首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cancer diseases are a common problem of the population caused by age and increased harmful environmental influences. Herein, new therapeutic strategies and compound screenings are necessary. The regular 2D cultivation has to be replaced by three dimensional cell culturing (3D) for better simulation of in vivo conditions. The 3D cultivation with alginate matrix is an appropriate method for encapsulate cells to form cancer constructs. The automated manufacturing of alginate beads might be an ultimate method for large-scaled manufacturing constructs similar to cancer tissue. The aim of this study was the integration of full automated systems for the production, cultivation and screening of 3D cell cultures. We compared the automated methods with the regular manual processes. Furthermore, we investigated the influence of antibiotics on these 3D cell culture systems. The alginate beads were formed by automated and manual procedures. The automated steps were processes by the Biomek® Cell Workstation (celisca, Rostock, Germany). The proliferation and toxicity were manually and automatically evaluated at day 14 and 35 of cultivation. The results visualized an accumulation and expansion of cell aggregates over the period of incubation. However, the proliferation and toxicity were faintly and partly significantly decreased on day 35 compared to day 14. The comparison of the manual and automated methods displayed similar results. We conclude that the manual production process could be replaced by the automation. Using automation, 3D cell cultures can be produced in industrial scale and improve the drug development and screening to treat serious illnesses like cancer.  相似文献   

2.
Formation of cartilage tissue in vitro   总被引:4,自引:0,他引:4  
Articular cartilage is notoriously defective in its capacity for self-repair, making joints particularly sensitive to degenerative processes. However, methods are now available for the preparation of large numbers of differentiated chondrocytes from a small biopsy sample from any patient. The cells are amplified by proliferation as fibroblast-like cells that will re-express the cartilage phenotype when placed in suspension or gel culture. The chondrocytes can be collected from gel cultures after agarase treatment and reconstituted into cartilage tissue in pellet cultures. In addition, these chondrocytes can be suspended in an appropriate delivery vehicle and implanted into defect sites with a high reparative success rate in an animal model. Appropriate procedures can now be tested in appropriate patient populations.  相似文献   

3.
The 3-dimensional (3-D) pannus model for rheumatoid arthritis (RA) is based on the interactive co-culture of cartilage and synovial fibroblasts (SFs). Besides the investigation of the pathogenesis of RA, it can be used to analyze the active profiles of antirheumatic pharmaceuticals and other bioactive substances under in vitro conditions. For a potential application in the industrial drug-screening process as a transitional step between 2-dimensional (2-D) cell-based assays and in vivo animal studies, the pannus model was developed into an in vitro high-throughput screening (HTS) assay. Using the CyBitrade mark-Disk workstation for parallel liquid handling, the main cell culture steps of cell seeding and cultivation were automated. Chondrocytes were isolated from articular cartilage and seeded directly into 96-well microplates in high-density pellets to ensure formation of cartilage-specific extracellular matrix (ECM). Cell seeding was performed automatically and manually to compare both processes regarding accuracy, reproducibility, consistency, and handling time. For automated cultivation of the chondrocyte pellet cultures, a sequential program was developed using the CyBio Control software to minimize shear forces and handling time. After 14 days of cultivation, the pannus model was completed by coating the cartilage pellets with a layer of human SFs. The effects due to automation in comparison to manual handling were analyzed by optical analysis of the pellets, histological and immunohistochemical staining, and real-time PCR. Automation of this in vitro model was successfully achieved and resulted in an improved quality of the generated pannus cultures by enhancing the formation of cartilage-specific ECM. In addition, automated cell seeding and media exchange increased the efficiency due to a reduction of labor intensity and handling time.  相似文献   

