首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Since the 2002–2003 severe acute respiratory syndrome(SARS) outbreak prompted a search for the natural reservoir of the SARS coronavirus, numerous alpha- and betacoronaviruses have been discovered in bats around the world. Bats are likely the natural reservoir of alpha- and betacoronaviruses, and due to the rich diversity and global distribution of bats, the number of bat coronaviruses will likely increase. We conducted a surveillance of coronaviruses in bats in an abandoned mineshaft in Mojiang County, Yunnan Province, China, from 2012–2013. Six bat species were frequently detected in the cave: Rhinolophus sinicus, Rhinolophus affinis, Hipposideros pomona, Miniopterus schreibersii, Miniopterus fuliginosus, and Miniopterus fuscus. By sequencing PCR products of the coronavirus RNA-dependent RNA polymerase gene(Rd Rp), we found a high frequency of infection by a diverse group of coronaviruses in different bat species in the mineshaft. Sequenced partial Rd Rp fragments had 80%–99% nucleic acid sequence identity with well-characterized Alphacoronavirus species, including Bt CoV HKU2, Bt CoV HKU8, and Bt CoV1,and unassigned species Bt CoV HKU7 and Bt CoV HKU10. Additionally, the surveillance identified two unclassified betacoronaviruses, one new strain of SARS-like coronavirus, and one potentially new betacoronavirus species. Furthermore, coronavirus co-infection was detected in all six bat species, a phenomenon that fosters recombination and promotes the emergence of novel virus strains. Our findings highlight the importance of bats as natural reservoirs of coronaviruses and the potentially zoonotic source of viral pathogens.  相似文献   

2.
Coronaviruses, such as severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, pose significant public health threats. Bats have been suggested to act as natural reservoirs for both these viruses, and periodic monitoring of coronaviruses in bats may thus provide important clues about emergent infectious viruses. The Eastern bent-wing bat Miniopterus fuliginosus is distributed extensively throughout China. We therefore analyzed the genetic diversity of coronaviruses in samples of M. fuliginosus collected from nine Chinese provinces during 2011–2013. The only coronavirus genus found was Alphacoronavirus. We established six complete and five partial genomic sequences of alphacoronaviruses, which revealed that they could be divided into two distinct lineages, with close relationships to coronaviruses in Miniopterus magnater and Miniopterus pusillus. Recombination was confirmed by detecting putative breakpoints of Lineage 1 coronaviruses in M. fuliginosus and M. pusillus(Wu et al., 2015), which supported the results of topological and phylogenetic analyses. The established alphacoronavirus genome sequences showed high similarity to other alphacoronaviruses found in other Miniopterus species, suggesting that their transmission in different Miniopterus species may provide opportunities for recombination with different alphacoronaviruses. The genetic information for these novel alphacoronaviruses will improve our understanding of the evolution and genetic diversity of coronaviruses, with potentially important implications for the transmission of human diseases.  相似文献   

3.

Background

Middle East respiratory syndrome coronavirus (MERS-CoV), which belongs to beta group of coronavirus, can infect multiple host species and causes severe diseases in humans. Multiple surveillance and phylogenetic studies suggest a bat origin. In this study, we describe the detection and full genome characterization of two CoVs closely related to MERS-CoV from two Italian bats, Pipistrellus kuhlii and Hypsugo savii.

Methods

Pool of viscera were tested by a pan-coronavirus RT-PCR. Virus isolation was attempted by inoculation in different cell lines. Full genome sequencing was performed using the Ion Torrent platform and phylogenetic trees were performed using IQtree software. Similarity plots of CoV clade c genomes were generated by using SSE v1.2. The three dimensional macromolecular structure (3DMMS) of the receptor binding domain (RBD) in the S protein was predicted by sequence-homology method using the protein data bank (PDB).

