首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
Preeclampsia (PE), a pregnancy‐specific disorder, is a leading cause of perinatal maternal‐fetal mortality and morbidity. Impaired cell migration and invasion of trophoblastic cells and an imbalanced systemic maternal inflammatory response have been proposed as potential mechanisms of PE pathogenesis. Comparative analysis between PE placentas and normal placentas profiled differentially expressed miRNAs, lncRNAs, and mRNAs, including miR‐19a‐3p (miRNA), PSG10P (lncRNA), and IL1RAP (mRNA). This study was conducted to investigate their potential roles in PE pathogenesis. The expression of miR‐19a‐3p, PSG10P, and IL1RAP was examined in PE and normal placentas using RT‐qPCR. An in vitro experiment was performed in human trophoblast HET8/SVneo and TEV‐1 cells cultured in normoxic and hypoxic conditions. MiR‐19a‐3p targets were identified using Targetscan, miRanda, and PicTar analysis as well as luciferase reporter assays. The mouse model of PE was conducted using sFlt‐1 for in vivo tests. Lower levels of miR‐19a‐3p, but higher levels of PSG10P and IL1RAP were observed in PE placentas and the trophoblast cells in hypoxia. Luciferase reporter assays confirmed that PSG10P and IL1RAP were both direct targets of miR‐19a‐3p. Exposure to hypoxia inhibited cell viability, migration, and invasion of HET8/SVneo and TEV‐1 cells. Knocking out PSG10P and IL1RAP or overexpressing miR‐19a‐3p rescued the inhibition caused by hypoxia. In vivo experiments showed that IL1RAP promoted the expression of caspase‐3, a key apoptosis enzyme, but inhibited MMP9, which is responsible for degrading the extracellular matrix, suggesting a significant role of IL1RAP in cell proliferation, migration, and invasion. miR‐19a‐3p, PSG10P, and IL1RAP were all found to be involved in PE pathogenesis. With a common targeting region in their sequences, a regulatory network in the PSG10P/miR‐19a‐3p/IL1RAP pathway may contribute to PE pathogenesis during pregnancy.  相似文献   

7.
Ankylosing spondylitis (AS) is a high disability and greatly destructive disease. In this study, we preliminarily studied the function and mechanism of bilobalide (BIL) on interleukin (IL)‐17‐induced inflammatory injury in ATDC5 cells. CCK‐8 and migration assays were used to detect the functions of IL‐7, BIL, and microRNA (miR)‐125a on cell viability and migration. The miR‐125a level was changed by transfection, and tested by real‐time quantitative polymerase chain reaction. Additionally, Western blot tested the levels of inflammatory factors (IL‐6 and tumor necrosis factor‐α), matrix metalloproteinases (MMPs), and pathway‐related proteins. Moreover, the enzyme‐linked immunosorbent assay also was used to detect inflammatory factor levels. IL‐7 was used to construct an inflammatory injury model in ATDC5 cells. Based on this, BIL inhibited IL‐17‐induced cell viability, migration, and expressions of inflammatory factors and MMPs. Furthermore, we found BIL negatively regulated miR‐125a, and the miR‐125a mimic could partly reverse the effects of BIL on IL‐17‐injury. Finally, we showed that BIL inhibited the c‐Jun N‐terminal kinase (JNK) and nuclear factor kappa B (NF‐κB) pathways, and the miR‐125a mimic had the opposite effect. BIL inhibited IL‐17‐induced inflammatory injury in ATDC5 cells by downregulation of miR‐125a via JNK and NF‐κB signaling pathways.  相似文献   

8.
Background and aimsThe interleukin (IL)-10-production B cells play an important role in the pathogenesis of atherosclerosis (Asro) with unknown mechanism. Micro RNA (miR)-17-92 cluster has strong immune regulatory activities. This study tests a hypothesis that miR-17-92 cluster suppresses IL-10 expression in B cells of Asro patients.MethodsPatients with Asro were recruited into this study. Peripheral blood samples were collected from the patients. B cells were isolated from the blood samples and analyzed to elucidate the role of miR-17-92 in the regulation of IL-10 expression.ResultsPeripheral B cells from patients with Asro show lower levels of IL-10 than that from healthy subjects. The IL-10 expression in the B cells is negatively correlated with the expression of miR-19a in the B cells. The serum levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-4 in Asro patients were higher than healthy subjects. Exposure to TNF-α or IFN-γ or IL-4 suppressed IL-10 expression in B cells via increasing the expression of miR-19a in B cells, which could be abolished by Inhibition of miR-19a.ConclusionsTNF-α or IFN-γ or IL-4 suppresses IL-10 in B cells via up regulating miR-19a expression.  相似文献   

