首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Immunoglobulin-like Necl-5/Tage4/poliovirus receptor (PVR)/CD155, originally identified as the PVR, has been shown to be up-regulated in cancer cells and to enhance growth factor-induced cell movement and proliferation. In addition, Necl-5 heterophilically trans-interacts with nectin-3, a cell-cell adhesion molecule known to form adherens junctions in cooperation with cadherin. We show here that Necl-5 was down-regulated from cell surface upon cell-cell contacts in NIH3T3 cells. This down-regulation of Necl-5 was initiated by its interaction with nectin-3 and was mainly mediated by clathrin-dependent endocytosis. Then, the down-regulation of Necl-5 induced in this way reduced movement and proliferation of NIH3T3 cells. These results indicate that the down-regulation of Necl-5 induced by its interaction with nectin-3 upon cell-cell contacts may be at least one mechanism underlying contact inhibition of cell movement and proliferation.  相似文献   

2.
Cell migration plays roles in invasion of transformed cells and scattering of embryonic mesenchymal cells into surrounding tissues. We have found that Ig-like Necl-5/Tage4 is up-regulated in NIH3T3 cells transformed by an oncogenic Ras (V12Ras-NIH3T3 cells) and heterophilically trans-interacts with a Ca(2+)-independent Ig-like cell adhesion molecule nectin-3, eventually enhancing their intercellular motility. We show here that Necl-5 furthermore enhances cell migration in a nectin-3-independent manner. Studies using L fibroblasts expressing various mutants of Necl-5, NIH3T3 cells, and V12Ras-NIH3T3 cells have revealed that Necl-5 enhances serum- and platelet-derived growth factor-induced cell migration. The extracellular region of Necl-5 is necessary for directional cell migration, but not for random cell motility. The cytoplasmic region of Necl-5 is necessary for both directional and random cell movement. Necl-5 colocalizes with integrin alpha(V)beta(3) at leading edges of migrating cells. Analyses using an inhibitor or an activator of integrin alpha(V)beta(3) or a dominant negative mutant of Necl-5 have shown the functional association of Necl-5 with integrin alpha(V)beta(3) in cell motility. Cdc42 and Rac small G proteins are activated by the action of Necl-5 and required for the serum-induced, Necl-5-enhanced cell motility. These results indicate that Necl-5 regulates serum- and platelet-derived growth factor-induced cell migration in an integrin-dependent, nectin-3-independent manner, when cells do not contact other cells. We furthermore show here that enhanced motility and metastasis of V12Ras-NIH3T3 cells are at least partly the result of up-regulated Necl-5.  相似文献   

3.
Contact inhibition of cell movement and proliferation is critical for proper organogenesis and tissue remodeling. We show here a novel regulatory mechanism for this contact inhibition using cultured vascular endothelial cells. When the cells were confluently cultured, Necl-4 was up-regulated and localized at cell–cell contact sites where it cis-interacted with the vascular endothelial growth factor (VEGF) receptor. This interaction inhibited the tyrosine-phosphorylation of the VEGF receptor through protein-tyrosine phosphatase, non-receptor type 13 (PTPN13), eventually reducing cell movement and proliferation. When the cells were sparsely cultured, Necl-4 was down-regulated but accumulated at leading edges where it inhibited the activation of Rho-associated protein kinase through PTPN13, eventually facilitating the VEGF-induced activation of Rac1 and enhancing cell movement. Necl-4 further facilitated the activation of extracellular signal-regulated kinase 1/2, eventually enhancing cell proliferation. Thus, Necl-4 serves as a novel regulator for contact inhibition of cell movement and proliferation cooperatively with the VEGF receptor and PTPN13.  相似文献   