Results

Both samples resulted positive to the pan-coronavirus RT-PCR (IT-batCoVs) and their genome organization showed identical pattern of MERS CoV. Phylogenetic analysis showed a monophyletic group placed in the Beta2c clade formed by MERS-CoV sequences originating from humans and camels and bat-related sequences from Africa, Italy and China. The comparison of the secondary and 3DMMS of the RBD of IT-batCoVs with MERS, HKU4 and HKU5 bat sequences showed two aa deletions located in a region corresponding to the external subdomain of MERS-RBD in IT-batCoV and HKU5 RBDs.

Conclusions

This study reported two beta CoVs closely related to MERS that were obtained from two bats belonging to two commonly recorded species in Italy (P. kuhlii and H. savii). The analysis of the RBD showed similar structure in IT-batCoVs and HKU5 respect to HKU4 sequences. Since the RBD domain of HKU4 but not HKU5 can bind to the human DPP4 receptor for MERS-CoV, it is possible to suggest also for IT-batCoVs the absence of DPP4-binding potential. More surveillance studies are needed to better investigate the potential intermediate hosts that may play a role in the interspecies transmission of known and currently unknown coronaviruses with particular attention to the S protein and the receptor specificity and binding affinity.
  相似文献   

4.

Background

Bat-borne virus surveillance is necessary for determining inter-species transmission risks and is important due to the wide-range of bat species which may harbour potential pathogens. This study aimed to monitor coronaviruses (CoVs) and paramyxoviruses (PMVs) in bats roosting in northwest Italian regions. Our investigation was focused on CoVs and PMVs due to their proven ability to switch host and their zoonotic potential. Here we provide the phylogenetic characterization of the highly conserved polymerase gene fragments.

Results

Family-wide PCR screenings were used to test 302 bats belonging to 19 different bat species. Thirty-eight animals from 12 locations were confirmed as PCR positive, with an overall detection rate of 12.6% [95% CI: 9.3–16.8]. CoV RNA was found in 36 bats belonging to eight species, while PMV RNA in three Pipistrellus spp. Phylogenetic characterization have been obtained for 15 alpha- CoVs, 5 beta-CoVs and three PMVs; moreover one P. pipistrellus resulted co-infected with both CoV and PMV. A divergent alpha-CoV clade from Myotis nattereri SpA is also described. The compact cluster of beta-CoVs from R. ferrumequinum roosts expands the current viral sequence database, specifically for this species in Europe. To our knowledge this is the first report of CoVs in Plecotus auritus and M. oxygnathus, and of PMVs in P. kuhlii.

Conclusions

This study identified alpha and beta-CoVs in new bat species and in previously unsurveyed Italian regions. To our knowledge this represents the first and unique report of PMVs in Italy. The 23 new bat genetic sequences presented will expand the current molecular bat-borne virus databases. Considering the amount of novel bat-borne PMVs associated with the emergence of zoonotic infections in animals and humans in the last years, the definition of viral diversity within European bat species is needed. Performing surveillance studies within a specific geographic area can provide awareness of viral burden where bats roost in close proximity to spillover hosts, and form the basis for the appropriate control measures against potential threats for public health and optimal management of bats and their habitats.
  相似文献   

