首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three‐dimensional (3D) cell cultures have many advantages over two‐dimensional cultures. However, seeding cells in 3D scaffolds such as nonwoven fibrous polyethylene terephthalate (PET) matrices has been a challenge task in tissue engineering and cell culture bioprocessing. In this study, a centrifugal seeding method was investigated to improve the cell seeding efficiency in PET matrices with two different porosities (93% and 88%). Both the centrifugal force and centrifugation time were found to affect the seeding efficiency. With an appropriate centrifugation speed, a high 80?90% cell seeding efficiency was achieved and the time to reach this high seeding efficiency was less than 5 min. The seeding efficiency was similar for matrices with different porosities, although the optimal seeding time was significantly shorter for the low‐porosity scaffold. Post seeding cell viability was demonstrated by culturing colon cancer cells seeded in PET matrices for over 5 days. The centrifugal seeding method developed in this work can be used to efficiently and uniformly seed small fibrous scaffolds for applications in 3D cell‐based assays for high‐throughput screening. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
Cartilage defects are often associated with restriction of the locomotor system. New methods are required to investigate cartilage tissue and for the repair of cartilage tissue. 3D cultures are promising due to better simulation of in vivo conditions. The aim of this study was to provide a model system for studying cartilage tissue. We solved this problem by automated production of pellet cultures of human primary chondrocytes in media with and without antibiotics using the Biomek® Cell Workstation and consequent automated bioscreening with a high‐throughput screening system, and compared with the regular manual processes. The Biomek® Cell Workstation allows the cultivation of different cell types (suspensions cells and adherent cells) and 3D cell cultures (pellet cultures, alginate beads and spheroid cultures). The proliferation was analyzed by DNA quantification and compared with the EZ4U proliferation assay as a new tool for pellet cultures. The toxicity was evaluated by the detection of ubiquitous adenylate kinases. The proliferation increased from day 14 until day 35 and was associated with a decrease in the cytotoxicity. The comparative analysis showed similar results for manual and automated processes. We concluded that the manual methods can be replaced by automated processes (pellet manufacturing and screening), which would allow large‐scale procedures to support studies on cartilage regeneration.  相似文献   

3.
Cancer diseases are a common problem of the population caused by age and increased harmful environmental influences. Herein, new therapeutic strategies and compound screenings are necessary. The regular 2D cultivation has to be replaced by three dimensional cell culturing (3D) for better simulation of in vivo conditions. The 3D cultivation with alginate matrix is an appropriate method for encapsulate cells to form cancer constructs. The automated manufacturing of alginate beads might be an ultimate method for large-scaled manufacturing constructs similar to cancer tissue. The aim of this study was the integration of full automated systems for the production, cultivation and screening of 3D cell cultures. We compared the automated methods with the regular manual processes. Furthermore, we investigated the influence of antibiotics on these 3D cell culture systems. The alginate beads were formed by automated and manual procedures. The automated steps were processes by the Biomek® Cell Workstation (celisca, Rostock, Germany). The proliferation and toxicity were manually and automatically evaluated at day 14 and 35 of cultivation. The results visualized an accumulation and expansion of cell aggregates over the period of incubation. However, the proliferation and toxicity were faintly and partly significantly decreased on day 35 compared to day 14. The comparison of the manual and automated methods displayed similar results. We conclude that the manual production process could be replaced by the automation. Using automation, 3D cell cultures can be produced in industrial scale and improve the drug development and screening to treat serious illnesses like cancer.  相似文献   