4.
The increasing prevalence of cartilage destruction during arthritis has entailed an intensified amount for in vitro cartilage models to analyze pathophysiological processes and to screen for antirheumatic drugs. Tissue engineering offers the opportunity to establish highly organized 3D cell cultures facilitating the formation of in vitro models that reflect the human situation. We report the comparison of porcine chondrocyte pellet and alginate bead cultures as model systems for human cartilage and the further development into a human system that was applied in an arthritis model. In porcine pellet and alginate cultures, formation of cartilage matrix similar to human matrix was verified by histology and PCR. As alginate beads could be cultivated batch‐wise in one well of a multiwell plate, we further developed this setting into a human system. In contrast, each pellet had to be cultivated individually in one well of a multiwell plate, which is time consuming. Following stimulation of human chondrocyte alginate cultures with conditioned media from human synovial fibroblasts derived from arthritis patients, microarray analysis verified the induction of genes related to cartilage destruction (like MMP10, ?12) and inflammation (like IL6, ?8 and chemokines). Several genes are coding for proteins that are members of inflammatory and catabolic pathways. Belonging to the most affected pathways, we identified the focal adhesion, cytokine–cytokine receptor interaction, ECM‐receptor signalling, Jak‐STAT signalling, and toll‐like receptor signalling pathways, all relevant in arthritis. Therefore, we demonstrate that engineered cartilage of porcine and human origin represents a powerful in vitro model for cartilage in vivo. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
Significant oxygen gradients occur within tissue engineered cartilaginous constructs. Although oxygen tension is an important limiting parameter in the development of new cartilage matrix, its precise role in matrix formation by chondrocytes remains controversial, primarily due to discrepancies in the experimental setup applied in different studies. In this study, the specific effects of oxygen tension on the synthesis of cartilaginous matrix by human articular chondrocytes were studied using a combined experimental‐computational approach in a “scaffold‐free” 3D pellet culture model. Key parameters including cellular oxygen uptake rate were determined experimentally and used in conjunction with a mathematical model to estimate oxygen tension profiles in 21‐day cartilaginous pellets. A threshold oxygen tension (pO2 ≈ 8% atmospheric pressure) for human articular chondrocytes was estimated from these inferred oxygen profiles and histological analysis of pellet sections. Human articular chondrocytes that experienced oxygen tension below this threshold demonstrated enhanced proteoglycan deposition. Conversely, oxygen tension higher than the threshold favored collagen synthesis. This study has demonstrated a close relationship between oxygen tension and matrix synthesis by human articular chondrocytes in a “scaffold‐free” 3D pellet culture model, providing valuable insight into the understanding and optimization of cartilage bioengineering approaches. Biotechnol. Bioeng. 2014;111: 1876–1885. © 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

6.
Cartilage defects have limited capacity for repair and are often replaced by fibrocartilage with inferior mechanical properties. To overcome the limitations of artificial joint replacement, high-throughput screens (HTS) could be developed to identify molecules that stimulate differentiation and/or proliferation of articular cartilage for drug therapy or tissue engineering. Currently embryonic stem cells (ESCs) can differentiate into articular cartilage by forming aggregates (embryoid body (EB), pellet, micromass), which are difficult to image. We present a novel, single-step method of generating murine ESC-derived chondrocytes in monolayer cultures under chemically defined conditions. Mesoderm induction was achieved in cultures supplemented with BMP4, activin A, or Wnt3a. Prolonged culture with sustained activin A, TGFβ3, or BMP4 supplementation led to robust chondrogenic induction. A short pulse of activin A or BMP4 also induced chondrogenesis efficiently while Wnt3a acted as a later inducer. Long-term supplementation with activin A or with activin A followed by TGFβ3 promoted articular cartilage formation. Thus, we devised a serum-free (SF) culture system to generate ESC-derived chondrocytes without the establishment of 3D cultures or the aid of cell sorting. Cultures were governed by the same signaling pathways as 3D ESC differentiation systems and limb bud mesenchyme or articular cartilage explant cultures.  相似文献   