4.
Necl-5/Tage4/poliovirus receptor/CD155 has been shown to be the poliovirus receptor and to be up-regulated in rodent and human carcinoma. We have found previously that mouse Necl-5 regulates cell motility. We show here that mouse Necl-5 is furthermore involved in the regulation of cell proliferation. Studies using a specific antibody against Necl-5 and a dominant negative mutant of Necl-5 revealed that Necl-5 enhanced the serum-induced proliferation of NIH3T3, Swiss3T3, and mouse embryonic fibroblast cells. Necl-5 enhanced the serum-induced activation of the Ras-Raf-MEK-ERK signaling, up-regulated cyclins D2 and E, and down-regulated p27(Kip1), eventually shortening the period of the G(0)/G(1) phase of the cell cycle in NIH3T3 cells. Necl-5 similarly enhanced the platelet-derived growth factor-induced activation of the Ras-Raf-MEK-ERK signaling and shortened the period of the G(0)/G(1) phase of the cell cycle in NIH3T3 cells. Necl-5 acted downstream of the platelet-derived growth factor receptor and upstream of Ras. Moreover, up-regulated Necl-5 was involved at least partly in the enhanced proliferation of transformed cells including NIH3T3 cells transformed by an oncogenic Ras or v-Src. These results indicate that Necl-5 plays roles not only in cell motility but also in cell proliferation.  相似文献   

5.
Focal complexes are continuously formed and transformed into focal adhesions during cell movement. We previously demonstrated that Necl-5 co-localizes with integrin alpha(V)beta(3) at focal complexes, whereas Necl-5 does not localize at focal adhesions in moving NIH3T3 cells, suggesting that Necl-5 may be dissociated from integrin alpha(V)beta(3) during the transformation of focal complexes into focal adhesions, but the underlying mechanism remains unknown. Here, we explore the roles of Necl-5 and Rho-associated kinase (ROCK) in the regulation of the transformation of focal complexes into focal adhesions. We found that inhibition of Necl-5 expression and expression of a constitutively active mutant of ROCK1 enhanced, whereas treatment with a ROCK inhibitor Y-27632 inhibited the transformation of focal complexes into focal adhesions. In HEK293 cells ectopically expressing Necl-5 and integrin alpha(V)beta(3), treatment of cells with Y-27632 increased the binding of Necl-5 to clustered integrin alpha(V)beta(3). The experiments using inhibitors of myosin ATPase and actin polymerization revealed that actomyosin-driven contractility exerts a similar function as ROCK. The phosphorylation of integrin beta(3) at Tyr(747), which is known to be critical for the formation of focal adhesions, plays a pivotal role for the interaction between Necl-5 and integrin alpha(V)beta(3). These results indicate that the transformation of focal complexes into focal adhesions is negatively and positively regulated by Necl-5 and ROCK, respectively, and that ROCK-dependent actomyosin-driven contractility is a critical determinant for the regulation of the interaction between Necl-5 and integrin alpha(V)beta(3).  相似文献   

6.
The nectin and nectin-like molecule (Necl) family includes important cell adhesion molecules (CAMs) characterized by their Ig-like nature. Such CAMs regulate a broad spectrum of cell-cell interactions, including the interaction between NK cells and cytotoxic T lymphocytes (CTLs) and their target cells. CAM members nectin-2 (CD112) and Necl-5 (CD155) are believed to form homodimers (for nectin-2) or heterodimers in their functions for cell adhesion, as well as to interact with immune costimulatory receptor DNAX accessory molecule 1 (DNAM-1) (CD226) to regulate functions of both NK and CTL cells. However, the structural basis of the interactive mode of DNAM-1 with nectin-2 or Necl-5 is not yet understood. In this study, a soluble nectin-2 Ig-like V-set domain (nectin-2v) was successfully prepared and demonstrated to bind to both soluble ectodomain and cell surface-expressed full-length DNAM-1. The 1.85-? crystal structure of nectin-2v displays a perpendicular homodimer arrangement, revealing the homodimer characteristics of the nectin and Necls. Further mutational analysis indicated that disruption of the homodimeric interface of nectin-2v led to a failure of the homodimer formation, as confirmed by crystal structure and biochemical properties of the mutant protein of nectin-2v. Interestingly, the monomer mutant also loses DNAM-1 binding, as evidenced by cell staining with tetramers and surface plasmon resonance assays. The data indicate that interaction with DNAM-1 requires either the homodimerization or engagement of the homodimeric interface of nectin-2v. These results have implications for immune intervention of tumors or autoimmune diseases in the DNAM-1/nectin-2-dependent pathway.  相似文献   