4.
Glioblastoma multiforme (GBM) is the deadliest form of primary brain tumor. GBM tumors are highly heterogeneous, being composed of tumor cells as well as glioblastoma stem cells (GSCs) that contribute to drug resistance and tumor recurrence following treatment. To develop therapeutic strategies, an improved understanding of GSC behavior in their microenvironment is critical. Herein, we have employed three-dimensional (3D) hyaluronic acid (HA) hydrogels that allow the incorporation of brain microenvironmental cues to investigate GSC behavior. U87 cell line and patient-derived D456 cells were cultured as suspension cultures (serum-free) and adherently (in the presence of serum) and were then encapsulated in HA hydrogels. We observed that all the seeded single cells expanded and formed spheres, and the size of the spheres increased with time. Increasing the initial cell seeding density of cells influenced the sphere size distribution. Interestingly, clonal expansion of serum-free grown tumor cells in HA hydrogels was observed. Also, stemness marker expression of serum and/or serum-free grown cells was altered when cultured in HA hydrogels. Finally, we demonstrated that HA hydrogels can support long-term GSC culture (up to 60 days) with retention of stemness markers. Overall, such biomimetic culture systems could further our understanding of the microenvironmental regulation of GSC phenotypes.  相似文献   

5.
AFAP1‐AS1 is a long non‐coding RNA that is associated with tumorigenesis and poor prognosis in a variety of cancers. We have been suggested that AFAP1‐AS1 increases tumorigenesis in laryngeal carcinoma specifically by enhancing stemness and chemoresistance. We assessed AFAP1‐AS1 expression in human laryngeal specimens, paired adjacent normal tissues and human HEp‐2 cells. Indeed, we found not only that AFAP1‐AS1 was up‐regulated in laryngeal carcinoma specimens and cells, but also that stemness‐associated genes were overexpressed. Silencing of AFAP1‐AS1 promoted HEp‐2 cell chemoresistance under cisplatin treatment. Expression of AFAP1‐AS1 was increased in drug‐resistant Hep‐2 cells. We then probed the mechanism of AFAP1‐AS1 activity and determined that miR‐320a was a potential molecular target of AFAP1‐AS1. Luciferase reporter and qRT‐PCR assays of AFAP1‐AS1 and miR‐320a levels in human specimens and cell cultures indicated that AFAP1‐AS1 negatively regulates miR‐320a. To discover the molecular mechanism of miR‐320a, we again used the DIANA Tools algorithm to predict its genetic target, RBPJ. After cloning the 3′‐untranslated regions (3′‐UTR) of RBPJ into a luciferase reporter, we determined that miR‐320a did in fact reduce RBPJ mRNA and protein levels. Ultimately, we determined that AFAP1‐AS1 increases RBPJ expression by negatively regulating miR‐320a and RBPJ overexpression rescues stemness and chemoresistance inhibited by AFAP1‐AS1 silencing. Taken together, these results suggest that AFAP1‐AS1 can serve as a prognostic biomarker in laryngeal carcinoma and that miR‐320a has the potential to improve standard therapeutic approaches to the disease, especially for cases in which cancer cell stemness and drug resistance present significant barriers to effective treatment.  相似文献   

6.
Carcinoembryonic antigen (CEA) expression has been shown to protect cancer cell lines from apoptosis and anoikis. The aim of this study was to further elucidate the role of CEA expression on resistance to anticancer drugs in human colorectal cancer (CRC). We transfected CEA negative CRC cell line SW742 as well as CHO cells to overexpress CEA and their chemoresistance were assessed by MTT assay. In comparison to the parental cell lines, transfected cells had significantly increased resistance to 5-fluorouracil (5-FU). The results also showed a direct correlation between the amount of cellular CEA protein and 5-FU resistance in CEA expressing cells. We found no significant difference in sensitivity to cisplatin and methotrexate between CEA-transfected cells and their counter parental cells. We also compared the association between CEA expression and chemoresistance of 4 CRC cell lines which differed in the levels of CEA production. The CEA expression levels in monolayer cultures of these cell lines did not correlate with the 5-FU resistance. However, 5-FU treatment resulted in the selection of sub-populations of resistant cells that displayed increased CEA expression levels by increasing drug concentration. We analyzed the effect of 5-FU in a 3D multicellular culture generated from the two CRC cell lines, LS180 and HT29/219. Compared with monolayer culture, CEA production and 5-FU resistance in both cell lines were stimulated by 3D growth. In comparison to the 3D spheroids of parental CHO, we observed a significantly elevated 5-FU resistance in 3D culture of the CEA-expressing CHO transfectants. Our findings suggest that the CEA level may be a suitable biomarker for predicting tumor response to 5-FU-based chemotherapy in CRC.  相似文献   