5.
Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9), a recently identified coronavirus of novel Betacoronavirus subgroup D, from Leschenault''s rousette, was previously found to display marked sequence polymorphism among genomes of four strains. Among 10 bats with complete RNA-dependent RNA polymerase (RdRp), spike (S), and nucleocapsid (N) genes sequenced, three and two sequence clades for all three genes were codetected in two and five bats, respectively, suggesting the coexistence of two or three distinct genotypes of Ro-BatCoV HKU9 in the same bat. Complete genome sequencing of the distinct genotypes from two bats, using degenerate/genome-specific primers with overlapping sequences confirmed by specific PCR, supported the coexistence of at least two distinct genomes in each bat. Recombination analysis using eight Ro-BatCoV HKU9 genomes showed possible recombination events between strains from different bat individuals, which may have allowed for the generation of different genotypes. Western blot assays using recombinant N proteins of Ro-BatCoV HKU9, Betacoronavirus subgroup A (HCoV-HKU1), subgroup B (SARSr-Rh-BatCoV), and subgroup C (Ty-BatCoV HKU4 and Pi-BatCoV HKU5) coronaviruses were subgroup specific, supporting their classification as separate subgroups under Betacoronavirus. Antibodies were detected in 75 (43%) of 175 and 224 (64%) of 350 tested serum samples from Leschenault''s rousette bats by Ro-BatCoV HKU9 N-protein-based Western blot and enzyme immunoassays, respectively. This is the first report describing coinfection of different coronavirus genotypes in bats and coronavirus genotypes of diverse nucleotide variation in the same host. Such unique phenomena, and the unusual instability of ORF7a, are likely due to recombination which may have been facilitated by the dense roosting behavior and long foraging range of Leschenault''s rousette.Coronaviruses infect a wide variety of animals in which they can cause respiratory, enteric, hepatic, and neurological diseases of various severities. Based on genotypic and serological characterization, coronaviruses were traditionally classified into three distinct groups, groups 1, 2, and 3 (3, 27, 59). Recently, the Coronavirus Study Group of the International Committee for Taxonomy of Viruses has renamed the traditional group 1, 2, and 3 coronaviruses as Alphacoronavirus, Betacoronavirus, and Gammacoronavirus, respectively (http://talk.ictvonline.org/media/p/1230.aspx). Coronaviruses are known to have a high frequency of recombination as a result of their unique mechanism of viral replication (27). Such tendency for recombination and high mutation rates may allow them to adapt to new hosts and ecological niches (24, 47, 52).The severe acute respiratory syndrome (SARS) epidemic has boosted interest in the study of coronaviruses in humans and animals (21, 34, 38, 41, 54). In the past few years, there has been a dramatic increase in the number of newly described human and animal coronaviruses (2, 4, 5, 8-10, 15-20, 23, 25, 28, 30, 32, 35, 36, 39, 43, 45, 50, 51, 53, 56, 58). Two novel human coronaviruses, human coronavirus NL63 (HCoV-NL63) and human coronavirus HKU1 (HCoV-HKU1), belonging to Alphacoronavirus and Betacoronavirus, respectively, have been discovered, in addition to the human coronavirus OC43 (HCoV-OC43), human coronavirus 229E (HCoV-229E), and SARS coronavirus (SARS-CoV) (17, 29, 45, 53, 55). We have also previously described the discovery of a diversity of novel coronaviruses in wild bats and birds in China, including SARSr-Rh-BatCoV, belonging to Betacoronavirus subgroup B, from Chinese horseshoe bats (30, 48, 56). Among these novel coronaviruses, three avian coronaviruses were found to belong to a novel subgroup of Gammacoronavirus (Gammacoronavirus subgroup C), while three bat coronaviruses were found to belong to two novel subgroups of Betacoronavirus (Betacoronavirus subgroups C and D) (48, 50). Based on the presence of the huge diversity of coronaviruses in Alphacoronavirus and Betacoronavirus among various bat species, bats are likely the reservoir for the ancestor of these two coronavirus genera (47).During our genome analysis of these novel coronaviruses, one of them, Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9), belonging to Betacoronavirus subgroup D, which was identified in Leschenault''s rousette bats, was found to display marked nucleotide and amino acid sequence polymorphism among the four strains with complete genome sequences (50). In our study on HCoV-HKU1, it has been shown that such sequence polymorphisms may indicate the presence of different genotypes (52). By complete genome sequence analysis of the potentially different genotypes of HCoV-HKU1, we have demonstrated for the first time natural recombination in a human coronavirus, resulting in the generation of at least three genotypes (52). We have also recently shown that recombination between different strains of SARSr-Rh-BatCoV from different regions of China may have given rise to the emergence of civet SARSr-CoV (31). To investigate the presence of different genotypes of Ro-BatCoV HKU9, the complete RNA-dependent RNA polymerase (RdRp) (corresponding to nsp12), spike (S), and nucleocapsid (N) gene sequences of Ro-BatCoV HKU9 from 10 additional bats were determined. Since sequence analysis showed the possible coexistence of different genotypes in seven bat individuals, complete genome sequencing of these distinct genotypes from two bats was carried out to investigate for possible recombination events among the different genotypes. In addition, serological characterization of Ro-BatCoV HKU9 was also performed by Western blot and enzyme immunoassays using recombinant Ro-BatCoV HKU9 nucleocapsid proteins and recombinant nucleocapsid proteins of Betacoronavirus subgroup A, B, and C coronaviruses to determine possible cross-reactivity among the different Betacoronavirus subgroups and the seroepidemiology of Ro-BatCoV HKU9 in Leschenault''s rousette bats.  相似文献   

