首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations of monocyte/macrophages have been reported in patients with tuberculosis (TB), but their significance is poorly understood. Blood mononuclear cells from patients with different clinical forms of TB, at various times of anti-TB treatment, and healthy tuberculin positive individuals, were double-stained for CD14 plus CD206, TLR-2, IFN-gammaR1, CD40, HLA-DR, CD36 and CD163, and analyzed by flow cytometry. Monocytes were infected with Mycobacterium tuberculosis H37Rv and 24h later the phenotype, induction of necrosis and apoptosis and production of tumor necrosis factor TNFalpha, interleukin (IL)-10 and IL-12p40 were determined. TB patients presented higher percentage of CD14+ cells but lower percentage of CD14+DR+ and CD14+CD36+ cells. Expression of CD14, HLA-DR and CD36 was decreased in TB patients. Normal percentages and expression were restored during anti-TB treatment. Monocytes from TB patients underwent necrosis and apoptosis after M. tuberculosis infection, whereas monocytes from healthy controls exhibited only apoptosis. Anti-TB treatment reverted necrosis. There were no differences between the various clinical forms of TB. In vitro M. tuberculosis infection decreased expression of the membrane molecules studied. HLA-DR and CD36 inhibition correlated with induction of apoptosis. Restoration of monocyte alterations during anti-TB treatment suggests that such alterations may be caused by the high M. tuberculosis load present during active disease.  相似文献   

2.
The association between NOD2 and tuberculosis (TB) risk has been reported widely, but the results of previous studies remained controversial and ambiguous. To assess the association between NOD2 polymorphisms and TB risk, a meta-analysis was performed. A literature search was conducted by using the PubMed, Ovid, ISI Web of Knowledge, Elsevier ScienceDirect, and Chinese National Knowledge Infrastructure (CNKI). We identified the data from all articles estimating the association between NOD2 polymorphisms and TB risk. In total, 2,215 cases and 1,491 controls in 7 case-control studies were included. In meta-analysis, we found significant association between the Arg702Trp polymorphism and TB risk (OR = 0.43, 95% CI = 0.20-0.90, P = 0.02). However, no significant association was found between the Arg587Arg (OR = 1.31, 95% CI = 0.83-2.07, P = 0.25) and Gly908Arg (OR = 0.78, 95% CI = 0.21-2.87, P = 0.71) polymorphisms and TB risk. The present meta-analysis suggested that NOD2 Arg702Trp polymorphism was likely to be a protective factor for TB. However, the Arg587Arg and Gly908Arg polymorphisms might not be the genetic risk factors for TB susceptibility.  相似文献   

3.
T-cell based IFN-γ release assays do not permit distinction of active tuberculosis (TB) from successfully treated disease or latent M. tuberculosis infection. We postulated that IFN-γ and IL-2 cytokine profiles of antigen-specific T cells measured by flow-cytometry ex vivo might correlate with TB disease activity in vivo. Tuberculin (PPD), ESAT-6 and CFP-10 were used as stimuli to determine antigen-specific cytokine profiles in CD4 T cells from 24 patients with active TB and 28 patients with successfully treated TB using flow-cytometry. Moreover, 25 individuals with immunity consistent with latent M. tuberculosis infection and BCG-vaccination, respectively, were recruited. Although the frequency of cytokine secreting PPD reactive CD4 T cells was higher in patients with active TB compared to patients with treated TB (median 0.81% vs. 0.39% of CD4 T cells, p?=?0.02), the overlap in frequencies precluded distinction between the groups on an individual basis. When assessing cytokine profiles, PPD specific CD4 T cells secreting both IFN-γ and IL-2 predominated in treated TB, latent infection and BCG-vaccination, whilst in active TB the cytokine profile was shifted towards cells secreting IFN-γ only (p<0.0001). Cytokine profiles of ESAT-6 or CFP-10 reactive CD4 T cells did not differ between the groups. Receiver operator characteristics (ROC) analysis revealed that frequencies of PPD specific IFN-γ/IL-2 dual-positive T cells below 56% were an accurate marker for active TB (specificity 100%, sensitivity 70%) enabling effective discrimination from non-active states. In conclusion, a frequency lower than 56% IFN-γ/IL-2 dual positive PPD-specific circulating CD4 T-cells is strongly indicative of active TB.  相似文献   