7.
Fibroblasts, the major cell type in tumor stroma, are essential for tumor growth and survival, and represent an important therapeutic target for cancers. Here we presented a microfluidic co-culture device in which the three-dimensional (3D) matrix was employed to reconstruct an in vivo-like fibroblast-tumor cell microenvironment for investigation of the role of myofibroblasts induced by lung cancer cells in the chemoresistance to VP-16. Composed of a double-layer chip and an injection pump, the device houses fibroblasts and lung cancer cells co-cultured in 3D matrix and 2D mode to induce fibroblasts to become myofibroblasts with the supplement of the medium continuously. With this device, we verified that the cytokines secreted by lung cancer cells could effectively transform the fibroblasts into myofibroblasts. Moreover, compared to fibroblasts, the myofibroblasts showed higher resistance to anticancer drug VP-16. We also demonstrated that this kind of acquired resistance in myofibroblasts was associated with the expression of Glucose-regulated protein 78 (GP78). We concluded that this device allows for the assay to characterize various cellular events in a single device sequentially, facilitating a better understanding of the interactions among heterotypic cells in a sophisticated microenvironment.  相似文献   

8.
The acquired drug chemoresistance represents the main challenge of the ovarian cancer treatment. In addition, the absence of an adequate in vitro model able to reproduce the native tumor environment can contribute to the poor success rate of pre-clinical studies of new compounds. Three-dimensional (3D) culture models have been recently used for drug screening purposes due to their ability to reproduce the main characteristics of in vivo solid tumors. Here we describe the establishment and characterization of 3D ovarian cancer spheroids using different adenocarcinoma tumor cell lines (SKOV-3 and OVCAR-3 cells) in two different 3D scaffold-free methods: forced-floating in ultra-low attachment (ULA) plates and hanging drop (HD). Spheroids were evaluated in both 3D cultures in order to establish the best condition to perform the drug response analysis with Paclitaxel, a common drug used to treat ovarian cancer. SKOV-3 and OVCAR-3 spheroids with the desired characteristics (roundness close to 1.0 and diameter in the 200–500 μm range) were obtained using both methods after addition of the methylcellulose (MC) in the culture medium (0.25% and 0.5%, w/v). We also observed the presence of microvilli on the surface of the spheroids, higher presence of apoptotic cells and higher drug resistance, when compared with 2D cultures. The 3D cultures obtained seem to provide more reliable results in terms of drug response than those provided by 2D monolayer culture. The forced floating method was considered more suitable and straightforward to generate ovarian cancer spheroids for drug screening/cytotoxicity assays.  相似文献   

9.
Chemoresistance is one of the most critical prognostic factors in osteosarcoma, and elucidation of the molecular backgrounds of chemoresistance may lead to better clinical outcomes. Spheroid cells resemble in vivo cells and are considered an in vitro model for the drug discovery. We found that spheroid cells displayed more chemoresistance than conventional monolayer cells across 11 osteosarcoma cell lines. To investigate the molecular mechanisms underlying the resistance to chemotherapy, we examined the proteomic differences between the monolayer and spheroid cells by 2D‐DIGE. Of the 4762 protein species observed, we further investigated 435 species with annotated mass spectra in the public proteome database, Genome Medicine Database of Japan Proteomics. Among the 435 protein species, we found that 17 species exhibited expression level differences when the cells formed spheroids in more than five cell lines and four species out of these 17 were associated with spheroid‐formation associated resistance to doxorubicin. We confirmed the upregulation of cathepsin D in spheroid cells by western blotting. Cathepsin D has been implicated in chemoresistance of various malignancies but has not previously been implemented in osteosarcoma. Our study suggested that the spheroid system may be a useful tool to reveal the molecular backgrounds of chemoresistance in osteosarcoma.  相似文献   