6.
Bats have been implicated as important reservoir hosts of alpha- and betacoronaviruses. In this study, diverse coronaviruses (CoVs) were detected in 50 of 951 (positive rate 5.3%) intestinal specimens of eight bat species collected in four provinces and the Tibet Autonomous Region of China by pan-coronavirus RT-PCR screening. Based on 400-nt RNA-dependent RNA polymerase (RdRP) sequence analysis, eight belonged to genus Alphacoronavirus and 42 to Betacoronavirus. Among the 50 positive specimens, thirteen gave rise to CoV full-length RdRP gene amplification for further sequence comparison, of which three divergent sequences (two from a unreported province) were subjected to full genome sequencing. Two complete genomes of betacoronaviruses (JTMC15 and JPDB144) and one nearly-complete genome of alphacoronavirus (JTAC2) were sequenced and their genomic organization predicted. The present study has identified additional numbers of genetically diverse bat-borne coronaviruses with a wide distribution in China. Two new species of bat CoV, identified through sequence comparison and phylogenetic analysis, are proposed.
  相似文献   

7.
While the novel Middle East respiratory syndrome coronavirus (MERS-CoV) is closely related to Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) and Pipistrellus bat CoV HKU5 (Pi-BatCoV HKU5) in bats from Hong Kong, and other potential lineage C betacoronaviruses in bats from Africa, Europe, and America, its animal origin remains obscure. To better understand the role of bats in its origin, we examined the molecular epidemiology and evolution of lineage C betacoronaviruses among bats. Ty-BatCoV HKU4 and Pi-BatCoV HKU5 were detected in 29% and 25% of alimentary samples from lesser bamboo bat (Tylonycteris pachypus) and Japanese pipistrelle (Pipistrellus abramus), respectively. Sequencing of their RNA polymerase (RdRp), spike (S), and nucleocapsid (N) genes revealed that MERS-CoV is more closely related to Pi-BatCoV HKU5 in RdRp (92.1% to 92.3% amino acid [aa] identity) but is more closely related to Ty-BatCoV HKU4 in S (66.8% to 67.4% aa identity) and N (71.9% to 72.3% aa identity). Although both viruses were under purifying selection, the S of Pi-BatCoV HKU5 displayed marked sequence polymorphisms and more positively selected sites than that of Ty-BatCoV HKU4, suggesting that Pi-BatCoV HKU5 may generate variants to occupy new ecological niches along with its host in diverse habitats. Molecular clock analysis showed that they diverged from a common ancestor with MERS-CoV at least several centuries ago. Although MERS-CoV may have diverged from potential lineage C betacoronaviruses in European bats more recently, these bat viruses were unlikely to be the direct ancestor of MERS-CoV. Intensive surveillance for lineage C betaCoVs in Pipistrellus and related bats with diverse habitats and other animals in the Middle East may fill the evolutionary gap.  相似文献   

