首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Variation partitioning and hierarchical partitioning are novel statistical approaches that provide deeper understanding of the importance of different explanatory variables for biodiversity patterns than traditional regression methods. Using these methods, the variation in occupancy and abundance of the clouded apollo butterfly (Parnassius mnemosyne L.) was decomposed into independent and joint effects of larval and adult food resources, microclimate and habitat quantity. The independent effect of habitat quantity variables (habitat area and connectivity) captured the largest fraction of the variation in the clouded apollo patterns, but habitat connectivity had a major contribution only for occupancy data. The independent effects of resources and microclimate were higher on butterfly abundance than on occupancy. However, a considerable amount of variation in the butterfly patterns was accounted for by the joint effects of predictors and may thus be causally related to two or all three groups of variables. Abundance of the butterfly in the surroundings of the focal grid cell had a significant effect in all analyses, independently of the effects of other predictors. Our results encourage wider applications of partitioning methods in biodiversity studies.  相似文献   

2.
Tropical butterfly conservation strategies often focus on total and/or common species richness to assess the conservation value of a patch or habitat. However, such a strategy overlooks the unique dynamics of rare species. We evaluated the species‐habitat relationships of 209 common, intermediate, and rare butterfly species (including morphospecies) across four habitat types (mature, degraded, or fragmented forest, and urban parks) and two patch sizes (<400 ha, ≥400 ha) in Singapore. Common species richness was consistent across habitat types. Intermediate species richness declined by more than 50 percent in urban parks (relative to all forest habitats), and rare species richness was reduced by 50 percent in degraded and fragmented forest and by 90 percent in urban parks (relative to mature forest). Large patches had comparable overall richness to small patches, but they supported more rare species and three times as many habitat‐restricted species over a similar area. Importantly, a number of rare species were confined to single small patches. Mixed‐effects regression models were constructed to identify habitat and ecological/life history variables associated with butterfly abundance. These models revealed that species with greater habitat specialization, rare larval host plants, few larval host plant genera, and narrow global geographic ranges were more likely to be rare species. Overall, these results demonstrate that the richness of habitat‐restricted and rare species do not follow the same spatial distribution patterns as common species. Therefore, while conserving mature forests is key, effective butterfly conservation in a transformed landscape should take into account rare and habitat‐restricted species.  相似文献   

3.
1. Movement mediates the response of populations and communities to landscape and habitat spatial structure, yet movement capability may itself be modified by selection pressures accompanying landscape change. Insect flight morphology can be affected by both the landscape surrounding habitat patches and the distribution of resources within habitat patches. 2. This study investigated the relative influence of local habitat patch conditions and surrounding landscape structure on variation in morphological traits associated with flight in the bog copper (Lycaena epixanthe), a butterfly endemic to temperate Nearctic peatlands. 3. Eight habitat patches were sampled to assess the influence of the surrounding landscape (connectivity of potential habitat and matrix composition) and patch size (an integrated proxy of resource density and spatial distribution) on investment into flight, measured by thorax and abdomen mass, and wing area. 4. The results revealed an effect of both local habitat conditions and landscape structure on flight‐related morphological traits. Increasing forest cover in the surrounding landscape, indicative of increased habitat patch isolation, corresponded with less mobile phenotypes in both sexes. Surrounding landscapes with more water were also generally associated with less mobile phenotypes. Investment into flight was greater in smaller peatlands in which host plant density is higher and more homogeneously distributed. 5. The present study highlights that morphological traits associated with mobility may be responding to both local habitat patch characteristics and surrounding landscape structure. It also supports the hypothesis that local habitat conditions contribute to morphological variation in butterflies.  相似文献   

