首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase δ was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.Adeno-associated virus (AAV) is a human parvovirus that is currently used as a gene transfer vector (14). AAV particles consist of a small icosahedral capsid protecting a single 4.7-kb single-stranded DNA (ssDNA) genome with two open reading frames, rep and cap, surrounded by inverted terminal repeats (ITRs). The ITRs are the only sequences required in cis for genome replication and packaging. The rep gene encodes four nonstructural Rep proteins: Rep78, -68, -52, and -40. The two larger isoforms, Rep78 and -68, have origin binding, helicase, and site-specific endonuclease activities and are involved in AAV gene expression and genome processing, including replication and site-specific integration (39). The two smaller Rep isoforms are not required for AAV DNA replication but are involved in the control of viral gene expression and packaging of viral DNA (30).When wild-type (wt) AAV infects a cell in the absence of a helper virus, it enters latency. Latent AAV genomes persist in cells either as episomes or as integrated genomes, preferentially at a specific locus (named AAVS1) on human chromosome 19. In most instances, no detectable viral gene expression or genome replication occurs unless the cell is co- or superinfected by a helper virus, such as adenovirus, herpes simplex virus type 1 (HSV-1), or HSV-2. Under these conditions, AAV replication and assembly take place in large intranuclear domains called replication compartments (RCs) that frequently colocalize with replication domains formed by the helper virus itself (81). The viral genome replicates by leading-strand synthesis and generates new ssDNA molecules by a strand displacement mechanism that occurs after strand- and site-specific cleavage of viral DNA by Rep78/68 within the ITRs (39).Studies conducted on the relationship between AAV and its helper viruses are important not only to identify helper activities that can be used to produce recombinant AAV vectors but also to understand how AAV adapts its replication strategy to the helper virus and to the nuclear environment in general. Adenovirus helper functions have historically been the first and most extensively studied functions. These studies have shown that adenovirus helps AAV by stimulating viral gene expression and by enhancing AAV genome replication, mostly indirectly (19). Indeed, early studies showed that the adenovirus polymerase (E2b) is dispensable for AAV replication (8) and that the viral DNA-binding protein (DBP), the product of the E2a gene, is able to modestly enhance the processivity of AAV genome replication in vitro (77). More recently, the adenovirus proteins E1b55k and E4orf6 were shown to stimulate AAV genome replication by degrading the cellular Mre11/Rad50/Nbs1 (MRN) complex that restricts AAV genome replication during adenovirus coinfection (32). The concept that AAV genome replication can rely mostly, if not uniquely, on direct help from cellular factors was further strengthened by the demonstration that purified proteins such as replication protein A (RPA), replication factor C (RFC), proliferating cell nuclear antigen (PCNA), minichromosome maintenance (MCM) proteins, and DNA polymerase δ (Pol δ) were sufficient to replicate the AAV genome in vitro in the presence of Rep (40-41, 43). The involvement of these cellular proteins during AAV genome replication was also confirmed by the proteomic analysis of factors associated with Rep proteins during adenovirus-induced AAV replication (42).Interestingly, studies conducted on HSV-1 helper activities suggest that the strategy of AAV replication may vary depending on the helper virus. Indeed, previous studies showed that the HSV-1 helicase-primase (HP) complex (UL5/8/52) and DBP (ICP8) could replicate transfected AAV-2 plasmids (80) and that the helicase activity, but not primase activity, of the HP complex was required for this effect (62, 66). More recently, a comprehensive study of HSV-1 helper activities demonstrated that the HSV-1 immediate-early proteins ICP0, ICP4, and ICP22 could stimulate rep gene expression, probably by diminishing intrinsic antiviral effects (1, 18). In addition, the HSV-1 DNA polymerase encoded by UL30, along with its associated processivity factor (UL42), although not strictly required, was demonstrated to significantly increase AAV replication levels induced in the presence of the HP complex and ICP8. Interestingly, the HSV-1 HP complex, DBP, and polymerase were also shown to be sufficient to replicate AAV DNA in vitro in the presence of Rep proteins without any cellular protein (78). Altogether, these observations indicate that in the context of an HSV-1 coinfection, AAV relies extensively on viral activities provided by the helper that directly participate in AAV genome replication.To further elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis to identify the cellular and HSV-1 factors associated with Rep proteins and, consequently, potentially recruited within AAV RCs. To analyze Rep-associated proteins in the presence and absence of HSV-1 DNA replication, this analysis was performed using wt HSV-1 and an HSV-1 mutant in which the DNA polymerase encoded by the UL30 gene is absent (HSVΔUL30). This study resulted in the identification of approximately 60 cellular proteins, among which the largest functional categories corresponded to factors involved in DNA and RNA metabolism. Immunofluorescence analyses confirmed that in the presence of HSV-1, a basal set of cellular DNA replication enzymes, including RPA, RFC, and PCNA, was recruited within AAV RCs, with the exception of the MCM helicases. The cellular DNA polymerases, in particular Pol δ, were not identified by this analysis but subsequently were shown to be recruited in AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, our results indicate that AAV replication induced by HSV-1 is associated with the recruitment of DNA repair factors, including components of the MRN complex, the Ku proteins, PARP-1, and factors of the mismatch repair (MMR) pathway. Finally, several HSV-1 proteins, most notably the UL12 protein, were also identified within AAV RCs. Our analyses confirmed the association between UL12 and Rep and demonstrated for the first time that this viral exonuclease plays a critical role during AAV replication by enhancing the formation of discrete AAV replicative forms and the production of AAV particles.Altogether, these results indicate that in the presence of HSV-1, AAV may replicate by using a basal set of cellular DNA replication enzymes but also relies extensively on HSV-1-derived proteins for its replication, including UL12, a newly discovered helper factor. These results suggest that AAV may be able to differentially adapt its replication strategy to the nuclear environment induced by the helper virus.  相似文献   