8.
A comparative electrophoretic assay of lactate dehydrogenase (EC 1.1.1.27) isozymes has been carried out in the homogenates of the tissues of cardiac and skeletal muscles, liver, kidneys and lungs of five species of hibernating bats of the order Chiroptera: the northern bat Eptesicus nilssonii Keyserling and Blasius, the brown long-eared bat Plecotus auritus L., Brandt’s bat Myotis brandtii Eversmann, Daubenton’s bat Myotis daubentonii Kuhl, and the whiskered bat Myotis mystacinus Kuhl, which live in Karelia near the northern border of their distribution area. High contents of aerobic lactate dehydrogenase 1 and lactate dehydrogenase 2 isozymes have been detected in the skeletal muscle of the studied bats. The lactate dehydrogenase isozyme spectra of the tissues of kidneys and skeletal muscles from the smaller representatives of bats (the whiskered and Brandt’s bats) contained the highest content of H subunits among the studied species. In contrast, the predominance of M subunits has been revealed in the lactate dehydrogenase isozyme spectra of the kidneys of the northern and the brown long-eared bats. The discovered interspecies differences are discussed in the context of the adaptation of bats to hibernation.  相似文献   

9.
Factors affecting the origins of zoonotic coronaviruses in batsWith a presumed origin in bats, the COVID-19 pandemic has been a major source of morbidity and mortality in the human population, and the causative agent, SARS-CoV-2, aligns most closely at the genome level with the bat coronaviruses RaBtCoV4991/RaTG13 and RmYN02. The ability of bats to provide reservoirs of numerous viruses in addition to coronaviruses remains an active area of research. Unique aspects of the physiology of the chiropteran immune system may contribute to the ability of bats to serve as viral reservoirs. The coronavirus spike protein plays important roles in viral pathogenesis and the immune response. Although much attention has focused on the spike receptor-binding domain, a unique aspect of SARS-CoV-2 as compared with its closest relatives is the presence of a furin cleavage site in the S1–S2 region of the spike protein. Proteolytic activation is likely an important feature that allows SARS-CoV-2—and other coronaviruses—to overcome the species barriers and thus cause human disease. The diversity of bat species limits the ability to draw broad conclusions about viral pathogenesis, but comparisons across species and with reference to humans and other susceptible mammals may guide future research in this regard.

The COVID-19 pandemic remains a global public health emergency. The virus causing the pandemic (SARS-CoV-2) was identified in late 2019, after an outbreak of respiratory disease in Wuhan, China.87 Early sequencing aligned SARS-CoV-2 with the previously detected RaBtCoV/4991.13,20 SARS-CoV-2 was then further sequenced to yield the full genome (reported as RaTG1395), defining SARV-CoV-2 as being a probable bat-origin zoonotic coronavirus. Severe acute respiratory syndrome coronavirus (SARS-CoV), which emerged in 2002, and Middle East respiratory syndrome coronavirus (MERS-CoV), which emerged in 2012, are also considered to be of bat origin.46,51,71 At least 2 other commonly circulating coronaviruses in humans also likely originated in bats: HCoV-229E and HCoV-NL63.15,33 However, the human coronaviruses (HCoV) OC43 and HKU1 have alternatively been suggested to have emerged from rodents via cattle and from rodents via an unknown intermediate, respectively.47,73 Swine acute diarrhea syndrome coronavirus, a cause of significant mortality in piglets, emerged in 2016 in the Guangdong province of China from the bat virus Rhinolophus bat HKU2.22,59,94 The swine enteric coronavirus porcine epidemic diarrhea virus is also considered to have bat origins.31 Numerous other viral diseases of human concern, including Nipah and Hendra viruses and ebolavirus, moved into human populations from bats.14,25,41 Bats are also a common reservoir for the lethal rabies virus.9,64 The ability of bats to harbor and spread these viruses continues to be an active area of study, integrating surveillance, ecology, disease forecasting, and basic virology to protect human and animal populations.  相似文献   