10.
Three-dimensional(3 D) culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures. In cancer and stem cell research, the natural cell characteristics and architectures are closely mimicked by the 3 D cell models. Thus, the 3 D cell cultures are promising and suitable systems for various proposes, ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives. This review provides a comprehensive compendium of recent advancements in culturing cells, in particular cancer and stem cells, using 3 D culture techniques. The major approaches highlighted here include cell spheroids, hydrogel embedding, bioreactors, scaffolds, and bioprinting. In addition, the progress of employing 3 D cell culture systems as a platform for cancer and stem cell research was addressed, and the prominent studies of 3 D cell culture systems were discussed.  相似文献   

11.
The successful long‐term use of taxane for cancer therapy is often prevented by the development of drug resistance in clinic. Thus, exploring the mechanisms involved is a first step towards rational strategies to overcome taxane resistance. Taxane resistance‐related microRNA (miRNAs) are under investigation and miRNAs could induce the taxane resistance of tumour cells by regulating cell cycle distribution, survival and/or apoptosis pathways, drug transports, epithelial–mesenchymal transition and cancer stem cell. This article summarizes current research involving miRNAs as regulators of key target genes for tanxanxe chemoresistance and discusses the complex regulatory networks of miRNAs. Also, the authors will envisage future developments towards the potential use of targeting miRNAs as a novel strategy for improving response of tumour patients to taxane. miRNAs play critical roles in taxane chemoresistance and the miRNA‐based therapies will be helpful for overcoming drug resistance and developing more effective personalized anti‐cancer treatment strategies. Further research studies should be performed to promote therapeutic–clinical use of taxane resistance‐related miRNAs in cancer patients, especially in those patients with taxane‐resistant cancers.  相似文献   

12.
3-dimensional (3D) culture models have the potential to bridge the gap between monolayer cell culture and in vivo studies. To benefit anti-cancer drug discovery from 3D models, new techniques are needed that enable their use in high-throughput (HT) screening amenable formats. We have established miniaturized 3D culture methods robust enough for automated HT screens. We have applied these methods to evaluate the sensitivity of normal and tumorigenic breast epithelial cell lines against a panel of oncology drugs when cultured as monolayers (2D) and spheroids (3D). We have identified two classes of compounds that exhibit preferential cytotoxicity against cancer cells over normal cells when cultured as 3D spheroids: microtubule-targeting agents and epidermal growth factor receptor (EGFR) inhibitors. Further improving upon our 3D model, superior differentiation of EC50 values in the proof-of-concept screens was obtained by co-culturing the breast cancer cells with normal human fibroblasts and endothelial cells. Further, the selective sensitivity of the cancer cells towards chemotherapeutics was observed in 3D co-culture conditions, rather than as 2D co-culture monolayers, highlighting the importance of 3D cultures. Finally, we examined the putative mechanisms that drive the differing potency displayed by EGFR inhibitors. In summary, our studies establish robust 3D culture models of human cells for HT assessment of tumor cell-selective agents. This methodology is anticipated to provide a useful tool for the study of biological differences within 2D and 3D culture conditions in HT format, and an important platform for novel anti-cancer drug discovery.  相似文献   

