首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern pathology is an amalgam of many disciplines, such as microbiology, biochemistry and immunology, which historically have been intermingled with the practice of clinical medicine. For centuries, the pre-eminent pathological tool, at least in the context of patients, was a post-mortem examination. With the advent of optical microscopes, morphology became a predominant means of developing tissue classification. A further paradigm shift occurred in the attempt to understand the nature and origin of disease; the recognition that, ultimately, it is the derangement in the structure and function of genes and proteins that causes human disease. More recent progress in pathology has led to the use of genomics and molecular technologies, including DNA sequencing, microarray analysis, PCR, in situ hybridization and proteomics. Today, the newest frontier appears to be histopathology proteomics, which adds the mass spectrometer to the arsenal of tools for the direct analysis of tissue biopsies and molecular diagnosis. Typically called MALDI imaging, this technique takes mass spectral snapshots of intact tissue slices, revealing how proteins and peptides are spatially distributed within a given sample. In this review, MALDI imaging technology is presented as well as applications of such technology in cancer or neurodegenerative diseases.  相似文献   

2.
Matrix-assisted laser desorption/ionization (MALDI) tissue imaging mass spectrometry is particularly promising among the numerous applications of mass spectrometry. It is used for probing and analyzing the spatial arrangement of a wide range of molecules, including proteins, peptides, lipids, drugs, and metabolites, directly in thin slices of tissue. In the field of proteomics, the technology avoids tedious and time-consuming extraction and fractionation steps classically required for sample analysis. MALDI imaging mass spectrometry is increasingly recognized as a powerful method for clinical proteomics, particularly in cancer research. The technology has particular potential for the discovery of new tissue biomarker candidates, classification of tumors, early diagnosis or prognosis, elucidating pathogenesis pathways, and therapy monitoring. Over recent years, MALDI imaging mass spectrometry has been used for molecular profiling and imaging directly in male and female reproductive tissues. This review will consider some of the recent publications in the field, addressing a range of issues covering embryo development, gene expression product profiling during gametogenesis, and seeking and identifying biomarkers of reproductive cancers. The wealth of advances in mass spectrometry imaging will inevitably attract biologists and clinicians as the advantages and power of this technology become more widely known. This review will also discuss bottlenecks and the many technical issues that remain to be resolved before laboratories in the field can adopt the technology. We foresee that MALDI imaging mass spectrometry will have a major impact in reproductive research by opening new avenues to the understanding of various molecular mechanisms and the diagnosis of reproductive pathologies.  相似文献   

3.
MALDI imaging mass spectrometry (‘MALDI imaging’) is an increasingly recognized technique for biomarker research. After years of method development in the scientific community, the technique is now increasingly applied in clinical research. In this article, we discuss the use of MALDI imaging in clinical proteomics and put it in context with classical proteomics techniques. We also highlight a number of upcoming challenges for personalized medicine, development of targeted therapies and diagnostic molecular pathology where MALDI imaging could help.  相似文献   

4.
MALDI imaging mass spectrometry ('MALDI imaging') is an increasingly recognized technique for biomarker research. After years of method development in the scientific community, the technique is now increasingly applied in clinical research. In this article, we discuss the use of MALDI imaging in clinical proteomics and put it in context with classical proteomics techniques. We also highlight a number of upcoming challenges for personalized medicine, development of targeted therapies and diagnostic molecular pathology where MALDI imaging could help.  相似文献   

5.
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful technology used to investigate the spatio-temporal distribution of a huge number of molecules throughout a body/tissue section. In this paper, we report the use of MALDI IMS to follow the molecular impact of an experimental infection of Apis mellifera with the microsporidia Nosema ceranae. We performed representative molecular mass fingerprints of selected tissues obtained by dissection. This was followed by MALDI IMS workflows optimization including specimen embedding and positioning as well as washing and matrix application. We recorded the local distribution of peptides/proteins within different tissues from experimentally infected versus non infected honeybees. As expected, a distinction in these molecular profiles between the two conditions was recorded from different anatomical sections of the gut tissue. More importantly, we observed differences in the molecular profiles in the brain, thoracic ganglia, hypopharyngeal glands, and hemolymph. We introduced MALDI IMS as an effective approach to monitor the impact of N. ceranae infection on A. mellifera. This opens perspectives for the discovery of molecular changes in peptides/proteins markers that could contribute to a better understanding of the impact of stressors and toxicity on different tissues of a bee in a single experiment.  相似文献   