7.
ErbB2 and ErbB3, members of the EGF receptor/ErbB family, form a heterodimer upon binding of a ligand, inducing the activation of Rac small G protein and Akt protein kinase for cell movement and survival, respectively. The enhanced ErbB3/ErbB2 signaling causes tumorigenesis, invasion, and metastasis. We found here that the ErbB3/ErbB2 signaling is regulated by immunoglobulin-like Necl-2, which is down-regulated in various cancer cells and serves as a tumor suppressor. The extracellular region of ErbB3, but not ErbB2, interacted in cis with that of Necl-2. This interaction reduced the ligand-induced, ErbB2-catalyzed tyrosine phosphorylation of ErbB3 and inhibited the consequent ErbB3-mediated activation of Rac and Akt, resulting in the inhibition of cancer cell movement and survival. These inhibitory effects of Necl-2 were mediated by the protein-tyrosine phosphatase PTPN13 which interacted with the cytoplasmic tail of Necl-2. We describe here this novel mechanism for silencing of the ErbB3/ErbB2 signaling by Necl-2.ErbB2 and ErbB3 are members of the EGF receptor/ErbB family, which has ErbB1 and ErbB4 as additional members (1). ErbB2 and ErbB3 are also known as HER2/Neu and HER3, respectively. No ligands binding directly to ErbB2 have been identified yet, whereas heregulin (HRG)3-α and -β, also known as neuregulin-1 and -2, respectively, directly bind to ErbB3. ErbB2 and ErbB3 have kinase domains in their cytoplasmic tails, but that of ErbB3 lacks kinase activity. Therefore, the homodimer of ErbB3 formed by binding of HRG does not transduce any intracellular signaling. By contrast, ErbB2 heterophilically interacts in cis with HRG-occupied ErbB3 and phosphorylates nine tyrosine residues of ErbB3, causing recruitment and activation of the p85 subunit of phosphoinositide 3-kinase (PI3K) and the subsequent activation of Rac small G protein and Akt protein kinase (2). The activation of Rac enhances cell movement and that of Akt prevents cell apoptosis (3).ErbB2 serves as an oncogenic protein (4), and amplification of the ErbB2 gene is observed in many types of cancers. For instance, it is amplified in ∼3% of lung cancers, ∼30% of breast cancers, ∼20% of gastric cancers, and ∼60% of ovarian cancers (5). Moreover, mutation of the ErbB2 gene is found in many types of cancers, namely, ∼10% of lung cancers, ∼4% of breast cancers, ∼5% of gastric cancers, and ∼3% of colorectal cancers (6). This gene amplification or mutation causes enhanced signaling for cell movement and survival, eventually resulting in tumorigenesis, invasiveness, and metastasis. On the basis of these properties of ErbB2, it has been recognized as a good target for cancer therapy; indeed, ErbB2-targeting drugs have already been developed and used clinically (7, 8). However, it remains unknown whether ErbB2 is involved in oncogenesis in cancers in which its gene is not amplified or mutated. In addition, it was recently reported that overexpression of ErbB3 is also involved in tumor malignancy (9), but it remains unknown how ErbB3 serves as an oncogenic protein in cancers in which it is not overexpressed.The nectin-like molecule (Necl) family consists of five members, Necl-1, Necl-2, Necl-3, Necl-4, and Necl-5, and comprises a superfamily with the nectin family, which consists of four members, nectin-1, nectin-2, nectin-3, and nectin-4 (10). All members of this superfamily have similar domain structures: they have one extracellular region with three Ig-like loops, one transmembrane segment, and one cytoplasmic tail. We recently found that the extracellular region of Necl-5 directly interacts in cis