10.
Long-term data on the composition and absolute and relative abundance of eight bat species hibernating in artificial caves of Samara Luka are considered. About 13 000 hibernating individuals are annually accounted there. The relative abundance of the species decreased in the following order: Myotis brandtii (35%), Plecotus auritus (20%), M. daubentonii (13%), M. mystacinus (13%), Eptesicus nilssonii (8%), M. dasycneme (8%), and M. nattereri (2%). Singular E. serotinus were recorded not every year. The number of hibernating animals in pits was proportional to their size and the number of shelters. Bats used previously chosen shelters and were never found in adjacent caves. The maximum species diversity (H’) and evenness (E) were observed in bat communities in medium-sized caves. One of the main factors of increasing abundance of hibernating bats in abandoned pits is their gradual colonization by the animals.  相似文献   

11.
The yeasts of the Malassezia genus are opportunistic microorganisms and can cause human and animal infections. They are commonly isolated from the skin and auricular canal of mammalians, mainly dogs and cats. The present study was aimed to isolate Malassezia spp. from the acoustic meatus of bats (Molossus molossus) in the Montenegro region, “Rondônia”, Brazil. From a total of 30 bats studied Malassezia spp. were isolated in 24 (80%) animals, the breakdown by species being as follows (one Malassezia sp. per bat, N = 24): 15 (62.5%) M. pachydermatis, 5 (20.8%) M. furfur, 3 (12.5%) M. globosa and 1 (4.2%) M. sympodialis. This study establishes a new host and anatomic place for Malassezia spp., as it presents the first report ever of the isolation of this genus of yeasts in the acoustic meatus of bats.  相似文献   

12.
In Europe, several species of bats, owls and kestrels exemplify highly urbanised, flying vertebrates, which may get close to humans or domestic animals. Bat droppings and bird pellets may have epidemiological, as well as diagnostic significance from the point of view of pathogens. In this work 221 bat faecal and 118 bird pellet samples were screened for a broad range of vector-borne bacteria using PCR-based methods. Rickettsia DNA was detected in 13 bat faecal DNA extracts, including the sequence of a rickettsial insect endosymbiont, a novel Rickettsia genotype and Rickettsia helvetica. Faecal samples of the pond bat (Myotis dasycneme) were positive for a Neorickettsia sp. and for haemoplasmas of the haemofelis group. In addition, two bird pellets (collected from a Long-eared Owl, Asio otus, and from a Common Kestrel, Falco tinnunculus) contained the DNA of a Rickettsia sp. and Anaplasma phagocytophilum, respectively. In both of these bird pellets the bones of Microtus arvalis were identified. All samples were negative for Borrelia burgdorferi s.l., Francisella tularensis, Coxiella burnetii and Chlamydiales. In conclusion, bats were shown to pass rickettsia and haemoplasma DNA in their faeces. Molecular evidence is provided for the presence of Neorickettsia sp. in bat faeces in Europe. In the evaluated regions bat faeces and owl/kestrel pellets do not appear to pose epidemiological risk from the point of view of F. tularensis, C. burnetii and Chlamydiales. Testing of bird pellets may provide an alternative approach to trapping for assessing the local occurrence of vector-borne bacteria in small mammals.  相似文献   

13.

Background

MERS-CoV is a newly emerged human coronavirus reported closely related with HKU4 and HKU5 Bat coronaviruses. Bat and MERS corona-viruses are structurally related. Therefore, it is of interest to estimate the degree of conserved antigenic sites among them. It is of importance to elucidate the shared antigenic-sites and extent of conservation between them to understand the evolutionary dynamics of MERS-CoV.

Results

Multiple sequence alignment of the spike (S), membrane (M), enveloped (E) and nucleocapsid (N) proteins was employed to identify the sequence conservation among MERS and Bat (HKU4, HKU5) coronaviruses. We used various in silico tools to predict the conserved antigenic sites. We found that MERS-CoV shared 30 % of its S protein antigenic sites with HKU4 and 70 % with HKU5 bat-CoV. Whereas 100 % of its E, M and N protein’s antigenic sites are found to be conserved with those in HKU4 and HKU5.