6.
The identification of proteins involved in tumour progression or which permit enhanced or novel therapeutic targeting is essential for cancer research. Direct MALDI analysis of tissue sections is rapidly demonstrating its potential for protein imaging and profiling in the investigation of a range of disease states including cancer. MALDI‐mass spectrometry imaging (MALDI‐MSI) has been used here for direct visualisation and in situ characterisation of proteins in breast tumour tissue section samples. Frozen MCF7 breast tumour xenograft and human formalin‐fixed paraffin‐embedded breast cancer tissue sections were used. An improved protocol for on‐tissue trypsin digestion is described incorporating the use of a detergent, which increases the yield of tryptic peptides for both fresh frozen and formalin‐fixed paraffin‐embedded tumour tissue sections. A novel approach combining MALDI‐MSI and ion mobility separation MALDI‐tandem mass spectrometry imaging for improving the detection of low‐abundance proteins that are difficult to detect by direct MALDI‐MSI analysis is described. In situ protein identification was carried out directly from the tissue section by MALDI‐MSI. Numerous protein signals were detected and some proteins including histone H3, H4 and Grp75 that were abundant in the tumour region were identified.  相似文献   

7.
Imaging MS is a powerful technique that combines the chemical and spatial analysis of surfaces. It allows spatial localization of multiple different compounds that are recorded in parallel without the need of a label. It is currently one of the rapidly developing techniques in the proteomics toolbox. Different complementary imaging MS methods, i.e. MALDI and secondary ion MS imaging for direct tissue analysis, can be applied on exactly the same tissue sample. This allows the identification of small molecules, peptides and proteins present on the same sample surface. Sample preparation is crucial to obtain high quality, reliable and reproducible complementary molecular images. It is essential to optimize the conditions for each step in the sample preparation protocol, ranging from sample collection and storage to surface modification. In this article, we review and discuss the importance of correct sample treatment in case of MALDI and secondary ion MS imaging experiments and describe the experimental requirements for optimal sample preparation.  相似文献   

8.
PEP-19 is a neuronal calmodulin-binding protein, and as such, a putative modulator of calcium regulated processes. In the present study, we used proteomics technology approaches such as peptidomics and imaging MALDI mass spectrometry, as well as traditional techniques (immunoblotting and in situ hybridization) to identify PEP-19 and, specifically, to measure PEP-19 mRNA and protein levels in an animal model of Parkinson's disease. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in mice resulted in a significant decrease in striatal PEP-19 mRNA. Capillary nano-flow liquid chromatography electrospray mass spectrometry analysis of striatal tissue revealed a significant decrease of the PEP-19 protein level. Moreover, imaging MALDI mass spectrometry also showed that PEP-19 protein was predominantly localized to the striatum of the brain tissue cross sections. After MPTP administration, PEP-19 levels were significantly reduced by 30%. We conclude that PEP-19 mRNA and protein expression are decreased in the striatum of a common animal model of Parkinson's disease. Further studies are needed to show the specific involvement of PEP-19 in the neurodegeneration seen in MPTP lesioned animals. Finally, this study has shown that the combination of traditional molecular biology techniques with novel, highly specific and sensitive mass spectrometry methods is advantageous in characterizing molecular events of many diseases, including Parkinson's disease.  相似文献   

9.
Matrix-assisted laser desorption/ionization (MALDI) molecular imaging technology attracts increasing attention in the field of biomarker discovery. The unambiguous correlation between histopathology and MALDI images is a key feature for success. MALDI imaging mass spectrometry (MS) at high definition thus calls for technological developments that were established by a number of small steps. These included tissue and matrix preparation steps, dedicated lasers for MALDI imaging, an increase of the robustness against cell debris and matrix sublimation, software for precision matching of molecular and microscopic images, and the analysis of MALDI imaging data using multivariate statistical methods. The goal of these developments is to approach single cell resolution with imaging MS. Currently, a performance level of 20-μm image resolution was achieved with an unmodified and commercially available instrument for proteins detected in the 2-16-kDa range. The rat testis was used as a relevant model for validating and optimizing our technological developments. Indeed, testicular anatomy is among the most complex found in mammalian bodies. In the present study, we were able to visualize, at 20-μm image resolution level, different stages of germ cell development in testicular seminiferous tubules; to provide a molecular correlate for its well established stage-specific classification; and to identify proteins of interest using a top-down approach and superimpose molecular and immunohistochemistry images.  相似文献   