4.
Bacillus Calmette-Guerin (BCG) vaccine has failed to control the global tuberculosis (TB) epidemic, and there is a lack of safe and effective mucosal vaccines capable of potent protection against pulmonary TB. A recombinant replication-deficient adenoviral-based vaccine expressing an immunogenic Mycobacterium tuberculosis Ag Ag85A (AdAg85A) was engineered and evaluated for its potential to be used as a respiratory mucosal TB vaccine in a murine model of pulmonary TB. A single intranasal, but not i.m., immunization with AdAg85A provided potent protection against airway Mycobacterium tuberculosis challenge at an improved level over that by cutaneous BCG vaccination. Systemic priming with an Ag85A DNA vaccine and mucosal boosting with AdAg85A conferred a further enhanced immune protection which was remarkably better than BCG vaccination. Such superior protection triggered by AdAg85 mucosal immunization was correlated with much greater retention of Ag-specific T cells, particularly CD4 T cells, in the lung and was shown to be mediated by both CD4 and CD8 T cells. Thus, adenoviral TB vaccine represents a promising novel vaccine platform capable of potent mucosal immune protection against TB. Our study also lends strong evidence that respiratory mucosal vaccination is critically advantageous over systemic routes of vaccination against TB.  相似文献   

5.
Whether true memory T cells develop in the face of chronic infection such as tuberculosis remains controversial. To address this question, we studied CD8+ T cells specific for the Mycobacterium tuberculosis ESAT6-related Ags TB10.3 and TB10.4. The shared epitope TB10.3/10.4(20-28) is presented by H-2 K(d), and 20-30% of the CD8+ T cells in the lungs of chronically infected mice are specific for this Ag following respiratory infection with M. tuberculosis. These TB10.3/10.4(20-28)-specific CD8+ T cells produce IFN-gamma and TNF and express CD107 on their cell surface, which indicates their likely role as CTL in vivo. Nearly all of the Ag-specific CD8+ T cells in the lungs of chronically infected mice had a T effector cell phenotype based on their low expression of CD62L and CD45RB. In contrast, a population of TB10.3/10.4(20-28)-specific CD8+ T cells was identified in the lymphoid organs that express high levels of CD62L and CD45RB. Antibiotic treatment to resolve the infection led to a contraction of the Ag-specific CD8+ T cell population and was accompanied by an increase in the proportion of CD8+ T cells with a central memory phenotype. Finally, challenge of memory-immune mice with M. tuberculosis was accompanied by significant expansion of TB10.3/10.4(20-28)-specific CD8+ T cells, which suggests that these cells are in fact functional memory T cells.  相似文献   

6.
High Ag load in chronic viral infections has been associated with impairment of Ag-specific T cell responses; however, the relationship between Ag load in chronic Mycobacterium tuberculosis infection and functional capacity of M. tuberculosis-specific T cells in humans is not clear. We compared M. tuberculosis-specific T cell-associated cytokine production and proliferative capacity in peripheral blood from adults with progressively higher mycobacterial loads-that is, persons with latent M. tuberculosis infection (LTBI), with smear-negative pulmonary tuberculosis (TB), and smear-positive TB. Patients with smear-positive TB had decreased polyfunctional IFN-γ(+)IL-2(+)TNF-α(+) and IL-2-producing specific CD4 T cells and increased TNF-α single-positive cells, when compared with smear-negative TB and LTBI. TB patients also had increased frequencies of M. tuberculosis-specific CD8 T cells, compared with LTBI. M. tuberculosis-specific CD4 and CD8 T cell proliferative capacity was profoundly impaired in individuals with smear-positive TB, and correlated positively with ex vivo IFN-γ(+)IL-2(+)TNF-α(+) CD4 T cells, and inversely with TNF-α single-positive CD4 T cells. During 6 mo of anti-TB treatment, specific IFN-γ(+)IL-2(+)TNF-α(+) CD4 and CD8 T cells increased, whereas TNF-α and IFN-γ single-positive T cells decreased. These results suggest progressive impairment of M. tuberculosis-specific T cell responses with increasing mycobacterial load and recovery of responses during therapy. Furthermore, these data provide a link between specific cytokine-producing subsets and functional capacity of M. tuberculosis-specific T cells, and between the presence of specific CD8 T cells ex vivo and active TB disease. These data have potentially significant applications for the diagnosis of TB and for the identification of T cell correlates of TB disease progression.  相似文献   