9.
10.
Glioma has been regarded as the most common, highly proliferative and invasive brain tumour. Advances in research of miRNAs in glioma are toward further understanding of the pathogenesis of glioma. MiR‐19, a member of miR‐17~92 cluster, was reported to play an oncogenic role in tumourigenesis. Here we review the identified data about the effect of miR‐19 on proliferation, apoptosis, migration and invasion of glioma cells, the target genes regulated by miR‐19, and correlation of miR‐19 with the sensitivity of glioma cells to chemotherapy and radiotherapy. It is concluded that miR‐19 plays an important role in the pathogenesis of glioma and can be a potential target for gene therapy of glioma.  相似文献   

11.
There was a significant amount of non‐specific, but not of allergen (e.g., papain, mite feces and four kinds of pollen)‐specific, IgE antibodies (Abs) in the sera of normal mice. An i.n. injection of each allergen without adjuvant into mice caused an increase in total IgE Ab titers with a similar time course in the serum. However, the stage of initiation of allergy varied from allergen to allergen. Submandibular lymph node cells from normal mice contained papain‐, but not mite feces‐ or pollen‐specific IgE+ cells and an i.n. injection of papain induced papain‐specific IgE Abs in the serum. In contrast, one (i.n.) or two (i.n. and s.c) injections of mite feces induced neither mite feces‐specific IgE+ cells in the lymph nodes nor mite feces‐specific IgE Abs in the serum. I.n. sensitization with cedar pollen induced cedar pollen‐specific IgE+ small B cells in the lymph nodes on Day 10, when non‐specific IgE Ab titers reached a peak in the serum, implying induction of related allergen‐specific IgE+ small cells as well. In fact, a second (s.c.) injection of ragweed (or cedar) pollen into mice sensitized i.n. once with cedar (or ragweed) pollen, but not with mite feces, induced a large amount of ragweed (or cedar) pollen‐specific IgE Abs in the serum. These results indicate that when firstly‐sensitized non‐specific IgE+ small B cells in mouse lymph nodes include some secondly‐sensitized allergen‐specific ones, mice produce IgE Abs specific for the secondly‐injected allergen.
  相似文献   

12.
MicroRNAs are considered to play critical roles in the pathogenesis of human inflammatory arthritis, including rheumatoid arthritis (RA). The purpose of this study was to determine the relationship between miR‐10a‐5p and TBX5 in synoviocytes and evaluate their contribution to joint inflammation. The expression of miR‐10a‐5p and TBX5 in the synovium of RA and human synovial sarcoma cell line SW982 stimulated by IL‐1β was determined by RT‐qPCR and Western blotting. The direct interaction between miR‐10a‐5p and TBX5 3′UTR was determined by dual‐luciferase reporter assay in HeLa cells. Mimics and inhibitors of miR‐10a‐5p were transfected into SW982 cells. TBX5 was overexpressed by plasmid transfection or knocked down by RNAi. Proinflammatory cytokines and TLR3 and MMP13 expressions were determined by RT‐qPCR and Western blotting. Down‐regulated expression of miR‐10a‐5p and up‐regulation of TBX5 in human patients with RA were found compared to patients with OA. IL‐1β could reduce miR‐10a‐5p and increase TBX5 expression in SW982 cells in vitro. The direct target relationship between miR‐10a‐5p and 3′UTR of TBX5 was confirmed by luciferase reporter assay. Alterations of miR‐10‐5p after transfection with its mimic and inhibitor caused the related depression and re‐expression of TBX5 and inflammatory factors in SW982 cells. Overexpression of TBX5 after pCMV3‐TBX5 plasmid transfection significantly promoted the production of TLR3, MMP13 and various inflammatory cytokines, while this effect was rescued after knocking down of TBX5 with its specific siRNA. We conclude that miR‐10a‐5p in a relation with TBX5 regulates joint inflammation in arthritis, which would serve as a diagnostic and therapeutic target for RA treatment.  相似文献   

13.
It is accepted that inflammation plays a critical role in the development of atherosclerosis; the pathogenesis is not clear. B‐cell–produced interleukin (IL) 10 is an immune regulatory cytokine that can inhibit immune inflammation. This study tests a hypothesis that a psychological stress hormone, cortisol, suppresses IL‐10 expression in peripheral B cells of patients with atherosclerosis. Peripheral blood samples were collected from patients with coronary artery atherosclerosis. B cells were isolated from the blood samples to be analyzed for the expression of IL‐10 and micro RNA (miR) 98 by real‐time polymerase chain reaction. We observed that the frequency of IL‐10+ B cell was less in patients with atherosclerosis than healthy controls. The serum cortisol levels were higher in the patients than that in healthy controls. Peripheral B‐cell frequency was negatively correlated with the serum cortisol levels. Exposure of B cells to cortisol increased the expression of miR‐98 in B cells. Cortisol also inhibited the expression of IL‐10 in B cells, in which miR‐98 played a critical role. Treating B cells from atherosclerosis patients with anti–miR‐98 liposomes reversed the ability of expression of IL‐10 in the cells. The expression of IL‐10 is suppressed in peripheral B cells, which can be up regulated by anti–miR‐98 liposomes.  相似文献   