2.
The adeno-associated virus type 2 (AAV) replication (Rep) proteins Rep78 and 68 (Rep78/68) exhibit a number of biochemical activities required for AAV replication, including specific binding to a 22-bp region of the terminal repeat, site-specific endonuclease activity, and helicase activity. Individual and clusters of charged amino acids were converted to alanines in an effort to generate a collection of conditionally defective Rep78/68 proteins. Rep78 variants were expressed in human 293 cells and analyzed for their ability to mediate replication of recombinant AAV vectors at various temperatures. The biochemical activities of Rep variants were further characterized in vitro by using Rep68 His-tagged proteins purified from bacteria. The results of these analyses identified a temperature-sensitive (ts) Rep protein (D40,42,44A-78) that exhibited a delayed replication phenotype at 32 degrees C, which exceeded wild-type activity by 48 h. Replication activity was reduced by more than threefold at 37 degrees C and was undetectable at 39 degrees C. Stability of the Rep78 protein paralleled replication levels at each temperature, further supporting a ts phenotype. Replication differences resulted in a 3-log-unit difference in virus yields between the permissive and nonpermissive temperatures (2.2 x 10(6) and 3 x 10(3), respectively), demonstrating that this is a relatively tight mutant. In addition to the ts Rep mutant, we identified a nonconditional mutant with a reduced ability to support viral replication in vivo. Additional characterization of this mutant demonstrated an Mg(2+)-dependent phenotype that was specific to Rep endonuclease activity and did not affect helicase activity. The two mutants described here are unique, in that Rep ts mutants have not previously been described and the D412A Rep mutant represents the first mutant in which the helicase and endonuclease functions can be distinguished biochemically. Further understanding of these mutants should facilitate our understanding of AAV replication and integration, as well as provide novel strategies for production of viral vectors.  相似文献   