with that of the platelet-derived growth factor (PDGF) receptor and that this interaction enhances the PDGF-induced cell proliferation and movement (1114). Necl-5 is up-regulated in many types of cancer cells and causes at least partly enhanced movement and proliferation of cancer cells (11, 12). These earlier findings prompted us to study the potential interaction of other Necls with other growth factor receptors. Consequently, we found here that the extracellular region of Necl-2 directly interacts in cis with that of ErbB3, but not ErbB2, and reduces the HRG-induced signaling pathways of the ErbB3/ErbB2 heterodimer for cell movement and survival.Necl-2 is known by many names: IgSF4a, RA175, SgIGSF, TSLC1, and SynCAM1 (1519). Necl-2 was directly reported in GenBankTM in 1998; IgSF4a was identified as a candidate for a tumor suppressor gene in the loss of heterozygosity region of chromosome 11q23.2 (16); RA175 was identified as a gene highly expressed during the neuronal differentiation of embryonic carcinoma cells (19); SgIGSF was identified as a gene expressed in spermatogenic cells during the early stages of spermatogenesis (18); TSLC1 was identified as a tumor suppressor in human non-small cell lung cancer (17); and SynCAM1 was identified as a brain-specific synaptic adhesion molecule (15). In this study, we use the name “Necl-2,” because it was first reported.Necl-2 shows Ca2+-independent homophilic cell-cell adhesion activity and Ca2+-independent heterophilic cell-cell adhesion activity with other members of the nectin and Necl families, Necl-1 and nectin-3, and another Ig-like molecule with two Ig-like loops, CRTAM (2022). These cell-cell adhesion activities are mediated by their extracellular regions. Necl-2 is associated with many peripheral membrane proteins through its cytoplasmic tail. The juxtamembrane region of the cytoplasmic tail contains a band 4.1-binding motif and binds the tumor suppressor DAL-1, a band 4.1 family member, which connects Necl-2 to the actin cytoskeleton (23). In addition, the cytoplasmic tail contains a PDZ domain-binding motif in its C-terminal region and binds Pals2, Dlg3/MPP3, and CASK, which are MAGUK subfamily members having an L27 domain (15, 20, 24, 25). However, the exact roles of the binding of these molecules to Necl-2 remain unknown.Necl-2 is widely expressed in various tissues and organs, and abundantly expressed in epithelial cells (20, 26). Its expression is down-regulated in many types of cancer cells owing to hypermethylation of the Necl-2 gene promoter and/or loss of heterozygosity of 11q23.2 (26). Its expression is also undetectable in fibroblasts, such as NIH3T3, Swiss3T3, and L cells (20). Necl-2 has been shown to be a tumor suppressor in human non-small cell lung cancer (17), but it remains unknown how it fulfills this role. The relationship between Necl-2 and the ErbB family remains unknown, either. In addition, the heterophilic interaction of Necl-2 with CRTAM enhances the cytotoxicity of NK cells and the secretion of γ-interferon from CD8+ T cells to attack the Necl-2-expressing cells (22, 27). Studies using Necl-2-deficient mice have revealed that Necl-2 in Sertoli cells is an important cell adhesion molecule for Sertoli-spermatid junctions during spermatogenesis (2830). In the seminiferous tubules of Necl-2-deficient mice, round and elongating spermatids with a distorted shape are generated owing to failure of contact with Sertoli cells, resulting in male-specific infertility. In the present study, we focused on the role of Necl-2 as a tumor suppressor and clarified its mode of action.  相似文献   