10.
Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has become a valuable tool to address a broad range of questions in many areas of biomedical research. One such application allows spectra to be obtained directly from intact tissues, termed "profiling" (low resolution) and "imaging" (high resolution). In light of the fact that MALDI tissue profiling allows over a thousand peptides and proteins to be rapidly detected from a variety of tissues, its application to disease processes is of special interest. For example, protein profiles from tumors may allow accurate prediction of tumor behavior, diagnosis, and prognosis and uncover etiologies underlying idiopathic diseases. MALDI MS, in conjunction with laser capture microdissection, is able to produce protein expression profiles from a relatively small number of cells from specific regions of heterogeneous tissue architectures. Imaging mass spectrometry enables the investigator to assess the spatial distribution of proteins, drugs, and their metabolites in intact tissues. This article provides an overview of several tissue profiling and imaging applications performed by MALDI MS, including sample preparation, matrix selection and application, histological staining prior to MALDI analysis, tissue profiling, imaging, and data analysis. Several applications represent direct translation of this technology to clinically relevant problems.  相似文献   

11.
Formalin fixation, generally followed by paraffin embedding, is the standard and well-established processing method employed by pathologist. This treatment conserves and stabilizes biopsy samples for years. Analysis of FFPE tissues from biopsy libraries has been, so far, a challenge for proteomics biomarker studies. Herein, we present two methods for the direct analysis of formalin-fixed, paraffin-embedded (FFPE) tissues by MALDI-MS. The first is based on the use of a reactive matrix, 2,4-dinitrophenylhydrazine, useful for FFPE tissues stored less than 1 year. The second approach is applicable for all FFPE tissues regardless of conservation time. The strategy is based on in situ enzymatic digestion of the tissue section after paraffin removal. In situ digestion can be performed on a specific area of the tissue as well as on a very small area (microdigestion). Combining automated microdigestion of a predefined tissue array with either in situ extraction prior to classical nanoLC/MS-MS analysis or automated microspotting of MALDI matrix according to the same array allows the identification of both proteins by nanoLC-nanoESI and MALDI imaging. When adjacent tissue sections are used, it is, thus, possible to correlate protein identification and molecular imaging. These combined approaches, along with FFPE tissue analysis provide access to massive amounts of archived samples in the clinical pathology setting.  相似文献   

12.
MALDI imaging mass spectrometry represents a new analytical tool to directly provide the spatial distribution and relative abundance of proteins in tissue. Twenty-five ovary carcinomas (stages III and IV) and 23 benign ovaries were directly analyzed using MALDI-TOF MS. The biomarker with the major prevalence (80%) has been fully identified using MALDI MS and nanoESI MS and MS/MS after separation by RP-HPLC and trypsin enzymatic digestion. This marker with an m/z of 9744 corresponds to 84 amino acid residues from the 11S proteasome activator complex, named PA28 or Reg-alpha. Validation of this marker has been performed using MALDI imaging, classical immunocytochemistry with an antibody raised against the C-terminal part of the protein, specific MALDI imaging, and Western blot analysis. The validation, using immunocytochemistry, confirmed the epithelial localization of this fragment with nucleus localization in benign epithelial cells and a cytoplasmic localization in carcinoma cells. This indicates that this antibody could be used to discriminate the borderline tumor cases. At this point, a multicentric study needs to be conducted in order to clearly establish the potential of this biomarker. Taken together these studies reflect that direct tissue analysis and specific MALDI imaging strategies facilitate biomarker hunting and validation which can be named pathological proteomics.  相似文献   

13.
Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) is a highly versatile and sensitive analytical technique, which is known for its soft ionisation of biomolecules such as peptides and proteins. Generally, MALDI MS analysis requires little sample preparation, and in some cases like MS profiling it can be automated through the use of robotic liquid-handling systems. For more than a decade now, MALDI MS has been extensively utilised in the search for biomarkers that could aid clinicians in diagnosis, prognosis, and treatment decision making. This review examines the various MALDI-based MS techniques like MS imaging, MS profiling and proteomics in-depth analysis where MALDI MS follows fractionation and separation methods such as gel electrophoresis, and how these have contributed to prostate cancer biomarker research. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