3.
The Rep68 and Rep78 proteins (Rep68/78) of adeno-associated virus type 2 (AAV) are critical for AAV replication and site-specific integration. They bind specifically to the AAV inverted terminal repeats (ITRs) and possess ATPase, helicase, and strand-specific/site-specific endonuclease activities. In the present study, we further characterized the AAV Rep68/78 helicase, ATPase, and endonuclease activities by using a maltose binding protein-Rep68 fusion (MBP-Rep68Delta) produced in Escherichia coli cells and Rep78 produced in vitro in a rabbit reticulocyte lysate system. We found that the minimal length of single-stranded DNA capable of stimulating the ATPase activity of MBP-Rep68Delta is 100 to 200 bases. The degree of stimulation correlated positively with the length of single-stranded DNA added to the reaction mixture. We then determined the ATP concentration needed for optimal MBP-Rep68Delta helicase activity and showed that the helicase is active over a wide range of ATP concentrations. We determined the directionality of MBP-Rep68Delta helicase activity and found that it appears to move in a 3' to 5' direction, which is consistent with a model in which AAV Rep68/78 participates in AAV DNA replication by unwinding DNA ahead of a cellular DNA polymerase. In this report, we also demonstrate that single-stranded DNA is capable of inhibiting the MBP-Rep68Delta or Rep78 endonuclease activity greater than 10-fold. In addition, we show that removal of the secondary Rep68/78 binding site, which is found only in the hairpin form of the AAV ITR, causes a three- to eightfold reduction in the ability of the ITR to be used as a substrate for the Rep78 or MBP-Rep68Delta endonuclease activity. This suggests that contact between Rep68/78 and this secondary element may play an important role in the Rep-mediated endonuclease activity.  相似文献   

4.
5.
The adeno-associated virus type 2 (AAV-2) Rep78 and Rep68 proteins are required for replication of the virus as well as its site-specific integration into a unique site, called AAVS1, of human chromosome 19. Rep78 and Rep68 initiate replication by binding to a Rep binding site (RBS) contained in the AAV-2 inverted terminal repeats (ITRs) and then specifically nicking at a nearby site called the terminal resolution site (trs). Similarly, Rep78 and Rep68 are postulated to trigger the integration process by binding and nicking RBS and trs homologues present in AAVS1. However, Rep78 and Rep68 cleave in vitro AAVS1 duplex-linear substrates much less efficiently than hairpinned ITRs. In this study, we show that the AAV-2 Rep68 endonuclease activity is affected by the topology of the substrates in that it efficiently cleaves in vitro in a site- and strand-specific manner the AAVS1 trs only if this sequence is in a supercoiled (SC) conformation. DNA sequence mutagenesis in the context of SC templates allowed us to elucidate for the first time the AAVS1 trs sequence and position requirements for Rep68-mediated cleavage. Interestingly, Rep68 did not cleave SC templates containing RBS from other sites of the human genome. These findings have intriguing implications for AAV-2 site-specific integration in vivo.  相似文献   

6.
We performed live cell visualization assays to directly assess the interaction between competing adeno-associated virus (AAV) and herpes simplex virus type 1 (HSV-1) DNA replication. Our studies reveal the formation of separate AAV and HSV-1 replication compartments and the inhibition of HSV-1 replication compartment formation in the presence of AAV. AAV Rep is recruited into AAV replication compartments but not into those of HSV-1, while the single-stranded DNA-binding protein HSV-1 ICP8 is recruited into both AAV and HSV-1 replication compartments, although with differential staining patterns. Slot blot analysis of coinfected cells revealed a dose-dependent inhibition of HSV-1 DNA replication by wild-type AAV but not by rep-negative recombinant AAV. Consistent with this, Western blot analysis indicated that wild-type AAV affects the levels of the HSV-1 immediate-early protein ICP4 and the early protein ICP8 only modestly but strongly inhibits the accumulation of the late proteins VP16 and gC. Furthermore, we demonstrate that the presence of Rep in the absence of AAV DNA replication is sufficient for the inhibition of HSV-1. In particular, Rep68/78 proteins severely inhibit the formation of mature HSV-1 replication compartments and lead to the accumulation of ICP8 at sites of cellular DNA synthesis, a phenomenon previously observed in the presence of viral polymerase inhibitors. Taken together, our results suggest that AAV and HSV-1 replicate in separate compartments and that AAV Rep inhibits HSV-1 at the level of DNA replication.  相似文献   