7.
This study evaluated T cell immune responses to purified protein derivative (PPD) and Mycobacterium tuberculosis (Mtb) in health care workers who remained free of active tuberculosis (HCWs w/o TB), health care workers who went on to develop active TB (HCWs w/TB), non-health care workers who were TB free (Non-HCWs) and tuberculosis patients presenting with minimal (Min TB) or advanced (Adv TB) disease. Peripheral blood mononuclear cells (PBMC) were stimulated with Mtb and PPD and the expression of T cell activation markers CD25+ and HLA-DR+, intracellular IL-4 and IFN-gamma production and cytotoxic responses were evaluated. PBMC from HCWs who developed TB showed decreased percentages of cells expressing CD8+CD25+ in comparison to HCWs who remained healthy. HCWs who developed TB showed increased gammadelta TCR+ cell cytotoxicity and decreased CD3+gammadelta TCR- cell cytotoxicity in comparison to HCWs who remained healthy. PBMC from TB patients with advanced disease showed decreased percentages of CD25+CD4+ and CD25+CD8+ T cells that were associated with increased IL-4 production in CD8+ and gammadelta TCR+ phenotypes, in comparison with TB patients presenting minimal disease. TB patients with advanced disease showed increased gammadelta TCR+ cytotoxicity and reduced CD3+gammadelta TCR- cell cytotoxicity. Our results suggest that HCWs who developed TB show an early compensatory mechanism involving an increase in lytic responses of gammadelta TCR+ cells which did not prevent TB.  相似文献   

8.
One of the oligopolymorphic MHC class Ib molecules, H2-M3, presents N-formylated peptides derived from bacteria. In this study, we tested the ability of an H2-M3-binding peptide, TB2, to induce protection in C57BL/6 mice against Mycobacterium tuberculosis. Immunization with bone marrow-derived dendritic cell (BMDC) pulsed with TB2 or a MHC class Ia-binding peptide, MPT64(190-198) elicited an expansion of Ag-specific CD8+ T cells in the spleen and the lung. The number of TB2-specific CD8+ T cells reached a peak on day 6, contracted with kinetics similar to MPT64(190-198)-specific CD8+ T cells and was maintained at an appreciable level for at least 60 days. The TB2-specific CD8+ T cells produced less effector cytokines but have stronger cytotoxic activity than MPT64(190-198)-specific CD8+ T cells. Mice immunized with TB2-pulsed BMDC as well as those with MPT64(190-198)-pulsed BMDC showed significant protection against an intratracheal challenge with M. tuberculosis H37Rv. However, histopathology of the lung in mice immunized with TB2-pulsed BMDC was different from mice immunized with MPT64(190-198)-pulsed BMDC. Our results suggest that immunization with BMDC pulsed with MHC class Ib-restricted peptides would be a useful vaccination strategy against M. tuberculosis.  相似文献   

9.

Objectives

To explore the change and its significance of cytokines in patients with pulmonary tuberculosis complicated with COPD.

Methods

The immune function of 152 cases of pulmonary tuberculosis with COPD was detected to compare with 150 cases of patients with pulmonary tuberculosis, 157 cases of patients with COPD and 50 cases of healthy volunteers who were in the hospital during the same period. T lymphocyte cell population in peripheral blood was detected by flow cytometry. The serum levels of sIL-2R, IL-6, IFN-γ, TNF-α were measured using ELISA.

Results

The percentage of CD4+ T cells in TB patients with or without COPD and COPD patients without TB was significantly lower than that in control group. The percentage of CD4+ T cells in patients with TB and COPD was significantly lower than that in the non-COPD TB patients. The percentage of CD8+ T cells was higher in the TB patients group than that in control group. The CD4+/CD8+ ratio in the TB patients group was significantly lower than that in control group. The concentrations of sIL-2R, IL-6, TNF-α, IFN-γ in TB patients with or without COPD and COPD patients without TB were significantly higher than those in control group. In addition, sIL-2R, IL-6, TNF-α concentrations in the patients with TB and COPD were higher than those in the non-COPD TB patients. The concentrations of sIL-2R, IL-6, TNF-α, IFN-γ in COPD patients with TB were significantly higher than those in COPD patients without TB. There was a significant negative correlation between serum levels of TNF-α, IL-6 and FEV1 (%, predicted) in COPD without TB group.