13.
This study reports the establishment of a bone marrow mononuclear cell (BMMC) 3D culture model and the application of this model to define sensitivity and resistance biomarkers of acute myeloid leukaemia (AML) patient bone marrow samples in response to Cytarabine (Ara‐C) treatment. By mimicking physiological bone marrow microenvironment, the growth conditions were optimized by using frozen BMMCs derived from healthy donors. Healthy BMMCs are capable of differentiating into major hematopoietic lineages and various types of stromal cells in this platform. Cryopreserved BMMC samples from 49 AML patients were characterized for ex vivo growth and sensitivity to Ara‐C. RNA sequencing was performed for 3D and 2D cultures to determine differential gene expression patterns. Specific genetic mutations and/or gene expression signatures associated with the ability of the ex vivo expansion and response to Ara‐C were elucidated by whole‐exome and RNA sequencing. Data analysis identified unique gene expression signatures and novel genetic mutations associated with sensitivity to Ara‐C treatment of proliferating AML specimens and can be used as predictive therapeutic biomarkers to determine the optimal treatment regimens. Furthermore, these data demonstrate the translational value of this ex vivo platform which should be widely applicable to evaluate other therapies in AML.  相似文献   

14.
Three-dimensional (3D) culture systems such as floating spheroids (FSs) and floating tumorspheres (FTs) are widely used as tumor models of chemoresistance. FTs are considered to be enriched in cancer stem-like cells (CS-LCs). In this study, we used cancer cell lines (lung H460, prostate LnCAP, and breast MCF-7) able to form FSs under anchorage-independent conditions and compared with cell lines (prostate PC3 and breast MDA-MB-231) that cannot form FSs under similar conditions. Independent of their ability to form FTs all cell lines growing under anchorage-independent conditions become highly resistant to obatoclax, colchicine, and hydroxyurea. We used anti-E-cadherin antibody (that blocked the formation of FSs) and demonstrated that floating LnCAP cells showed similar chemoresistance regardless of the formation of spheroids. Our results demonstrate that the development of chemoresistance is not because of the formation of a complex 3D structure and/or enrichment of CS-LCs but is likely the result of cell detachment per se and their ability to survive under anchorage-independent conditions. We propose that FSs and FTs could be useful models to study chemoresistance of cancer cells associated with cell detachment (e.g., circulating tumor cells) but they may not be representative of other types of chemoresistance that arise in vivo in attached cells.  相似文献   

15.
Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D) cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D) cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG) hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD) motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP) cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR) nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to androgen stimulation between the 2D and 3D environments. Therefore, we suggest that the presented 3D culture system represents a powerful tool for high throughput prostate cancer drug testing that recapitulates tumor microenvironment.  相似文献   

16.
Synthetic hydrogels selectively decorated with cell adhesion motifs are rapidly emerging as promising substrates for 3D cell culture. When cells are grown in 3D they experience potentially more physiologically relevant cell–cell interactions and physical cues compared with traditional 2D cell culture on stiff surfaces. A newly developed polymer based on poly(2-oxazoline)s has been used for the first time to control attachment of fibroblast cells and is discussed here for its potential use in 3D cell culture with particular focus on cancer cells toward the ultimate aim of high-throughput screening of anticancer therapies. Advantages and limitations of using poly(2-oxazoline) hydrogels are discussed and compared with more established polymers, especially polyethylene glycol (PEG).  相似文献   

17.
Fibroblast growth factor receptor‐like 1 (FGFRL1), a member of the FGFR family, has been demonstrated to play important roles in various cancers. However, the role of FGFRL1 in small‐cell lung cancer (SCLC) remains unclear. Our study aimed to investigate the role of FGFRL1 in chemoresistance of SCLC and elucidate the possible molecular mechanism. We found that FGFRL1 levels are significantly up‐regulated in multidrug‐resistant SCLC cells (H69AR and H446DDP) compared with the sensitive parental cells (H69 and H446). In addition, clinical samples showed that FGFRL1 was overexpressed in SCLC tissues, and high FGFRL1 expression was associated with the clinical stage, chemotherapy response and survival time of SCLC patients. Knockdown of FGFRL1 in chemoresistant SCLC cells increased chemosensitivity by increasing cell apoptosis and cell cycle arrest, whereas overexpression of FGFRL1 in chemosensitive SCLC cells produced the opposite results. Mechanistic investigations showed that FGFRL1 interacts with ENO1, and FGFRL1 was found to regulate the expression of ENO1 and its downstream signalling pathway (the PI3K/Akt pathway) in SCLC cells. In brief, our study demonstrated that FGFRL1 modulates chemoresistance of SCLC by regulating the ENO1‐PI3K/Akt pathway. FGFRL1 may be a predictor and a potential therapeutic target for chemoresistance in SCLC.  相似文献   