7.
8.
Because the regeneration of large bone defects is limited by quantitative restrictions and risks of infections, the development of bioartificial bone substitutes is of great importance. To obtain a three‐dimensional functional tissue‐like graft, static cultivation is inexpedient due to limitations in cell density, nutrition and oxygen support. Dynamic cultivation in a bioreactor system can overcome these restrictions and furthermore provide the possibility to control the environment with regard to pH, oxygen content, and temperature. In this study, a three‐dimensional bone construct was engineered by the use of dynamic bioreactor technology. Human adipose tissue derived mesenchymal stem cells were cultivated on a macroporous zirconium dioxide based ceramic disc called Sponceram®. Furthermore, hydroxyapatite coated Sponceram® was used. The cells were cultivated under dynamic conditions and compared with statically cultivated cells. The differentiation into osteoblasts was initiated by osteogenic supplements. Cellular proliferation during static and dynamic cultivation was compared measuring glucose and lactate concentration. The differentiation process was analysed determining AP‐expression and using different specific staining methods. Our results demonstrate much higher proliferation rates during dynamic conditions in the bioreactor system compared to static cultivation measured by glucose consumption and lactate production. Cell densities on the scaffolds indicated higher proliferation on native Sponceram® compared to hydroxyapatite coated Sponceram®. With this study, we present an excellent method to enhance cellular proliferation and bone lineage specific growth of tissue like structures comprising fibrous (collagen) and globular (mineral) extracellular components. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
10.
Mammalian cell‐based bioprocesses are used extensively for production of therapeutic proteins. Off‐line monitoring of such cultivations via manual sampling is often labor‐intensive and can introduce operator‐dependent error into the process. An integrated multi‐functional off‐line analyzer, the BioProfile FLEX (NOVA Biomedical, Waltham MA) has been developed, which combines the functionality of three off‐line analyzers (a cell counter, an osmometer, and a gas/electrolyte & nutrient/metabolite bio‐profile analyzer) into one device. In addition, a novel automated sampling system has also been developed that allows the BioProfile FLEX to automatically analyze the culture conditions in as many as ten bioreactors. This is the first report on the development and function of this integrated analyzer and an auto‐sampler prototype for monitoring of mammalian cell cultures. Evaluation of the BioProfile FLEX was conducted in two separate laboratories and involved two BioProfile FLEX analyzers and two sets of reference analyzers (Nova BioProfile 400, Beckman‐Coulter Vi‐Cell AS, and Advanced Instruments Osmometer 3900), 13 CHO cell lines and over 20 operators. In general, BioProfile FLEX measurements were equivalent to those obtained using reference analyzers, and the auto‐sampler did not alter the samples it provided to the BioProfile FLEX. These results suggest that the system has the potential to dramatically reduce the manual labor involved in monitoring mammalian cell bioprocesses without altering the quality of the data obtained, and integration with a bioreactor control system will allow feedback control of parameters previously available only for off‐line monitoring. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

11.
Perfusion technology has been successfully used for the commercial production of biotherapeutics, in particular unstable recombinant proteins, for more than a decade. However, there has been a general lack of high-throughput cell culture tools specifically for perfusion-based cell culture processes. Here, we have developed a high-throughput cell retention operation for use with the ambr® 15 bioreactor system. Experiments were run in both 24 and 48 reactor configurations for comparing perfusion mimic models, media development, and clone screening. Employing offline centrifugation for cell retention and a variable volume model developed with MATLAB computational software, the established screening model has demonstrated cell culture performance, productivity, and product quality were comparable to bench scale bioreactors. The automated, single use, high-throughput perfusion mimic is a powerful tool that enables us to have rapid and efficient process development of perfusion-based cell culture processes.  相似文献   