Conclusions

The patients with pulmonary tuberculosis complicated with COPD were impaired in cellular immunity, and its extent of immune impairment is more serious than those of the patients with pulmonary tuberculosis and the patients with COPD.  相似文献   

10.
An understanding of T cell responses that are crucial for control of Mycobacterium tuberculosis (MTB) has major implications for the development of immune-based interventions. We studied the frequency of purified protein derivative (PPD)-specific CD3) cells expressing interleukin-2 (IL)-2, gamma interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha and IL-10 in HIV-negative pulmonary tuberculosis patients (TB, n=30) as well as in healthy individuals (controls, n=21) from Central Africa. Increased frequencies of PPD-stimulated CD3+ cells expressing IL-2, IFN-gamma, and TNF-alpha in TB were seen when compared with frequencies of controls. The presence of type 1 cytokine biased responses in TB patients was supported by a shift in the distribution pattern of cytokine expression from exclusively IL-2 or TNF-alpha expression seen in controls towards an increased frequency of IFN-gamma/IL-2 or IFN-gamma/TNF-alpha co-expression in TB. Higher levels of PPD-induced IFN-gamma in the supernatants from TB patients than from controls were found, which correlated with its intracellular expression. PPD was a weak inducer of IL-10 in T cells and insufficient in promoting cytokine production in TCRgammadelta+CD3+ cells. Non-specific stimulation with PMA and ionomycin revealed increased frequencies of CD4+ cells expressing IFN-gamma in controls, while expression of IL-2, IL-4, IL-10, IL-13, and TNF-alpha was not different. Non-specific cytokine responses of TCRgammadelta+CD3+ cells were similar in all groups. Pulmonary TB in Central Africa is associated with enhanced expression and secretion of specifically induced cytokines that are frequently implicated in host defense against MTB.  相似文献   

11.
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a major global health problem, despite the widespread use of the M. bovis Bacille Calmette-Guerin (BCG) vaccine and the availability of drug therapies. In recent years, the high incidence of coinfection of M. tuberculosis and HIV, as well as escalating problems associated with drug resistance, has raised ominous concerns with regard to TB control. Vaccination with BCG has not proven highly effective in controlling TB, and also has been associated with increasing concerns about the potential for the vaccine to cause disseminated mycobacterial infection in HIV infected hosts. Thus, the development of an efficacious and safe TB vaccine is generally viewed as a critical to achieving control of the ongoing global TB pandemic. In the current study, we have analyzed the vaccine efficacy of an attenuated M. tuberculosis strain that combines a mutation that enhances T cell priming (ΔsecA2) with a strongly attenuating lysine auxotrophy mutation (ΔlysA). The ΔsecA2 mutant was previously shown to be defective in the inhibition of apoptosis and markedly increased priming of antigen-specific CD8(+) T cells in vivo. Similarly, the ΔsecA2ΔlysA strain retained enhanced apoptosis and augmented CD8(+) T cell stimulatory effects, but with a noticeably improved safety profile in immunosuppressed mice. Thus, the M. tuberculosis ΔsecA2ΔlysA mutant represents a live attenuated TB vaccine strain with the potential to deliver increased protection and safety compared to standard BCG vaccination.  相似文献   

12.
Tuberculous pleuritis is a good model for the study of specific cells at the site of active Mycobacterium tuberculosis (Mtb) infection. We investigated the frequency and phenotype of NK cells in paired samples of peripheral blood and pleural fluid (PF) from patients with tuberculosis (TB) or parapneumonic infection. We demonstrated for the first time a reduction of NK cells in PF from TB with an enrichment in the CD56brightCD16- subset. In agreement, in PF NK cells we observed an increased expression of CD94, NKG2A, CD62L, and CCR7 molecules and lower expression of Bcl-2 and perforin. The activation markers CD69 and HLA-DR were also increased. The enrichment in the CD56bright subset was due to an increased susceptibility to apoptosis of CD56+CD16+ NK cells mediated by heat-labile and stable soluble factors present in tuberculous effusions and not in PF from other etiologies. Furthermore, in TB patients, Mtb-induced IFN-gamma production by PF NK cells was not dependent on the presence of CD3+, CD19+, and CD14+ cells, suggesting a direct interaction of CD56bright cells with Mtb and/or the involvement of other accessory cells present at the site of Mtb infection.  相似文献   