Conclusion

This sharing suggests that in case of pathogenicity MERS-CoV is more closely related to HKU5 bat-CoV than HKU4 bat-CoV. The conserved epitopes indicates their evolutionary relationship and ancestry of pathogenicity.
  相似文献   

14.
Bats are connected with the increasing numbers of emerging and re-emerging viruses that may break the species barrier and spread into the human population. Coronaviruses are one of the most common viruses discovered in bats, which were considered as the natural source of recent human-susceptible coronaviruses, i.e. SARS-COV and MERS-CoV. Our previous study reported the discovery of a bat-derived putative cross-family recombinant coronavirus with a reovirus gene p10, named as Ro-BatCoV GCCDC1. In this report, through a two-year follow-up of a special bat population in one specific cave of south China, we illustrate that Ro-BatCoV GCCDC1 persistently circulates among bats. Notably, through the longitudinal observation, we identified the dynamic evolution of Ro-BatCoV GCCDC1 in bats represented by continuously recombination events. Our study provides the first glimpse of the virus evolution in one longitudinally observed bat population cohort and underlines the surveillance and pre-warning of potential interspecies transmittable viruses in bats.  相似文献   

15.
Although coronaviruses are known to infect various animals by adapting to new hosts, interspecies transmission events are still poorly understood. During a surveillance study from 2005 to 2010, a novel alphacoronavirus, BatCoV HKU10, was detected in two very different bat species, Ro-BatCoV HKU10 in Leschenault''s rousettes (Rousettus leschenaulti) (fruit bats in the suborder Megachiroptera) in Guangdong and Hi-BatCoV HKU10 in Pomona leaf-nosed bats (Hipposideros pomona) (insectivorous bats in the suborder Microchiroptera) in Hong Kong. Although infected bats appeared to be healthy, Pomona leaf-nosed bats carrying Hi-BatCoV HKU10 had lower body weights than uninfected bats. To investigate possible interspecies transmission between the two bat species, the complete genomes of two Ro-BatCoV HKU10 and six Hi-BatCoV HKU10 strains were sequenced. Genome and phylogenetic analyses showed that Ro-BatCoV HKU10 and Hi-BatCoV HKU10 represented a novel alphacoronavirus species, sharing highly similar genomes except in the genes encoding spike proteins, which had only 60.5% amino acid identities. Evolution of the spike protein was also rapid in Hi-BatCoV HKU10 strains from 2005 to 2006 but stabilized thereafter. Molecular-clock analysis dated the most recent common ancestor of all BatCoV HKU10 strains to 1959 (highest posterior density regions at 95% [HPDs], 1886 to 2002) and that of Hi-BatCoV HKU10 to 1986 (HPDs, 1956 to 2004). The data suggested recent interspecies transmission from Leschenault''s rousettes to Pomona leaf-nosed bats in southern China. Notably, the rapid adaptive genetic change in BatCoV HKU10 spike protein by ∼40% amino acid divergence after recent interspecies transmission was even greater than the ∼20% amino acid divergence between spike proteins of severe acute respiratory syndrome-related Rhinolophus bat coronavirus (SARSr-CoV) in bats and civets. This study provided the first evidence for interspecies transmission of coronavirus between bats of different suborders.  相似文献   

16.
New and previously published data on the distribution of 12 bat species in the Cis-Urals and South Urals (Republic of Bashkortostan) are summarized. Data on their subspecies status are given. There is a need to clarify the taxonomic status of the pipistrelle bats Pipistrellus pipistrellus/pygmaeus. In terms of composition, the bat fauna of the Republic of Bashkortostan is a variant of the Central European fauna. It was revealed that the territory in question marks the eastern limits of distribution of Nyctalus leisleri and P. pipistrellus/pygmaeus. An important feature of the territory of Bashkortostan is the presence of places of mass wintering of bats of natural origin: more than 980 karst caves used by bats not only in winter, but also during the period of activity. According to the results of captures in 14 caves, data on the frequency and relative abundance of sedentary bat species in the Republic of Bashkortostan are given.  相似文献   