7.
The strand-specific, site-specific endonuclease (nicking) activity of the Rep68 and Rep78 (Rep68/78) proteins of adeno-associated virus type 2 (AAV) is involved in AAV replication, and appears to be involved in AAV site-specific integration. Rep68/78 cuts within the inverted terminal repeats (ITRs) of the AAV genome and in the AAV preferred integration locus on human chromosome 19 (AAVS1). The known endonuclease cut sites are 11-16 bases away from the primary binding sites, known as Rep recognition sequences (RRSs). A linear, double-stranded segment of DNA, containing an RRS and a cut site, has previously been shown to function as a substrate for the Rep68/78 endonuclease activity. We show here that mutation of the Rep recognition sequence, within such a DNA segment derived from the AAV ITRs, eliminates the ability of this substrate to be cleaved detectably by Rep78. Rep78 nicks the RRS-containing site from AAVS1 about half as well as the linear ITR sequence. Eighteen other RRS-containing sequences found in the human genome, but outside AAVS1, are not cleaved by Rep78. These results may help to explain the specificity of AAV integration.  相似文献   

8.
The Rep78 and Rep68 proteins of adeno-associated virus type 2 (AAV) are multifunctional proteins which are required for viral replication, regulation of AAV promoters, and preferential integration of the AAV genome into a region of human chromosome 19. These proteins bind the hairpin structures formed by the AAV inverted terminal repeat (ITR) origins of replication, make site- and strand-specific endonuclease cuts within the AAV ITRs, and display nucleoside triphosphate-dependent helicase activities. Additionally, several mutant Rep proteins display negative dominance in helicase and/or endonuclease assays when they are mixed with wild-type Rep78 or Rep68, suggesting that multimerization may be required for the helicase and endonuclease functions. Using overlap extension PCR mutagenesis, we introduced mutations within clusters of charged residues throughout the Rep68 moiety of a maltose binding protein-Rep68 fusion protein (MBP-Rep68Δ) expressed in Escherichia coli cells. Several mutations disrupted the endonuclease and helicase activities; however, only one amino-terminal-charge cluster mutant protein (D40A-D42A-D44A) completely lost AAV hairpin DNA binding activity. Charge cluster mutations within two other regions abolished both endonuclease and helicase activities. One region contains a predicted alpha-helical structure (amino acids 371 to 393), and the other contains a putative 3,4 heptad repeat (coiled-coil) structure (amino acids 441 to 483). The defects displayed by these mutant proteins correlated with a weaker association with wild-type Rep68 protein, as measured in coimmunoprecipitation assays. These experiments suggest that these regions of the Rep molecule are involved in Rep oligomerization events critical for both helicase and endonuclease activities.  相似文献   

9.
10.
The adeno-associated virus (AAV) Rep78 and Rep68 proteins are required for site-specific integration of the AAV genome into the AAVS1 locus (19q13.3-qter) as well as for viral DNA replication. Rep78 and Rep68 bind to the GAGC motif on the inverted terminal repeat (ITR) and cut at the trs (terminal resolution site). A similar reaction is believed to occur in AAVS1 harboring an analogous GAGC motif and a trs homolog, followed by integration of the AAV genome. To elucidate the functional domains of Rep proteins at the amino acid level, we performed charged-to-alanine scanning mutagenesis of the N terminus (residues 1 to 240) of Rep78, where DNA binding and nicking domains are thought to exist. Mutants were analyzed for their abilities to bind the GAGC motif, nick at the trs homolog, and integrate an ITR-containing plasmid into AAVS1 by electrophoretic mobility shift assay, trs endonuclease assay, and PCR-based integration assay. We identified the residues responsible for DNA binding: R107A, K136A, and R138A mutations completely abolished the binding activity. The H90A or H92A mutant, carrying a mutation in a putative metal binding site, lost nicking activity while retaining binding activity. Mutations affecting DNA binding or trs nicking also impaired the site-specific integration, except for E66A and E239A. These results provide important information on the structure-function relationship of Rep proteins. We also describe an aberrant nicking of Rep78. We found that Rep78 cuts predominantly at the trs homolog not only between the T residues (GGT/TGG), but also between the G and T residues (GG/TTGG), which may be influenced by the sequence surrounding the GAGC motif.  相似文献   