13.
The long-term control of tuberculosis (TB) will require the development of more effective anti-TB vaccines, as the only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG), has limited protective efficacy against infectious pulmonary TB. Subunit vaccines have an improved safety profile over live, attenuated vaccines, such as BCG, and may be used in immuno-compromised individuals. MPT83 (Rv2873) is a secreted mycobacterial lipoprotein expressed on the surface of Mycobacterium tuberculosis. In this study, we examined whether recombinant MPT83 is recognized during human and murine M. tuberculosis infection. We assessed the immunogenicity and protective efficacy of MPT83 as a protein vaccine, with monophosphyl lipid A (MPLA) in dimethyl-dioctadecyl ammonium bromide (DDA) as adjuvant, or as a DNA vaccine in C57BL/6 mice and mapped the T cell epitopes with peptide scanning. We demonstrated that rMPT83 was recognised by strong proliferative and Interferon (IFN)-γ-secreting T cell responses in peripheral blood mononuclear cells (PBMC) from patients with active TB, but not from healthy, tuberculin skin test-negative control subjects. MPT83 also stimulated strong IFN-γ T cell responses during experimental murine M. tuberculosis infection. Immunization with either rMPT83 in MPLA/DDA or DNA-MPT83 stimulated antigen-specific T cell responses, and we identified MPT83(127-135) (PTNAAFDKL) as the dominant H-2(b)-restricted CD8(+) T cell epitope within MPT83. Further, immunization of C57BL/6 mice with rMPT83/MPLA/DDA or DNA-MPT83 stimulated significant levels of protection in the lungs and spleens against aerosol challenge with M. tuberculosis. Interestingly, immunization with rMPT83 in MPLA/DDA primed for stronger IFN-γ T cell responses to the whole protein following challenge, while DNA-MPT83 primed for stronger CD8(+) T cell responses to MPT83(127-135). Therefore MPT83 is a protective T cell antigen commonly recognized during human M. tuberculosis infection and should be considered for inclusion in future TB subunit vaccines.  相似文献   

14.
Although CD8(+) T cells help control Mycobacterium tuberculosis infection, their M. tuberculosis Ag repertoire, in vivo frequency, and functionality in human tuberculosis (TB) remains largely undefined. We have performed genome-based bioinformatics searches to identify new M. tuberculosis epitopes presented by major HLA class I supertypes A2, A3, and B7 (covering 80% of the human population). A total of 432 M. tuberculosis peptides predicted to bind to HLA-A*0201, HLA-A*0301, and HLA-B*0702 (representing the above supertypes) were synthesized and HLA-binding affinities determined. Peptide-specific CD8(+) T cell proliferation assays (CFSE dilution) in 41 M. tuberculosis-responsive donors identified 70 new M. tuberculosis epitopes. Using HLA/peptide tetramers for the 18 most prominently recognized HLA-A*0201-binding M. tuberculosis peptides, recognition by cured TB patients' CD8(+) T cells was validated for all 18 epitopes. Intracellular cytokine staining for IFN-γ, IL-2, and TNF-α revealed mono-, dual-, as well as triple-positive CD8(+) T cells, indicating these M. tuberculosis peptide-specific CD8(+) T cells were (poly)functional. Moreover, these T cells were primed during natural infection, because they were absent from M. tuberculosis-noninfected individuals. Control CMV peptide/HLA-A*0201 tetramers stained CD8(+) T cells in M. tuberculosis-infected and noninfected individuals equally, whereas Ebola peptide/HLA-A*0201 tetramers were negative. In conclusion, the M. tuberculosis-epitope/Ag repertoire for human CD8(+) T cells is much broader than hitherto suspected, and the newly identified M. tuberculosis Ags are recognized by (poly)functional CD8(+) T cells during control of infection. These results impact on TB-vaccine design and biomarker identification.  相似文献   

15.
Infection with Mycobacterium tuberculosis is one of the leading causes of death worldwide. Recognition of M. tuberculosis by pattern recognition receptors is crucial for activation of both innate and adaptive immune responses. In the present study, we demonstrate that nucleotide-binding oligomerization domain 2 (NOD2) and Toll-like receptors (TLRs) are two nonredundant recognition mechanisms of M. tuberculosis. CHO cell lines transfected with human TLR2 or TLR4 were responsive to M. tuberculosis. TLR2 knock-out mice displayed more than 50% defective cytokine production after stimulation with mycobacteria, whereas TLR4-defective mice also released 30% less cytokines compared to controls. Similarly, HEK293T cells transfected with NOD2 responded to stimulation with M. tuberculosis. The important role of NOD2 for the recognition of M. tuberculosis was demonstrated in mononuclear cells of individuals homozygous for the 3020insC NOD2 mutation, who showed an 80% defective cytokine response after stimulation with M. tuberculosis. Finally, the mycobacterial TLR2 ligand 19-kDa lipoprotein and the NOD2 ligand muramyl dipeptide synergized for the induction of cytokines, and this synergism was lost in cells defective in either TLR2 or NOD2. Together, these results demonstrate that NOD2 and TLR pathways are nonredundant recognition mechanisms of M. tuberculosis that synergize for the induction of proinflammatory cytokines.  相似文献   