14.
Sepsis is a life‐threatening syndrome with a high risk of mortality, which is caused by the dysregulated host response to infection. We examined significant roles of circDMNT3B and miR‐20b‐5p in the intestinal mucosal permeability dysfunction of rats with sepsis. SD rats were randomly divided into 6 groups (n = 10/group): sham group, sepsis group, si‐negative control group, circDNMT3B‐si1 group, circDNMT3B‐si2 group and circDNMT3B‐si1 + anti‐miR‐20b‐5p group. The level of malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, interleukin (IL)‐6 and IL‐10 levels were measured through ELISA assay kits. Cell survival rate and cell apoptosis were evaluated by Cell‐Counting Kit‐8 Assay and flow cytometry, respectively. Luciferase reporter assays were used to investigate interactions between miR‐20b‐5p circDMNT3B in HEK‐293T cells. Silencing circDNMT3B can significantly increase the level of d ‐lactic acid, FD‐40, MDA, diamine oxidase, IL‐10 and IL‐6, compared with sepsis group, while the SOD activity was lower. Silencing circDNMT3B leads to oxidative damage and influence inflammatory factors level in intestinal tissue. CircDNMT3B was identified as a target gene of miR‐20b‐5p. Silencing circDNMT3B decreased cell survival and induced apoptosis in Caco2 cells treated with LPS, which was reversed by anti‐miR‐20b‐5p. MiR‐20b‐5p inhibitor remarkably down‐regulated mentioned‐above levels, in addition to up‐regulate SOD activity, which may relieve the damage of intestinal mucosal permeability caused by silencing circDNMT3B in sepsis rats. Down‐regulation of circDMNT3B was conducive to the dysfunction of intestinal mucosal permeability via sponging miR‐20b‐5p in sepsis rats, which may provide the novel strategy for sepsis treatment in the future.  相似文献   

15.
To understand the process of cardiac aging, it is of crucial importance to gain insight into the age‐related changes in gene expression in the senescent failing heart. Age‐related cardiac remodeling is known to be accompanied by changes in extracellular matrix (ECM) gene and protein levels. Small noncoding microRNAs regulate gene expression in cardiac development and disease and have been implicated in the aging process and in the regulation of ECM proteins. However, their role in age‐related cardiac remodeling and heart failure is unknown. In this study, we investigated the aging‐associated microRNA cluster 17–92, which targets the ECM proteins connective tissue growth factor (CTGF) and thrombospondin‐1 (TSP‐1). We employed aged mice with a failure‐resistant (C57Bl6) and failure‐prone (C57Bl6 × 129Sv) genetic background and extrapolated our findings to human age‐associated heart failure. In aging‐associated heart failure, we linked an aging‐induced increase in the ECM proteins CTGF and TSP‐1 to a decreased expression of their targeting microRNAs 18a, 19a, and 19b, all members of the miR‐17–92 cluster. Failure‐resistant mice showed an opposite expression pattern for both the ECM proteins and the microRNAs. We showed that these expression changes are specific for cardiomyocytes and are absent in cardiac fibroblasts. In cardiomyocytes, modulation of miR‐18/19 changes the levels of ECM proteins CTGF and TSP‐1 and collagens type 1 and 3. Together, our data support a role for cardiomyocyte‐derived miR‐18/19 during cardiac aging, in the fine‐tuning of cardiac ECM protein levels. During aging, decreased miR‐18/19 and increased CTGF and TSP‐1 levels identify the failure‐prone heart.  相似文献   

