings from 16 of the 52 plant species, as well as tannic acid solutions, stimulated pyoverdine synthesis in P. syringae in a high-iron medium. These preparations also inhibited the growth of a P. syringae mutant unable to produce pyoverdine siderophores but not the growth of the wild-type bacterium. The stimulation of siderophore production and the growth inhibition by plant extracts and purified tannins were both reversed by addition of ferric chloride to culture media, indicating that iron was made unavailable by the compounds released onto the leaf surface.  相似文献   

12.
Siderophore utilization and iron uptake by Rhodopseudomonas sphaeroides   总被引:3,自引:0,他引:3  
The growth of Rhodopseudomonas sphaeroides in iron-deficient medium did not result in the production of detectable levels of siderophores of either the catechol or hydroxamate type. Iron-limited cultures of R. sphaeroides were not able to remove iron from ferric transferrin unless supplemented with 2,3-dihydroxybenzoic acid. R. sphaeroides was shown to take up 59Fe+3 when it was supplied as ferric chloride, ferric citrate, or ferric parabactin, but not when supplied as ferric rhodotorulate or ferric Desferal. When iron was supplied as ferric citrate, citrate was not taken up by the cells. The growth rate of R. sphaeroides under iron-limiting conditions was decreased by the addition of either Desferal or rhodotorulic acid, while the addition of citrate or parabactin did not affect growth.  相似文献   

13.
Abstract Rhizobium leguminosarum IARI 102 produced 2,3-dihydroxy benzoic acid, a type of phenolate siderophore, under iron-starved conditions. Hydroxamic acids were not detected. Maximum production of siderophore was found at 26 h of growth in a chemically defined medium at 28°C with shaking. Threonine was detected as the amino acid conjugate of the siderophore. Addition of Fe3+ to the culture medium increased the growth yield significantly, but depressed the production of the iron chelating compound.  相似文献   

14.
SixBradyrhizobium (lupin) strains were evaluated for their ability to produce siderophores using four chemical assays. Two strains gave positive reactions with chrome azurol S assay (CAS) and produced hydroxamate-type siderophores. The other four strains gave negative results for siderophore production using the four assays. Generation time, growth yield and hydroxamate production of one strain (WPBS 3201 D) were affected by the iron concentration of the culture medium and the previous culture history of the cells. Resuspension of washed cells grown previously in media supplemented with 0 and 20 μmol/L Fe into differing iron regimes (0, 0.5, 1, 2, 4, 8, 10, 15 and 20 μmol/L Fe) suggest that the extent of hydroxamate production depended on the growth history of the cells. Cells pregrown in 20 μmol/L Fe produced a high amount of hydroxamates compared with cells pregrown in iron-free medium when resuspended in medium containing up to 4 μmol/L Fe. Cells pregrown in 20 μmol/L Fe were more sensitive to iron repression than those pregrown in 0.5 μmol/L Fe. Mannitol was the best carbon source for siderophore production. Siderophore synthesis was inhibited by 4-chloromercuribenzenesulfonic acid, 2,4-dinitrophenol, sodium azide and MgCl2 suggesting that an energized membrane and a mercapto group are essential and required for hydroxamate synthesis in strain WPB5 3201 D.  相似文献   

15.
16.
Pseudomonas donghuensis can excrete large quantities of iron chelating substances in iron-restricted environments. At least two kinds of iron-chelator can be found in the culture supernatant: fluorescent siderophores pyoverdins, and an ethyl acetate-extractable non-fluorescent substance. The non-fluorescent substance was the dominant contributor to the iron chelating activity of the culture supernatant of P. donghuensis. Electron ionization mass spectrometry, NMR spectroscopy, and IR spectroscopy identified the non-fluorescent iron-chelator as 7-hydroxytropolone. The stoichiometry of 7-hydroxytropolone ferric complex was determined to be 2:1 by the continuous variation method. The production of 7-hydroxytropolone was repressible by iron in the medium. Moreover, the inhibited growth of doubly siderophore-deficient strain of P. donghuensis under iron-limiting conditions could be partly restored by 7-hydroxytropolone. Thus, 7-hydroxytropolone was considered to play a previously undiscovered role as an iron-scavenger for P. donghuensis.  相似文献   

17.
Summary The siderophores produced byPseudomonas fluorescens andP. chlororaphis were detected from the culture supernatants in MM9 and modified King's medium by the universal CAS assay at wavelengths 620–690 nm. The CAS assay was applied to detectPseudomonas siderophores directly in situ, during their production phase, in modified King's medium. Optimum results were detected with a final CAS concentration of 0.025 mM and an iron concentration of 1.25 M. The problems of the method are discussed with respect to the absorbance spectrum, the toxicity of the HDTMA detergent, the influence of the iron concentration and the complexity of media for siderophore production.  相似文献   

18.
19.

Background

Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition.

Methods and Principal Findings

Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity.

Conclusions

We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress. These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.  相似文献   

20.
假单胞菌荧光与非荧光铁载体对铁离子的应答差异   总被引:2,自引:0,他引:2  
假单胞菌既能产荧光铁载体也能产非荧光铁载体.通过对假单胞菌在不同铁离子浓度下,在通用CAS(Chrome azroul S)检测平板、改进的蔗糖-天冬氨酸(SA)平板(MSA)上以及通用液体CAS培养基和MSA培养基内的铁载体产生情况的比较,发现在通用CAS的液体培养基上产生的主要为非荧光铁载体(pyochelin),而在改进的MSA培养基上产生的主要为荧光铁载体(pyoverdine);在铁离子的应答方面,pyoverdine较pyochelin灵敏,较低的铁离子浓度即可抑制荧光铁载体的产生,但是不能抑制非荧光铁载体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号