11.
We previously reported the development of an in vitro adeno-associated virus (AAV) DNA replication system. The system required one of the p5 Rep proteins encoded by AAV (either Rep78 or Rep68) and a crude adenovirus (Ad)-infected HeLa cell cytoplasmic extract to catalyze origin of replication-dependent AAV DNA replication. However, in addition to fully permissive DNA replication, which occurs in the presence of Ad, AAV is also capable of partially permissive DNA replication in the absence of the helper virus in cells that have been treated with genotoxic agents. Limited DNA replication also occurs in the absence of Ad during the process of establishing a latent infection. In an attempt to isolate uninfected extracts that would support AAV DNA replication, we discovered that HeLa cell extracts grown to high density can occasionally display as much in vitro replication activity as Ad-infected extracts. This finding confirmed previous genetic analyses which suggested that no Ad-encoded proteins were absolutely essential for AAV DNA replication and that the uninfected extracts should be useful for studying the differences between helper-dependent and helper-independent AAV DNA replication. Using specific chemical inhibitors and monoclonal antibodies, as well as the fractionation of uninfected HeLa extracts, we identified several of the cellular enzymes involved in AAV DNA replication. They were the single-stranded DNA binding protein, replication protein A (RFA), the 3′ primer binding complex, replication factor C (RFC), and proliferating cell nuclear antigen (PCNA). Consistent with the current model for AAV DNA replication, which requires only leading-strand DNA synthesis, we found no requirement for DNA polymerase α-primase. AAV DNA replication could be reconstituted with purified Rep78, RPA, RFC, and PCNA and a phosphocellulose chromatography fraction (IIA) that contained DNA polymerase activity. As both RFC and PCNA are known to be accessory proteins for polymerase δ and , we attempted to reconstitute AAV DNA replication by substituting either purified polymerase δ or polymerase for fraction IIA. These attempts were unsuccessful and suggested that some novel cellular protein or modification was required for AAV DNA replication that had not been previously identified. Finally, we also further characterized the in vitro DNA replication assay and demonstrated by two-dimensional (2D) gel electrophoresis that all of the intermediates commonly seen in vivo are generated in the in vitro system. The only difference was an accumulation of single-stranded DNA in vivo that was not seen in vitro. The 2D data also suggested that although both Rep78 and Rep68 can generate dimeric intermediates in vitro, Rep68 is more efficient in processing dimers to monomer duplex DNA. Regardless of the Rep that was used in vitro, we found evidence of an interaction between the elongation complex and the terminal repeats. Nicking at the terminal repeats of a replicating molecule appeared to be inhibited until after elongation was complete.  相似文献   

12.
The adeno-associated virus (AAV) genome encodes four Rep proteins, all of which contain an SF3 helicase domain. The larger Rep proteins, Rep78 and Rep68, are required for viral replication, whereas Rep40 and Rep52 are needed to package AAV genomes into preformed capsids; these smaller proteins are missing the site-specific DNA-binding and endonuclease domain found in Rep68/78. Other viral SF3 helicases, such as the simian virus 40 large T antigen and the papillomavirus E1 protein, are active as hexameric assemblies. However, Rep40 and Rep52 have not been observed to form stable oligomers on their own or with DNA, suggesting that important determinants of helicase multimerization lie outside the helicase domain. Here, we report that when the 23-residue linker that connects the endonuclease and helicase domains is appended to the adeno-associated virus type 5 (AAV5) helicase domain, the resulting protein forms discrete complexes on DNA consistent with single or double hexamers. The formation of these complexes does not require the Rep binding site sequence, nor is it nucleotide dependent. These complexes have stimulated ATPase and helicase activities relative to the helicase domain alone, indicating that they are catalytically relevant, a result supported by negative-stain electron microscopy images of hexameric rings. Similarly, the addition of the linker region to the AAV5 Rep endonuclease domain also confers on it the ability to bind and multimerize on nonspecific double-stranded DNA. We conclude that the linker is likely a key contributor to Rep68/78 DNA-dependent oligomerization and may play an important role in mediating Rep68/78's conversion from site-specific DNA binding to nonspecific DNA unwinding.  相似文献   