14.
Since the emergence of proteomics methods, many proteins specific for renal cell carcinoma (RCC) have been identified. Despite their usefulness for the specific diagnosis of RCC, such proteins do not provide spatial information on the diseased tissue. Therefore, the identification of cancer-specific proteins that include information on their specific location is needed. Recently, matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) based imaging mass spectrometry (IMS) has emerged as a new tool for the analysis of spatial distribution as well as identification of either proteins or small molecules in tissues. In this report, surgical tissue sections of papillary RCC were analyzed using MALDI-IMS. Statistical analysis revealed several discriminative cancer-specific m/z-species between normal and diseased tissues. Among these m/z-species, two particular proteins, S100A11 and ferritin light chain, which are specific for papillary RCC cancer regions, were successfully identified using LC-MS/MS following protein extraction from independent RCC samples. The expressions of S100A11 and ferritin light chain were further validated by immunohistochemistry of human tissues and tissue microarrays (TMAs) of RCC. In conclusion, MALDI-IMS followed by LC-MS/MS analysis in human tissue identified that S100A11 and ferritin light chain are differentially expressed proteins in papillary RCC cancer regions.  相似文献   

15.
BackgroundIn spite of the number of applications describing the use of MALDI MSI, one of its major drawbacks is the limited capability of identifying multiple compound classes directly on the same tissue section.MethodsWe demonstrate the use of grid-aided, parafilm-assisted microdissection to perform MALDI MS imaging and shotgun proteomics and metabolomics in a combined workflow and using only a single tissue section. The grid is generated by microspotting acid dye 25 using a piezoelectric microspotter, and this grid was used as a guide to locate regions of interest and as an aid during manual microdissection. Subjecting the dissected pieces to the modified Folch method allows to separate the metabolites from proteins. The proteins can then be subjected to digestion under controlled conditions to improve protein identification yields.ResultsThe proof of concept experiment on rat brain generated 162 and 140 metabolite assignments from three ROIs (cerebellum, hippocampus and midbrain/hypothalamus) in positive and negative modes, respectively, and 890, 1303 and 1059 unique proteins. Integrated metabolite and protein overrepresentation analysis identified pathways associated with the biological functions of each ROI, most of which were not identified when looking at the protein and metabolite lists individually.ConclusionsThis combined MALDI MS imaging and multi-omics approach further extends the amount of information that can be generated from single tissue sections.General significanceTo the best of our knowledge, this is the first report combining both imaging and multi-omics analyses in the same workflow and on the same tissue section.  相似文献   

16.
MALDI imaging mass spectrometry (IMS) is a powerful approach that facilitates the spatial analysis of molecular species in biological tissue samples2 (Fig.1). A 12 μm thin tissue section is covered with a MALDI matrix, which facilitates desorption and ionization of intact peptides and proteins that can be detected with a mass analyzer, typically using a MALDI TOF/TOF mass spectrometer. Generally hundreds of peaks can be assessed in a single rat brain tissue section. In contrast to commonly used imaging techniques, this approach does not require prior knowledge of the molecules of interest and allows for unsupervised and comprehensive analysis of multiple molecular species while maintaining high molecular specificity and sensitivity2. Here we describe a MALDI IMS based approach for elucidating region-specific distribution profiles of neuropeptides in the rat brain of an animal model Parkinson''s disease (PD). PD is a common neurodegenerative disease with a prevalence of 1% for people over 65 of age3,4. The most common symptomatic treatment is based on dopamine replacement using L-DOPA5. However this is accompanied by severe side effects including involuntary abnormal movements, termed L-DOPA-induced dyskinesias (LID)1,3,6. One of the most prominent molecular change in LID is an upregulation of the opioid precursor prodynorphin mRNA7. The dynorphin peptides modulate neurotransmission in brain areas that are essentially involved in movement control7,8. However, to date the exact opioid peptides that originate from processing of the neuropeptide precursor have not been characterized. Therefore, we utilized MALDI IMS in an animal model of experimental Parkinson''s disease and L-DOPA induced dyskinesia. MALDI imaging mass spectrometry proved to be particularly advantageous with respect to neuropeptide characterization, since commonly used antibody based approaches targets known peptide sequences and previously observed post-translational modifications. By contrast MALDI IMS can unravel novel peptide processing products and thus reveal new molecular mechanisms of neuropeptide modulation of neuronal transmission. While the absolute amount of neuropeptides cannot be determined by MALDI IMS, the relative abundance of peptide ions can be delineated from the mass spectra, giving insights about changing levels in health and disease. In the examples presented here, the peak intensities of dynorphin B, alpha-neoendorphin and substance P were found to be significantly increased in the dorsolateral, but not the dorsomedial, striatum of animals with severe dyskinesia involving facial, trunk and orolingual muscles (Fig. 5). Furthermore, MALDI IMS revealed a correlation between dyskinesia severity and levels of des-tyrosine alpha-neoendorphin, representing a previously unknown mechanism of functional inactivation of dynorphins in the striatum as the removal of N-terminal tyrosine reduces the dynorphin''s opioid-receptor binding capacity9. This is the first study on neuropeptide characterization in LID using MALDI IMS and the results highlight the potential of the technique for application in all fields of biomedical research.  相似文献   