16.
17.
Abnormal hyperplasia of fibroblast‐like synoviocytes (FLS) leads to the progression of rheumatoid arthritis (RA). This study aimed to investigate the role of miR‐124a in the pathogenesis of RA. The viability and cell cycle of FLS in rheumatoid arthritis (RAFLS) were evaluated by Cell Counting Kit 8 and flow cytometry assay. The expression of PIK3CA, Akt, and NF‐κB in RAFLS was examined by real‐time PCR and Western blot analysis. The production of tumour necrosis factor (TNF)‐α and interleukin (IL)‐6 was detected by ELISA. The joint swelling and inflammation in collagen‐induced arthritis (CIA) mice were examined by histological and immunohistochemical analysis. We found that miR‐124a suppressed the viability and proliferation of RAFLS and increased the percentage of cells in the G1 phase. miR‐124a suppressed PIK3CA 3'UTR luciferase reporter activity and decreased the expression of PIK3CA at mRNA and protein levels. Furthermore, miR‐124a inhibited the expression of the key components of the PIK3/Akt/NF‐κB signal pathway and inhibited the expression of pro‐inflammatory factors TNF‐α and IL‐6. Local overexpression of miR‐124a in the joints of CIA mice inhibited inflammation and promoted apoptosis in FLS by decreasing PIK3CA expression. In conclusion, miR‐124a inhibits the proliferation and inflammation in RAFLS via targeting PIK3/NF‐κB pathway. miR‐124a is a promising therapeutic target for RA.  相似文献   

18.
19.
This work aimed to investigate miR‐93‐5p expression in tumor tissue and its in vitro effects in colorectal cancer (CRC) by targeting programmed death ligand‐1 (PD‐L1). MiR‐93‐5p and PD‐L1 expression was detected in CRC and adjacent normal tissues by quantitative real‐time polymerase chain reaction and immunohistochemistry. The correlation between miR‐93‐5p and PD‐L1 was validated by a dual‐luciferase reporter assay. HCT116 and SW480 cells were divided into blank, miR‐NC, miR‐93‐5p mimics, miR‐93‐5p inhibitor, PD‐L1 small interfering RNA (siRNA) and miR‐93‐5p inhibitor + PD‐L1 siRNA groups, and wound‐healing and transwell assays were performed to detect cell migration and invasion, respectively. Protein expression was measured by western blotting. The secretion of cytokines was detected in the CRC cell/T coculture models. MiR‐93‐5p was downregulated in CRC tissues with upregulated PD‐L1. In PD‐L1‐negative patients, miR‐93‐5p expression was increased compared with that in PD‐L1‐positive patients. MiR‐93‐5p and PD‐L1 expression levels were associated with the tumor differentiation, lymphatic metastasis, TNM, Duke's stage, and prognosis of CRC. PD‐L1 siRNA weakened the migration and invasion abilities via decreased expression of matrix metalloproteinase‐1 (MMP‐1), ‐2, and ‐9, and these effects were abolished by the miR‐93‐5p inhibitor. Additionally, anti‐PD‐L1 upregulated the expressions of interleukin‐2 (IL‐2), tumor necrosis factor‐α (TNF‐α), and interferon γ (IFN‐γ) in the coculture of T cells with CRC cells, but downregulated the expressions of IL‐1β, IL‐10, and TGF‐β. However, these changes were partially reversed by miR‐93‐5p inhibition. miR‐93‐5p is expected to be a novel target for CRC treatment since it decreases the migration and invasion, as well as the immune evasion, of CRC cells via targeting PD‐L1.  相似文献   

20.
Endometritis is a prevalent disease with inflammation of uterus endangering women reproductive health. MicroRNAs (miRNAs) play important roles in inflammatory disorders, including endometritis. However, the role and mechanism of miR‐643 in endometritis development remain unclear. This study aimed to investigate the effect of miR‐643 on lipopolysaccharide (LPS)‐induced inflammatory response and clarify the potential mechanism. LPS‐treated human endometrial epithelial cells (HEECs) were cultured to investigate the role of miR‐643 in vitro. The expression levels of miR‐643 and tumor necrosis factor receptor‐associated factor 6 (TRAF6) were measured via quantitative real‐time polymerase chain reaction and western blot, respectively. LPS‐induced inflammatory response was assessed by inflammatory cytokines secretion via enzyme‐linked immunosorbent assay. The activation of nuclear factor‐κB (NF‐κB) pathway was investigated by western blot. The interaction between miR‐643 and TRAF6 was validated by bioinformatics analysis, luciferase reporter assay, and RNA immunoprecipitation. The expression of miR‐643 was decreased and TRAF6 protein level was enhanced in LPS‐treated HEECs. The overexpression of miR‐643 suppressed LPS‐induced secretion of inflammatory cytokines (tumor necrosis factor‐α, interleukin‐1β [IL‐1β], and IL‐6) and activation of NF‐κB pathway. The knockdown of TRAF6 inhibited LPS‐induced inflammatory response in HEECs. TRAF6 was validated as a target of miR‐643 and TRAF6 restoration reversed the effect of miR‐643 on inflammation response in LPS‐treated HEECs. Collectively, miR‐643 attenuated LPS‐induced inflammatory response by targeting TRAF6, indicating a novel avenue for the treatment of endometritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号