13.
Adeno-associated virus (AAV) type 2 is a human parvovirus whose replication is dependent upon cellular proteins as well as functions supplied by helper viruses. The minimal herpes simplex virus type 1 (HSV-1) proteins that support AAV replication in cell culture are the helicase-primase complex of UL5, UL8, and UL52, together with the UL29 gene product ICP8. We show that AAV and HSV-1 replication proteins colocalize at discrete intranuclear sites. Transfections with mutant genes demonstrate that enzymatic functions of the helicase-primase are not essential. The ICP8 protein alone enhances AAV replication in an in vitro assay. We also show localization of the cellular replication protein A (RPA) at AAV centers under a variety of conditions that support replication. In vitro assays demonstrate that the AAV Rep68 and Rep78 proteins interact with the single-stranded DNA-binding proteins (ssDBPs) of Ad (Ad-DBP), HSV-1 (ICP8), and the cell (RPA) and that these proteins enhance binding and nicking of Rep proteins at the origin. These results highlight the importance of intranuclear localization and suggest that Rep interaction with multiple ssDBPs allows AAV to replicate under a diverse set of conditions.  相似文献   

14.
15.
The Rep68 and Rep78 proteins of adeno-associated virus type 2 (AAV) are multifunctional proteins which contain overlapping amino acid sequences. They are required for viral replication and preferential integration of the AAV genome into a region of human chromosome 19. During the terminal resolution process of AAV DNA replication, these proteins make a site-specific and strand-specific endonuclease cut within the AAV inverted terminal repeat DNA. The Rep68 and Rep78 proteins also have helicase and DNA-binding activities. The endonuclease activity is believed to involve the covalent attachment of Rep68 or Rep78 at the cut site via a phosphotyrosine linkage. In an attempt to identify the active-site tyrosine residue of Rep78 and Rep68, tyrosine residues were site specifically mutated to phenylalanines by overlap extension PCR, and the resulting PCR fragments were cloned into a maltose binding protein-Rep68 fusion (MBP-Rep68delta) expression vector. The mutant MBP-Rep68delta proteins were expressed in Escherichia coli cells, purified with amylose resin, and assayed in vitro for Rep68-specific activities. Although several of the mutations disrupted the endonuclease activity, only the mutation of tyrosine 152 abrogated the endonuclease activity with no discernible effect on the helicase or DNA-binding activities. Our data therefore suggest that there are distinct active sites for the helicase and endonuclease activities.  相似文献   

16.
The unique ability of adeno-associated virus type 2 (AAV) to site-specifically integrate its genome into a defined sequence on human chromosome 19 (AAVS1) makes it of particular interest for use in targeted gene delivery. The objective underlying this study is to provide evidence for the feasibility of retargeting site-specific integration into selected loci within the human genome. Current models postulate that AAV DNA integration is initiated through the interactions of the products of a single viral open reading frame, REP, with sequences present in AAVS1 that resemble the minimal origin for AAV DNA replication. Here, we present a cell-free system designed to dissect the Rep functions required to target site-specific integration using functional chimeric Rep proteins derived from AAV Rep78 and Rep1 of the closely related goose parvovirus. We show that amino-terminal domain exchange efficiently redirects the specificity of Rep to the minimal origin of DNA replication. Furthermore, we establish that the amino-terminal 208 amino acids of Rep78/68 constitute a catalytic domain of Rep sufficient to mediate site-specific endonuclease activity.  相似文献   

17.
Productive infection by adeno-associated virus type 2 (AAV) requires coinfection with a helper virus, e.g., adenovirus or herpesviruses. In the case of adenovirus coinfection, the replication machinery of the host cell performs AAV DNA replication. In contrast, it has been proposed that the herpesvirus replication machinery might replicate AAV DNA. To investigate this question, we have attempted to reconstitute AAV DNA replication in vitro using purified herpes simplex virus type 1 (HSV-1) replication proteins. We show that the HSV-1 UL5, UL8, UL29, UL30, UL42, and UL52 gene products along with the AAV Rep68 protein are sufficient to initiate replication on duplex DNA containing the AAV origins of replication, resulting in products several hundred nucleotides in length. Initiation can occur also on templates containing only a Rep binding site and a terminal resolution site. We further demonstrate that initiation of DNA synthesis can take place with a subset of these factors: Rep68 and the UL29, UL30, and UL42 gene products. Since the HSV polymerase and its accessory factor (the products of the UL30 and UL42 genes) are unable to efficiently perform synthesis by strand displacement, it is likely that in addition to creating a hairpin primer, the AAV Rep protein also acts as a helicase for DNA synthesis. The single-strand DNA binding protein (the UL29 gene product) presumably prevents reannealing of complementary strands. These results suggest that AAV can use the HSV replication apparatus to replicate its DNA. In addition, they may provide a first step for the development of a fully reconstituted AAV replication assay.  相似文献   