17.
Detection of diverse viruses in alimentary specimens of bats in Macau   总被引:1,自引:0,他引:1  
Bats carry a variety of viruses, and some of them cause public health problems. Macau, which is famous for its gambling industry, has a complex population structure. The globalization in such an international metropolis has enhanced the chance of disease transmission. Therefore, surveillance of zoonotic viruses is necessary for the early warning of potential emerging infectious diseases. Here, we report the first surveillance of bat viruses in Macau. In this study, we collected 1004 samples involving 10 bat species from 7 sites from April 2015 to May 2016, and examined the presence of viruses using nucleic acid-based methods. Coronaviruses, adenoviruses and paramyxoviruses were detected in these samples, with a high prevalence of coronaviruses. While, none was positive for hepatitis A virus, hepatitis E virus or hantavirus. Co-infections are not common in those bat species, but coronavirus HKU6 and adenovirus can be found commonly occurred in Myotis ricketti.
  相似文献   

18.
New data are presented on the ectoparasite fauna of several species of vesper and horseshoe bats (Chiroptera: Vespertilionidae, Rhinolophidae) of the Crimean Peninsula. In the studied territory, 11 species of ectoparasites (mites and insects) have been collected from 6 bat species; 2 of the ectoparasite species were new to Crimea. Findings of gamasid mites Ichoronyssus scutatus on an unusual host are discussed. The gamasid mite Spinturnix emarginatus (Acari: Mesostigmata: Gamasina) is described for the territory of Russia for the first time.  相似文献   

19.
This is the first country-wide surveillance of bat-borne viruses in Kenya spanning from 2012–2015covering sites perceived to have medium to high level bat-human interaction. The objective of this surveillance study was to apply a non-invasive approach using fresh feces to detect viruses circulating within the diverse species of Kenyan bats. We screened for both DNA and RNA viruses;specifically, astroviruses(AstVs), adenoviruses(ADVs), caliciviruses(CalVs), coronaviruses(CoVs), flaviviruses, filoviruses, paramyxoviruses(PMVs), polyomaviruses(PYVs) and rotaviruses.We used family-specific primers, amplicon sequencing and further characterization by phylogenetic analysis. Except for filoviruses, eight virus families were detected with varying distributions and positive rates across the five regions(former provinces) studied. AstVs(12.83%), CoVs(3.97%), PMV(2.4%), ADV(2.26%), PYV(1.65%), CalVs(0.29%), rotavirus(0.19%) and flavivirus(0.19%). Novel CalVs were detected in Rousettus aegyptiacus and Mops condylurus while novel Rotavirus-A-related viruses were detected in Taphozous bats and R. aegyptiacus. The two Rotavirus A(RVA) strains detected were highly related to human strains with VP6 genotypes I2 and I16. Genotype I16 has previously been assigned to human RVA-strain B10 from Kenya only, which raises public health concern, particularly considering increased human-bat interaction.Additionally, 229E-like bat CoVs were detected in samples originating from Hipposideros bats roosting in sites with high human activity. Our findings confirm the presence of diverse viruses in Kenyan bats while providing extended knowledge on bat virus distribution. The detection of viruses highly related to human strains and hence of public health concern, underscores the importance of continuous surveillance.  相似文献   

20.
The article presents the results of a new comparative analysis of free amino acids in the blood plasma of representatives of insectivorous Chiroptera (Mammalia: Vespertilionidae) in the fauna of the Ural Mountains: the pond bat (Myotis dasycneme Boie, 1825) and the parti-colored bat (Vespertilio murinus Linnaeus, 1758). This is the first study to show the species variability of free amino acids in resident and migratory species of bats from different ecosystems of the Ural Region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号