17.
Application of Mass Spectrometry in Proteomics   总被引:6,自引:0,他引:6  
Mass spectrometry has arguably become the core technology in proteomics. The application of mass spectrometry based techniques for the qualitative and quantitative analysis of global proteome samples derived from complex mixtures has had a big impact in the understanding of cellular function. Here, we give a brief introduction to principles of mass spectrometry and instrumentation currently used in proteomics experiments. In addition, recent developments in the application of mass spectrometry in proteomics are summarised. Strategies allowing high-throughput identification of proteins from highly complex mixtures include accurate mass measurement of peptides derived from total proteome digests and multidimensional peptide separations coupled with mass spectrometry. Mass spectrometric analysis of intact proteins permits the characterisation of protein isoforms. Recent developments in stable isotope labelling techniques and chemical tagging allow the mass spectrometry based differential display and quantitation of proteins, and newly established affinity procedures enable the targeted characterisation of post-translationally modified proteins. Finally, advances in mass spectrometric imaging allow the gathering of specific information on the local molecular composition, relative abundance and spatial distribution of peptides and proteins in thin tissue sections.  相似文献   

18.
Imaging mass spectrometry (IMS) is two-dimensional mass spectrometry to visualize the spatial distribution of biomolecules, which does not need either separation or purification of target molecules, and enables us to monitor not only the identification of unknown molecules but also the localization of numerous molecules simultaneously. Among the ionization techniques, matrix assisted laser desorption/ionization (MALDI) is one of the most generally used for IMS, which allows the analysis of numerous biomolecules ranging over wide molecular weights. Proper selection and preparation of matrix is essential for successful imaging using IMS. Tandem mass spectrometry, which is referred to MSn, enables the structural analysis of a molecule detected by the first step of IMS. Applications of IMS were initially developed for studying proteins or peptides. At present, however, targets of IMS research have expanded to the imaging of small endogenous metabolites such as lipids, exogenous drug pharmacokinetics, exploring new disease markers, and other new scientific fields. We hope that this new technology will open a new era for biophysics.  相似文献   

19.
Recent advancements in mass spectrometry, especially the development of electrospray tandem mass spectrometry (ESI/LC/MS2) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI/TOF), have greatly facilitated analysis of complex biomolecules. It has now become possible to profile, in relatively short periods of time, large multicomponent groups of compounds biosynthesized by biological systems. The efficiency and accuracy of analysis have led to the development of new concepts of mass spectrometric profiling, mapping, and imaging. Profiling of proteins in biological material (proteomics) has become a widely accepted strategy for identification of mechanisms involved in the biochemistry of disease processes, and has become a novel tool for unraveling new drug targets. Evolution of proteomics has relied on ESI/LC/MS2 and MALDI/TOF, techniques that are also useful in the novel area of quantitative proteomics.  相似文献   

20.
Imaging mass spectrometry (IMS) is a powerful technique that combines the chemical and spatial analysis of surface materials. It allows spatial localization of peptides, proteins or lipids that are recorded in parallel without the need of a label. It is currently one of the most rapidly developing techniques in the proteomics toolbox. In the present study, accurate mass matrix-assisted laser desorption/ionization imaging mass spectrometry (MALD IMS) was used for direct molecular mapping of nervous tissue at micrometer spatial resolution. Cryosections of the whole brain of the terrestrial snail, Helix pomatia, were placed on indium-tin-oxide (ITO)-coated conductive glass slides and covered with a thin layer of α-cyano-4-hydroxycinnamic acid (CHCA) matrix by electro spray deposition. High-resolution molecular ion maps of well-known neuropeptides, such as FMRFamide were constructed. FMRFamide is known to exert powerful modulatory effect on synaptic transmission in molluscs. FMRFamide was predominantly localized in the cluster of neurons in the pro-, meso- and postcerebral regions of cerebral ganglia, pedal ganglia and right parietal ganglia of the central nervous system. Our present study, using MALDI IMS confirmed the distribution of FMRFamide containing cells in the Helix central nervous system previously detected by antibody dependent immunohistochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号