8.
The nectin cell adhesion molecules interact in trans with each other through their extracellular regions and with afadin through their cytoplasmic tails, forming adherens junctions in cooperation with cadherins. In a single cell, Necl-5 (nectin-like molecule-5) localizes at the leading edge and regulates directional cell movement in response to a chemoattractant. In such a single cell, afadin also localizes at the leading edge without interacting with nectins or Necl-5. It remains unknown how the nectin-nectin and nectin-afadin interactions are initiated when moving cells contact each other to initiate the formation of adherens junctions. We show here that the Necl-5-nectin interaction induced by cell-cell contact enhances the nectin-afadin interaction. This interaction then enhances the nectin-nectin interaction, which further enhances the nectin-afadin interaction in a positive feedback manner. Thus, the Necl-5-nectin, nectin-nectin, and nectin-afadin interactions cooperatively increase the clustering of the nectin-afadin complex at the cell-cell contact sites, promoting the formation of the nectin-based cell-cell adhesion.  相似文献   

9.
Malignant transformation of cells causes disruption of cell-cell adhesion, enhancement of cell motility, and invasion into surrounding tissues. Nectins have both homophilic and heterophilic cell-cell adhesion activities and organize adherens junctions in cooperation with cadherins. We examined here whether Tage4, which was originally identified to be a gene overexpressed in colon carcinoma and has a domain structure similar to those of nectins, is involved in cell adhesion and/or migration. Tage4 heterophilically trans-interacted with nectin-3, but not homophilically with Tage4. Expression of Tage4 was markedly elevated in NIH3T3 cells transformed by an oncogenic Ki-Ras (V12Ras-NIH3T3 cells) as compared with that of wild-type NIH3T3 cells. trans-Interaction of Tage4 with nectin-3 enhanced motility of V12Ras-NIH3T3 cells. Tage4 did not bind afadin, a nectin- and actin filament-binding protein that connects nectins to the actin cytoskeleton and cadherins through catenins. Thus, Tage4 heterophilically trans-interacts with nectin-3 and regulates cell migration. Tage4 is tentatively re-named here nectin-like molecule-5 (necl-5) on the basis of its function and domain structure similar to those of nectins.  相似文献   

10.
Integrin alphavbeta3, which forms focal complexes at leading edges in moving cells, is up-regulated in cancer cells and so is implicated in their invasiveness. Necl-5, originally identified as a poliovirus receptor and also up-regulated in cancer cells, colocalizes with integrin alphavbeta3 at leading edges in moving cells and enhances growth factor-induced cell movement. Here, we show that Necl-5 interacts directly, in cis, with integrin alphavbeta3, and enhances integrin alphavbeta3 clustering and focal complex formation at leading edges in NIH3T3 cells. The extracellular region of Necl-5, but not the cytoplasmic region, is necessary for its interaction with integrin alphavbeta3; however, both regions are necessary for its action. An interaction between integrin alphavbeta3 and vitronectin and PDGF-induced activation of Rac are also necessary for integrin alphavbeta3 clustering. The interaction between Necl-5 and integrin alphavbeta3 enhances PDGF-induced Rac activation, facilitating integrin alphavbeta3 clustering presumably in a feedback amplification manner. Thus, Necl-5 has a critical role in integrin alphavbeta3 clustering and focal complex formation.  相似文献   

11.
Cytoskeletal changes in cell transformation and tumorigenesis   总被引:28,自引:0,他引:28  
Research during the past couple of years has provided important new information as to how the actin cytoskeleton contributes to growth control in both normal and transformed cells. The cytoskeleton can no longer be viewed as simply a structural framework playing a role in cell shape and motile events such as cell movement, intracellular transport, contractile-ring formation and chromosome movement. More recent experiments show that the cytoskeleton plays a critical role in the regulation of various cellular processes linked to transformation including proliferation, contact inhibition, anchorage-independent cell growth, and apoptosis.  相似文献   

12.
In normal epithelial cells, integrin α(6)β(4) is abundantly expressed and forms hemidesmosomes, which is a cellular structure that mediates cell-extracellular matrix binding. In many types of cancer cells, integrin α(6)β(4) is up-regulated, laminin is cleaved, and hemidesmosomes are disrupted, eventually causing an enhancement of cancer cell movement and facilitation of their invasion. We previously showed that the immunoglobulin-like cell adhesion molecule Necl-2 (Nectin-like molecule 2), known as a tumor suppressor, inhibits cancer cell movement by suppressing the ErbB3/ErbB2 signaling. We show here that Necl-2 interacts in cis with integrin α(6)β(4). The binding of Necl-2 with integrin β(4) was mediated by its extracellular region. In human colorectal adenocarcinoma Caco-2 cells, integrin α(6)β(4) was localized at hemidesmosomes. Small interfering RNA-mediated suppression of Necl-2 expression enhanced the phorbol ester-induced disruption of the integrin α(6)β(4) complex at hemidesmosomes, whereas expression of Necl-2 suppressed the disruption of this structure. These results indicate that tumor-suppressive functions of Necl-2 are mediated by the stabilization of the hemidesmosome structure in addition to the inhibition of the ErbB3/ErbB2 signaling.  相似文献   