16.
IFN-γ release assays (IGRAs) have suboptimal sensitivity for detection of Mycobacterium tuberculosis (Mtb) infection and cannot discriminate between tuberculosis (TB) patients and healthy -potentially Mtb infected- contacts (HCs). In a case-control study, we determined T-cell phenotypes of IGRAs in TB patients (n = 20) and HCs (n = 20) from Ghana. CD27 expression of T-cells was significantly lower in TB patients as compared to HCs independent from Mtb-specificity. CD27 expression discriminated both study groups - including TB patients with low or indeterminate IGRA results - effectively. We conclude that CD27 is a promising biomarker for diagnosis of TB patients with inconclusive IGRA results.  相似文献   

17.
The possibility that simultaneous expansion of T regulatory cells (Treg) and T effector cells early postinfection can confer some immunological benefits has not been studied. In this study, we tested the hypothesis that early, simultaneous cytokine expansion of Treg and T effector cells in a tissue infection site can allow these T cell populations to act in concert to control tissue inflammation/damage while containing infection. IL-2 treatments early after Mycobacterium tuberculosis infection of macaques induced simultaneous expansion of CD4(+)CD25(+)Foxp3(+) Treg, CD8(+)CD25(+)Foxp3(+) T cells, and CD4(+) T effector/CD8(+) T effector/Vγ2Vδ2 T effector populations producing anti-M. tuberculosis cytokines IFN-γ and perforin, and conferred resistance to severe TB inflammation and lesions. IL-2-expanded Foxp3(+) Treg readily accumulated in pulmonary compartment, but despite this, rapid pulmonary trafficking/accumulation of IL-2-activated T effector populations still occurred. Such simultaneous recruitments of IL-2-expanded Treg and T effector populations to pulmonary compartment during M. tuberculosis infection correlated with IL-2-induced resistance to TB lesions without causing Treg-associated increases in M. tuberculosis burdens. In vivo depletion of IL-2-expanded CD4(+)Foxp3(+) Treg and CD4(+) T effectors during IL-2 treatment of M. tuberculosis-infected macaques significantly reduced IL-2-induced resistance to TB lesions, suggesting that IL-2-expanded CD4(+) T effector cells and Treg contributed to anti-TB immunity. Thus, IL-2 can simultaneously activate and expand T effector cells and Foxp3(+) Treg populations and confer resistance to severe TB without enhancing M. tuberculosis infection.  相似文献   

18.
Santin M  Muñoz L  Rigau D 《PloS one》2012,7(3):e32482

Background

Despite the widespread use of interferon-γ release assays (IGRAs), their role in diagnosing tuberculosis and targeting preventive therapy in HIV-infected patients remains unclear. We conducted a comprehensive systematic review to contribute to the evidence-based practice in HIV-infected people.

Methodology/Principal Findings

We searched MEDLINE, Cochrane, and Biomedicine databases to identify articles published between January 2005 and July 2011 that assessed QuantiFERON®-TB Gold In-Tube (QFT-GIT) and T-SPOT®.TB (T-SPOT.TB) in HIV-infected adults. We assessed their accuracy for the diagnosis of tuberculosis and incident active tuberculosis, and the proportion of indeterminate results. The search identified 38 evaluable studies covering a total of 6514 HIV-infected participants. The pooled sensitivity and specificity for tuberculosis were 61% and 72% for QFT-GIT, and 65% and 70% for T-SPOT.TB. The cumulative incidence of subsequent active tuberculosis was 8.3% for QFT-GIT and 10% for T-SPOT.TB in patients tested positive (one study each), and 0% for QFT-GIT (two studies) and T-SPOT.TB (one study) respectively in those tested negative. Pooled indeterminate rates were 8.2% for QFT-GIT and 5.9% for T-SPOT.TB. Rates were higher in high burden settings (12.0% for QFT-GIT and 7.7% for T-SPOT.TB) than in low-intermediate burden settings (3.9% for QFT-GIT and 4.3% for T-SPOT.TB). They were also higher in patients with CD4+ T-cell count <200 (11.6% for QFT-GIT and 11.4% for T-SPOT.TB) than in those with CD4+ T-cell count ≥200 (3.1% for QFT-GIT and 7.9% for T-SPOT.TB).