18.
19.
Adeno-associated virus (AAV) codes for four closely related nonstructural proteins (Rep) required for AAV DNA replication and gene regulation. In vitro studies have revealed that either Rep78 or Rep68 alone is sufficient for AAV DNA replication. Rep52 and Rep40 are not required for DNA replication but have been reported to enhance the efficiency of accumulation of single-stranded progeny DNA. Previous studies on rep-expressing cell lines had indicated that only a subset of the four Rep proteins are required for the production of infectious AAV. We therefore set out to determine the minimal set of Rep proteins sufficient for the generation of infectious AAV. Transient cotransfections in HeLa cells of constructs for high-level expression of individual Rep proteins with a rep-negative AAV genome revealed that either Rep78 or Rep68 alone could complement for a full replication cycle yielding infectious virus. This result was confirmed by transfection studies in the cell line HeM2, which selectively expresses Rep78 at rather low levels under the control of the glucocorticoid-responsive mouse mammary tumor virus long terminal repeat (C. Hölscher, M. Hörer, J. A. Kleinschmidt, H. Zentgraf, A. Bürkle, and R. Heilbronn, J. Virol. 68:7169-7177, 1994). Increasing the level of Rep78 expression by transfection of a glucocorticoid receptor expression construct resulted in a higher level of DNA replication of a cotransfected rep-negative AAV genome and in the production of infectious rep-negative AAV particles. We further report on the generation of a new rep-expressing cell line, HeCM1, which was obtained by stable supertransfection of a construct for constitutive Rep40 expression into HeM1 cells (Hölscher et al., J. Virol. 68:7169-7177). Transfection of rather large amounts of rep-negative AAV DNA led to detectable virus production in HeCM1 cells even in the absence of the cotransfected glucocorticoid receptor expression construct, but higher yields were obtained after increasing the Rep78 level by coexpression of the glucocorticoid receptor. These data demonstrate that all Rep functions required for the productive replication of AAV in HeLa cells are contained within both Rep78 and Rep68.  相似文献   

20.
The Rep proteins encoded by the adeno-associated virus type 2 (AAV) play a crucial role in the rescue, replication, and integration of the viral genome. In the absence of a helper virus, little expression of the AAV Rep proteins occurs, and the AAV genome fails to undergo DNA replication. Since previous studies have established that expression of the Rep78 and Rep68 proteins from the viral p5 promoter is controlled by the Rep-binding site (RBS) and the YY1 factor-binding site (YBS), we constructed a number of recombinant AAV plasmids containing mutations and/or deletions of the RBS and the YBS in the p5 promoter. These plasmids were transfected in HeLa or 293 cells and analyzed for the potential to undergo AAV DNA rescue and replication. Our studies revealed that (i) a low-level rescue and autonomous replication of the wild-type AAV genome occurred in 293 but not in HeLa cells; (ii) mutations in the RBS resulted in augmented expression from the p5 promoter, leading to more efficient rescue and/or replication of the AAV genome in 293 but not in HeLa cells; (iii) little rescue and/or replication occurred from plasmids containing mutations in the YBS alone in the absence of coinfection with adenovirus; (iv) expression of the adenovirus E1A gene products was insufficient to mediate rescue and/or replication of the AAV genome in HeLa cells; (v) autonomously replicated AAV genomes in 293 cells were successfully encapsidated in mature progeny virions that were biologically active in secondary infection of HeLa cells in the presence of adenovirus; and (vi) stable transfection of recombinant AAV plasmids containing a gene for resistance to neomycin significantly affected stable integration only in 293 cells, presumably because rescue and autonomous replication of the AAV genome from these plasmids occurred in 293 cells but not in HeLa or KB cells. These data suggest that in the absence of adenovirus, the AAV Rep protein-RBS interaction plays a dominant role in down-regulating viral gene expression from the p5 promoter and that perturbation in this interaction is sufficient to confer autonomous replication competence to AAV in 293 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号