13.
In order to determine whether chronic elevation of intracellular diacylglycerol levels generated by hydrolysis of phosphatidylcholine (PC) by PC-hydrolyzing phospholipase C (PC-PLC) is oncogenic, we generated stable transfectants of NIH 3T3 cells expressing the gene encoding PC-PLC from Bacillus cereus. We found that constitutive expression of this gene (plc) led to transformation of NIH 3T3 cells as evidenced by anchorage-independent growth in soft agar, formation of transformed foci in tissue culture, and loss of contact inhibition. The plc transfectants displayed increased intracellular levels of diacylglycerol and phosphocholine. Expression of B. cereus PC-PLC was confirmed by immunoperoxidase and immunofluorescence staining with an affinity-purified anti-PC-PLC antibody. The NIH 3T3 clones expressing plc induced DNA synthesis, progressed through the cell cycle in the absence of added mitogens, and showed significant growth in low-concentration serum. Transfection with an antisense plc expression vector led to a loss of PC-PLC expression accompanied by a complete reversion of the transformed phenotype, suggesting that plc expression was required for maintenance of the transformed state. Taken together, our results show that chronic stimulation of PC hydrolysis by an unregulated PC-PLC enzyme is oncogenic to NIH 3T3 cells.  相似文献   

14.
The complex process of carcinogenesis begins with transformation of a single cell to favor aberrant traits such as loss of contact inhibition and unregulated proliferation - features found in every cancer. Despite cancer's widespread prevalence, the early events that initiate cancer remain elusive, and without knowledge of these events cancer prevention is difficult. Here we show that exposure to As, Cr, Ni, or vanadium (V) promotes changes in gene expression that occur in conjunction with aberrant growth. We exposed immortalized human bronchial epithelial cells to one of four metals/metalloid for four to eight weeks and selected transformed clonal populations based upon anchorage independent growth of single cells in soft agar. We detected a metal-specific footprint of cancer-related gene expression that was consistent across multiple transformed clones. These gene expression changes persisted in the absence of the progenitor metal for numerous cell divisions. Our results show that even a brief exposure to a carcinogenic metal may cause many changes in gene expression in the exposed cells, and that from these many changes, the specific change(s) that each metal causes that initiate cancer likely arise.  相似文献   

15.
Ogita H  Takai Y 《IUBMB life》2006,58(5-6):334-343
Nectins and nectin-like molecules (Necls) are immunoglobulin-like cell adhesion molecules that constitute families containing four and five members, respectively. All members, except for Necl-5, trans-interact homophilically. Furthermore, all members, including Necl-5, trans-interact heterophilically with their respective specific partners among the members. Necl-5 regulates cell movement and proliferation cooperatively with integrin alphavbeta3 and growth factor receptors. Nectins function as cell-cell adhesion molecules at a variety of cell-cell junctions, including adherens junctions, and regulate the initial step of cell-cell junction formation. Nectins and integrin alphavbeta3 are further involved in the cross-talk between cell-matrix and cell-cell junctions. Thus, both nectin and Necl family members play important roles in fundamental cellular functions, including cell adhesion, polarization, movement, and proliferation.  相似文献   

16.
Nectin-1 is a member of the immunoglobulin superfamily and a Ca(2+)-independent adherens junction protein involved in synapse formation. Here we show that nectin-1alpha undergoes intramembrane proteolytic processing analogous to that of the Alzheimer's disease amyloid precursor protein, mediated by a presenilin (PS)-dependent gamma-secretase-like activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment of Chinese hamster ovary cells activated a first proteolytic event, resulting in ectodomain shedding of nectin-1alpha. Subsequent cleavage of the remaining 26-kDa membrane-anchored C-terminal fragment (CTF) was inhibited independently by three specific gamma-secretase inhibitors and by expression of the dominant negative form of PS1. The PS/gamma-secretase-like cleavage product was detected in vivo following proteasome inhibitor treatment of cells. An in vitro gamma-secretase assay confirmed the generation of a 24-kDa nectin-1alpha intracellular domain, peripherally associated with the membrane fraction. We also found nectin-1alpha to interact with the N-terminal fragment of PS1. Finally, gamma-secretase inhibition resulted in beta-catenin release from cell junctions, concomitantly with the accumulation of the 26-kDa nectin-1alpha CTF, suggesting that high levels of nectin-1alpha CTF interfere with TPA-induced remodeling of cell-cell junctions. Our results are consistent with a previously reported role for PS/gamma-secretase in adherens junction function involving cleavage of cadherins. Similar to nectin-1, other members of the immunoglobulin superfamily involved in synapse formation may also serve as substrates for PS/gamma-secretase-like intramembrane proteolytic activity.  相似文献   