Conclusions/Significance

IGRAs have suboptimal accuracy for confirming or ruling out active tuberculosis disease in HIV-infected adults. While their predictive value for incident active tuberculosis is modest, a negative QFT-GIT implies a very low short- to medium-term risk. Identifying the factors associated with indeterminate results will help to optimize the use of IGRAs in clinical practice, particularly in resource-limited countries with a high prevalence of HIV-coinfection.  相似文献   

19.
Genetic control of susceptibility to tuberculosis (TB) is being intensively studied, and immune responses to mycobacteria are considerably well characterized. However, it remains largely unknown which parameters of response distinguish resistant and susceptible TB phenotypes. Mice of I/St and A/Sn inbred strains and (A/Sn x I/St)F(1) hybrids were previously categorized as, respectively, susceptible, resistant, and hyperresistant to Mycobacterium tuberculosis-triggered disease. In the present work we compared parameters of lung T cell activation and response following M. tuberculosis challenge. In all mice, the disease progression was accompanied by a marked accumulation in the lungs of activated CD4(+) (CD44(high)/CD45RB(low)) and CD8(+) (CD44(high)/CD45RB(+)) T cells capable of secreting IFN-gamma and of activating macrophages for NO production and mycobacterial growth inhibition. However, significantly more CD8(+) T cells were accumulated in the lungs of resistant A/Sn and F(1) compared with I/St mice. About 80% A/Sn and F(1) CD8(+) cells expressed CD44(high)/CD45RB(+) phenotype, while about 40% I/St CD8(+) cells did not express CD45RB marker at week 5 of infection. In contrast, in susceptible I/St mice lung CD4(+) cells proliferated much more strongly in response to mycobacterial sonicate, and a higher proportion of these cells expressed CD95 and underwent apoptosis compared with A/Sn cells. Unseparated lung cells and T cells of I/St origin produced more IL-5 and IL-10, respectively, whereas their A/Sn and F1 counterparts produced more IFN-gamma following infection. F(1) cells overall expressed an intermediate phenotype between the two parental strains. Such a more balanced type of immune reactivity could be linked to a better TB defense.  相似文献   

20.
Understanding the early immunologic events accompanying reactivated tuberculosis (TB) in HIV-infected individuals may yield insight into causes of reactivation and improve treatment modalities. We used the cynomolgus macaque (Macaca fascicularis) model of HIV-Mycobacterium tuberculosis coinfection to investigate the dynamics of multifunctional T cell responses and granuloma T cell phenotypes in reactivated TB. CD4(+) and CD8(+) T cells expressing Th1 cytokines (IFN-γ, IL-2, TNF) and Th2 cytokines (IL-4 and IL-10) were followed from latent M. tuberculosis infection to reactivation after coinfection with a pathogenic SIV. Coinfected animals experienced increased Th1 cytokine responses to M. tuberculosis Ags above the latent-response baseline 3-5 wk post-SIV infection that corresponded with peak plasma viremia. Th2 cytokine expression was not Ag specific, but strong, transient IL-4 expression was noted 4-7 wk post-SIV infection. Animals reactivating <17 wk post-SIV infection had significantly more multifunctional CD4(+) T cells 3-5 wk post-SIV infection and more Th2-polarized and fewer Th0-, Th1-polarized CD8(+) T cells during weeks 1-10 post-SIV infection than animals reactivating >26 wk post-SIV infection. Granuloma T cells included Th0-, Th1-, and Th2-polarized phenotypes but were particularly rich in cytolytic (CD107(+)) T cells. When combined with the changes in peripheral blood T cells, these factors indicate that events during acute HIV infection are likely to include distortions in proinflammatory and anti-inflammatory T cell responses within the granuloma that have significant effects on reactivation of latent TB. Moreover, it appears that mycobacteria-specific multifunctional T cells are better correlates of Ag load (i.e., disease status) than of protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号