12.
Current industry practices for large‐scale mammalian cell cultures typically employ a standard platform fed‐batch process with fixed volume bolus feeding. Although widely used, these processes are unable to respond to actual nutrient consumption demands from the culture, which can result in accumulation of by‐products and depletion of certain nutrients. This work demonstrates the application of a fully automated cell culture control, monitoring, and data processing system to achieve significant productivity improvement via dynamic feeding and media optimization. Two distinct feeding algorithms were used to dynamically alter feed rates. The first method is based upon on‐line capacitance measurements where cultures were fed based on growth and nutrient consumption rates estimated from integrated capacitance. The second method is based upon automated glucose measurements obtained from the Nova Bioprofile FLEX® autosampler where cultures were fed to maintain a target glucose level which in turn maintained other nutrients based on a stoichiometric ratio. All of the calculations were done automatically through in‐house integration with a Delta V process control system. Through both media and feed strategy optimization, a titer increase from the original platform titer of 5 to 6.3 g/L was achieved for cell line A, and a substantial titer increase of 4 to over 9 g/L was achieved for cell line B with comparable product quality. Glucose was found to be the best feed indicator, but not all cell lines benefited from dynamic feeding and optimized feed media was critical to process improvement. Our work demonstrated that dynamic feeding has the ability to automatically adjust feed rates according to culture behavior, and that the advantage can be best realized during early and rapid process development stages where different cell lines or large changes in culture conditions might lead to dramatically different nutrient demands. Biotechnol. Bioeng. 2013; 110: 191–205. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
OBJECTIVE: To develop an image analysis system to automatically identify colony-forming units (CFUs) in in vitro cell cultures of connective tissue progenitors. This system was designed to quantitatively assess colony morphology and number of colonies in 4-cm(2) culture wells. STUDY DESIGN: Large field-of-view high-resolution fluorescence images of 4',6-diamidino-2-phenylindole (DAPI)- and alkaline phosphatase (AP)-stained bone marrow cell cultures were obtained using an epi-fluorescence microscope and automated scanning stage. Cell nuclei were identified in the DAPI-stained images after removal of fluorescent debris from the image. An Euclidean distance map (EDM) of the segmented cell nuclei was used to cluster cell nuclei into colonies. The automated system was evaluated using 40 tissue culture wells of bone marrow aspirate samples. The results of the automated analysis were compared to the manual tracings of colonies by 3 reviewers. RESULTS: The automated method agreed with all 3 reviewers on average 87.5% of the time. Additionally, reviewers identified other colonies not outlined by the reviewers on average 2.7 times more than the automated method. CONCLUSION: The automated method is a less biased method for identifying CFUs than individual reviewers, it provides more quantitative information about colony morphology than can be obtained manually and it is less time consuming.  相似文献   

14.
The microenvironment plays a major role in conferring chemoresistance to cancer cells. In order to better inform clinical response to chemoresistance, preclinical models that recapitulate its hallmark features are needed to enable screening for resistance‐specific therapeutic targets. A novel platform for seeding cancer cells in 3D hydrogels is presented utilizing derivatives of chitosan and alginate that, critically, is amenable to high throughput screening: cell seeding in hydrogels, media changes, dosing of anticancer compounds, and cell viability assays are all automated using a standard and commercially available liquid handling robot. Culture in these hydrogels elicits resistance in ovarian, lung, and prostate cancer cells to treatment by doxorubicin and paclitaxel. In correlation, proteomics analysis of SKOV3 cells cultured in 3D reveals enrichment of proteins associated with extreme drug resistance including HMOX1 and ALDH2. Subsequently, therapeutic antibodies targeted to tumor‐associated antigens upregulated in 3D cultures are shown to have higher efficacy compared to 2D cultures. Collectively, this automated 3D cell culture platform provides a powerful tool with utility in identification of drugs that may overcome chemoresistance.  相似文献   