18.
Synthetic hydrogels selectively decorated with cell adhesion motifs are rapidly emerging as promising substrates for 3D cell culture. When cells are grown in 3D they experience potentially more physiologically relevant cell–cell interactions and physical cues compared with traditional 2D cell culture on stiff surfaces. A newly developed polymer based on poly(2-oxazoline)s has been used for the first time to control attachment of fibroblast cells and is discussed here for its potential use in 3D cell culture with particular focus on cancer cells toward the ultimate aim of high-throughput screening of anticancer therapies. Advantages and limitations of using poly(2-oxazoline) hydrogels are discussed and compared with more established polymers, especially polyethylene glycol (PEG).  相似文献   

19.
Non‐small‐cell lung carcinoma (NSCLC) continues to top the list of cancer mortalities worldwide. The role of circular RNAs (circRNAs) in tumorigenesis has been increasingly appreciated, although it is relatively unexplored in NSCLC. Herein, we reported the role of hsa_circ_0085131 in NSCLC. In the present study, NSCLC tumor specimens exhibited a higher hsa_circ_0085131 level in comparison to para‐tumor samples. And the higher level of hsa_circ_0085131 was associated with recurrence and poorer survival of NSCLC. Moreover, hsa_circ_0085131 promoted cell proliferation and cisplatin (DDP)‐resistance. Furthermore, hsa_circ_0085131 regulated cell DDP‐resistance by modulating autophagy. Hsa_circ_0085131 acted as a competing endogenous RNA of miR‐654‐5p to release autophagy‐associated factor ATG7 expression, thereby promoting cell chemoresistance. In conclusion, hsa_circ_0085131 enhances DDP‐resistance of NSCLC cells through sequestering miR‐654‐5p to upregulate ATG7, leading to cell autophagy. Therefore, these findings advocate targeting the hsa_circ_0085131/miR‐654‐5p/ATG7 axis as a potential therapeutic option for patients with NSCLC who are resistant to DDP.  相似文献   

20.
Pancreatic cancer (PC) is an aggressive malignancy with few treatment options, and improved treatment strategies are urgently required. TYRO3, a member of the TAM receptor tyrosine kinase family, is a known oncogene; however, the relationship between TYRO3 expression and PC chemoresistance remains to be elucidated. We performed gain- and loss-of-function experiments on TYRO3 to examine whether it is involved in chemoresistance in PC cells. TYRO3 knockdown decreased cell viability and enhanced apoptosis following treatment of PC cells with gemcitabine and 5-fluorouracil (5-FU). In contrast, no such effects were observed in TYRO3-overexpressing PC cells. It is known that autophagy is associated with cancer chemoresistance. We then examined effects of TYRO3 on autophagy in PC cells. TYRO3 overexpression increased LC3 mRNA levels and induced LC3 puncta in PC cells. Inhibition of autophagy by chloroquine mitigated cell resistance to gemcitabine and 5-FU. In a xenograft mouse model, TYRO3 silencing significantly increased sensitivity of the cells to gemcitabine and 5-FU. To further investigate the involvement of autophagy in patients with PC, we immunohistochemically analyzed LC3 expression in the tissues of patients who underwent pancreatectomy and compared it with disease prognosis and TYRO3 expression. LC3 expression was negatively and positively correlated with prognosis and TYRO3 expression, respectively. Furthermore, LC3- and TYRO3-positive patients had a significantly worse prognosis among patients with PC who received chemotherapy after recurrence. These results indicated that the TYRO3-autophagy signaling pathway confers PC resistance to gemcitabine and 5-FU, and could be a novel therapeutic target to resolve PC chemoresistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号