17.
A comparison is made of the ultrastructure of the cell periphery in three cloned cell lines: untransformed Balb/c 3T3 cells, SV40-transformed Balb/c 3T3 cells, and revertant cells obtained from the transformed cell line by a selection technique utilizing concanavalin A. Both thin-section and surface replication techniques are used for in situ examination of the cell lines. Microfilaments, 70 Å in diameter (called alpha filaments), are abundant in untransformed and revertant cell lines, particularly in the anterior expansions of the cells, which tend to have many microvilli and small pseudopodia. Alpha filaments are diminished in the anterior expansions of transformed cells, which contain large blunt pseudopodia and relatively few microvilli. Surface replicas confirm the impression gained from thin sections that transformed cells have a greater proportion of their cell surface involved in bulging pseudopodia than either untransformed or revertant cells. Since alpha filaments are shown to bind heavy meromyosin and are similar to F-actin, these filaments are thought to be important in cell motility. These observations suggest that a close relationship exists between decreased alpha filaments, bulging pseudopodia, and loss of contact inhibition of movement in transformed cells.  相似文献   

18.
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that play roles in organization of a variety of cell-cell junctions in cooperation with or independently of cadherins. Four nectins have been identified. Five nectin-like molecules, which have domain structures similar to those of nectins, have been identified, and we characterized here nectin-like molecule-2 (Necl-2)/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1. Necl-2 showed Ca2+-independent homophilic cell-cell adhesion activity. It furthermore showed Ca2+-independent heterophilic cell-cell adhesion activity with Necl-1/TSLL1/SynCAM3 and nectin-3. Necl-2 was widely expressed in rat tissues examined. Necl-2 localized at the basolateral plasma membrane in epithelial cells of the mouse gall bladder, but not at specialized cell-cell junctions, such as tight junctions, adherens junctions, and desmosomes. Nectins bind afadin, whereas Necl-2 did not bind afadin but bound Pals2, a membrane-associated guanylate kinase family member known to bind Lin-7, implicated in the proper localization of the Let-23 protein in Caenorhabditis elegans, the homologue of mammalian epidermal growth factor receptor. These results indicate the unique localization of Necl-2 and its possible involvement in localization of a transmembrane protein(s) through Pals2.  相似文献   

19.
Balb/c A31-1-1 cells were used for the study of transformation induction by chemicals with different mutagenic specificities. We show that survival of these cells and therefore the calculated transformation frequency per cells at risk is dependent upon the cell density at the time of treatment. It is suggested that equal cell densities should be used for measuring survival values and transformation induction. The quantitative results obtained are discussed in the light of the known mutagenic mechanisms of the chemicals tested. We also characterized morphologically transformed foci induced by different chemicals with respect to some biological properties. Anchorage independence was determined by testing growth in soft agar, loss of contact inhibition was quantitated by measuring maximum cell densities and malignancy was tested by tumor induction in nude mice. Although no very close correlation between these parameters and morphology was observed, the most malignant clones are also the ones with the highest values in the other tests. Our data make one or few genetical targets for transformation induction likely. We therefore speculate that the diverse phenotypes obtained might be due to differential activation of one or very few transforming genes in these cells.  相似文献   

20.
Freeze fracture ultrastructure studies have shown that contact inhibited 3T3 cells contain aggregated intramembranous particles (IMP) while transformed 3T3 cells have randomly distributed IMP. The results of this study show that the aggregation of IMP in 3T3 cells is primarily related to the degree of cell contact and not significantly affected by inhibition of cell movement. Cell cycle studies do, however, show a transient disaggregation of IMP during the mitotic phase of the cell cycle. These observations are interpreted to suggest that changes in membrane structure which occur during mitosis or following cell-to-cell contact may be associated with changes in membrane fluidity and the activity of membrane enzymes that appear to be critical for control of cell growth and cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号