15.
Background aimsThe Quantum® Cell Expansion System (Quantum; Terumo BCT, Inc, Lakewood, CO, USA) is a novel hollow fiber-based device that automates and closes the cell culture process, reducing labor intensive tasks such as manual cell culture feeding and harvesting. The manual cell selection and expansion processes for the production of clinical-scale quantities of bone marrow-derived human mesenchymal stromal cells (BM-hMSCs) have been successfully translated onto the Quantum platform previously. The formerly static, manual, in vitro process performed primarily on tissue culture polystyrene substrates may raise the question of whether BM-hMSCs cultured on a hollow fiber platform yields comparable cell quality.MethodsA rigorous battery of assays was used to determine the genetic stability of BM-hMSCs selected and produced with the Quantum. In this study, genetic stability was determined by assessing spectral karyotype, micronucleus formation and tumorigenicity to resolve chromosomal aberrations in the stem cell population. Cell phenotype, adherent growth kinetics and tri-lineage differentiation were also evaluated. HMSC bone marrow aspirates, obtained from three approved donors, were expanded in parallel using T225 culture flasks and the Quantum.ResultsBM-hMSCs harvested from the Quantum demonstrated immunophenotype, morphology and tri-lineage differentiation capacity characteristics consistent with the International Society of Cell Therapy standard for hMSCs. Cell populations showed no malignant neoplastic formation in athymic mice 60 days post-transplant, no clonal chromosomal aberrations were observed and no DNA damage was found as measured by micronucleus formation.ConclusionsQuantum-produced BM-hMSCs are of comparable quality and demonstrate analogous genetic stability to BM-hMSCs cultured on tissue culture polystyrene substrates.  相似文献   

16.
Electromagnetic fields (EMF) have been shown to exert beneficial effects on cartilage tissue. Nowadays, differentiated human mesenchymal stem cells (hMSCs) are discussed as an alternative approach for cartilage repair. Therefore, the aim of this study was to examine the impact of EMF on hMSCs during chondrogenic differentiation. HMSCs at cell passages five and six were differentiated in pellet cultures in vitro under the addition of human fibroblast growth factor 2 (FGF‐2) and human transforming growth factor‐β3 (TGF‐β3). Cultures were exposed to homogeneous sinusoidal extremely low‐frequency magnetic fields (5 mT) produced by a solenoid or were kept in a control system. After 3 weeks of culture, chondrogenesis was assessed by toluidine blue and safranin‐O staining, immunohistochemistry, quantitative real‐time polymerase chain reaction (PCR) for cartilage‐specific proteins, and a DMMB dye‐binding assay for glycosaminoglycans. Under EMF, hMSCs showed a significant increase in collagen type II expression at passage 6. Aggrecan and SOX9 expression did not change significantly after EMF exposure. Collagen type X expression decreased under electromagnetic stimulation. Pellet cultures at passage 5 that had been treated with EMF provided a higher glycosaminoglycan (GAG)/DNA content than cultures that had not been exposed to EMF. Chondrogenic differentiation of hMSCs may be improved by EMF regarding collagen type II expression and GAG content of cultures. EMF might be a way to stimulate and maintain chondrogenesis of hMSCs and, therefore, provide a new step in regenerative medicine regarding tissue engineering of cartilage. Bioelectromagnetics 32:283–290, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
To engineer reliable in vitro liver tissue equivalents expressing differentiated hepatic functions at a high level and over a long period of time, it appears necessary to have liver cells organized into a three‐dimensional (3D) multicellular structure closely resembling in vivo liver cytoarchitecture and promoting both homotypic and heterotypic cell–cell contacts. In addition, such high density 3D hepatocyte cultures should be adequately supplied with nutrients and particularly with oxygen since it is one of the most limiting nutrients in hepatocyte cultures. Here we propose a novel but simple hepatocyte culture system in a microplate‐based format, enabling high density hepatocyte culture as a stable 3D‐multilayer. Multilayered co‐cultures of hepatocytes and 3T3 fibroblasts were engineered on collagen‐conjugated thin polydimethylsiloxane (PDMS) membranes which were assembled on bottomless frames to enable oxygen diffusion through the membrane. To achieve high density multilayered co‐cultures, primary rat hepatocytes were seeded in large excess what was rendered possible due to the removal of oxygen shortage generally encountered in microplate‐based hepatocyte cultures. Hepatocyte/3T3 fibroblasts multilayered co‐cultures were maintained for at least 1 week; the so‐cultured cells were normoxic and sustained differentiated metabolic functions like albumin and urea synthesis at higher levels than hepatocytes monocultures. Such a microplate‐based cell culture system appears suitable for engineering in vitro miniature liver tissues for implantation, bioartificial liver (BAL) development, or chemical/drug screening. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011.  相似文献   

18.
Cell constructs and culture systems are essential components of tissue engineering. Cell constructs are usually composed of a dense population of cells, for which long-term culture is required in vitro. However, the denser construct suffers from the absence of passive nutrient supply, gas exchange, and removal of degraded debris. We have developed a novel hydrostatic pressure/perfusion (HP/P) culture system that improves the quality of neo-tissues, providing an automated affordable system for clinical applications. We evaluated the effects of HP/P on cellularity, viability, and proliferation of human dermal fibroblasts seeded in a gel/sponge construct. HP/P and perfusion promoted cell migration and significantly increased proliferation and DNA content after 4 days culture compared to the static culture. HP/P culture is beneficial for building a denser three-dimensional fibroblast construct.  相似文献   

19.
Selenium (Se) is an essential micronutrient, and low Se intake in Se‐deficient areas plays roles in an endemic osteochondropathy characterized by chondronecrosis in growth plate and articular cartilage. However, the biological activities of Se on cartilage are largely unknown. In this study, we examined the effects of Se on chondrogenic cell ATDC5 and the possible mechanisms involved. We demonstrated that Se stimulated ATDC5 cell proliferation under serum deprivation but not routine culture. Furthermore, Se promoted G1‐phase cell cycle progression along with induction of cyclin D1 expression at the mRNA and protein level. Moreover, Se increased intracellular ATP content and decreased intracellular superoxide anion concentration without affecting intracellular redox status as estimated by ratio of the reduced and oxidized glutathione. In addition, suppression of intracellular ATP synthesis by glycolysis inhibitor or mitochondrial uncoupler both abrogated Se‐mediated cyclin D1 induction. These findings suggest Se stimulates proliferation of chondrogenic cell ATDC5 through acceleration of cell cycle progression accompanied with cyclin D1 induction by enhancement of intracellular ATP content. This novel finding provides evidence for a role of Se in cartilage formation and degenerative processes and further supports the relationship between Se status and cartilage function that may lead to better utilization of Se for cartilage homeostasis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
BACKGROUND: Cell proliferation is often studied using the incorporation of bromodeoxyuridine (BrdU). Immunohistochemical staining is then used to detect BrdU in the nucleus. To circumvent the observer bias and labor-intensive nature of manually counting BrdU-labeled nuclei, an automated topographical cell proliferation analysis method is developed. METHODS: Sections stained with fluorescein-labeled anti-BrdU and counterstained with To-Pro-3 are scanned using confocal laser scanning microscopy (CLSM). For every point in the image, the nucleus density of BrdU-labeled nuclei and the total nucleus density of the neighborhood of that point are calculated from the BrdU and the To-Pro-3 signal, respectively. The ratio of these densities gives an indication of the amount of cell proliferation at that point. The automated measure is validated by comparing it with the ratio of BrdU-stained nuclei to the total number of nuclei obtained from a manual count. RESULTS: A positive correlation is found between the automated measure and the ratios calculated from the manual counting (r = 0.86, P < 0.001). Calculating the topographical cell proliferation using the automated method is faster and does not suffer from interobserver variability. CONCLUSIONS: Automated topographical cell proliferation analysis is a fast method to objectively find differences in cell proliferation within a tissue. This can be visualized by a topographical map that corresponds to the tissue under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号