4.
Aim This study investigated whether habitat fragmentation at the landscape level influences patch occupancy and abundance of the black‐headed gull, Chroicocephalus ridibundus, and whether the response of the species to environmental factors is consistent across replicated landscape plots. Location Water bodies (habitat patches) in southern Poland. Methods Surveys were conducted in two landscape types (four plots in each): (1) more‐fragmented landscape, in which habitat patches were small (mean size 2.2–6.2 ha) and far apart (mean distance 2.5–3.1 km); and (2) less‐fragmented landscape, in which habitat patches were large (mean size 9.2–16.5 ha) and separated by short distances (mean 0.9–1.4 km). Observations were performed twice in 284 potential habitat patches during the 2007 breeding season. Results Colonies were significantly more frequent and larger in the less‐fragmented landscapes than in the more‐fragmented ones. Probability of patch occupancy and number of breeding birds were positively related with patch size and these relationships were especially strong in the more‐fragmented landscapes. In the less‐fragmented landscapes, the occurrence of black‐headed gulls was negatively related to the distance to the nearest local population, but in the more‐fragmented landscapes such a relationship was not detected. As distance to the nearest habitat patch increased, the probability of the patch occupancy decreased in the more‐fragmented landscapes. Moreover, abundance was negatively influenced by distance to the nearest habitat patch, especially strongly in more‐fragmented landscapes. Proximity of corridors (rivers) positively influenced the occupation of patches regardless of landscape type. The number of islets positively influenced occupancy and abundance of local populations, and this relationship was stronger in the more‐fragmented landscapes. Main conclusions Our results are in agreement with predictions from metapopulation theory and are the first evidence that populations of black‐headed gulls may have a metapopulation structure. However, patch occupancy and abundance were differentially affected by explanatory variables in the more‐fragmented landscapes than in the less‐fragmented ones. This implies that it is impossible to derive, a priori, predictions about presence/abundance patterns based on only a single landscape.  相似文献   

5.
While there is agreement that both habitat quality and habitat network characteristics (such as patch size and isolation) contribute to the occupancy of patches by any given species, the relative importance of these factors is under debate. This issue is of fundamental ecological importance, and moreover of special concern for conservation biologists aiming at preserving endangered species. Against this background we investigated patch occupancy in the violet copper Lycaena helle, one of the rarest butterfly species in Central Europe, in the Westerwald area (Rhineland-Palatinate, Western Germany). Occupied (n = 102) differed from vacant (n = 128) patches in altitude, size, connectivity, availability of wind shelter, in the abundance of the larval host-plant, in the abundance of a grass species indicating favorable habitat conditions and in the abundance of nitrophilous plants. Overall, patch occupancy was primarily determined by patch size, connectivity and the abundance of the larval host plant, while all other parameters of habitat quality were of subordinate importance. Therefore, our findings suggest that even for extremely sedentary species such as L. helle habitat networks are decisive and—next to the preservation of habitat quality—need to be an integral part of any conservation management for this species.  相似文献   

6.
Recent studies on butterflies emphasize habitat characteristics together with metapopulation parameters (patch area and isolation) giving a more thorough understanding of processes influencing population persistence and patch occupancy, than either of them alone. We studied a coastal and an archipelago population of the Apollo butterfly (Parnassius apollo) in SW Finland. Larvae were surveyed for four years in both populations. Counting larvae on three consecutive days and temporarily removing them tested the survey accuracy. The removals showed four times higher larval abundance in the archipelago than on the coast. Survey methods were reliable, provided that empty patch status was not based on single visits only, if larval abundance was low. On the coast, large patches, and patches with high host-plant abundance were often occupied. In the archipelago, patches rich in host-plant were often occupied whereas patch area did not affect patch occupancy. In both populations, the probability of patches being occupied for three consecutive years increased with increasing host-plant abundance and patch area. Conservation of P. apollo depends on securing host-plant abundance on large enough patches in both study systems. In these systems, even crude habitat measures prove useful for understanding ecological processes behind observed patterns.  相似文献   

7.
Marginal populations are usually small, fragmented, and vulnerable to extinction, which makes them particularly interesting from a conservation point of view. They are also the starting point of range shifts that result from climate change, through a process involving colonization of newly suitable sites at the cool margin of species distributions. Hence, understanding the processes that drive demography and distribution at high‐latitude populations is essential to forecast the response of species to global changes. We investigated the relative importance of solar irradiance (as a proxy for microclimate), habitat quality, and connectivity on occupancy, abundance, and population stability at the northern range margin of the Oberthür's grizzled skipper butterfly Pyrgus armoricanus. For this purpose, butterfly abundance was surveyed in a habitat network consisting of 50 habitat patches over 12 years. We found that occupancy and abundance (average and variability) were mostly influenced by the density of host plants and the spatial isolation of patches, while solar irradiance and grazing frequency had only an effect on patch occupancy. Knowing that the distribution of host plants extends further north, we hypothesize that the actual variable limiting the northern distribution of P. armoricanus might be its dispersal capacity that prevents it from reaching more northern habitat patches. The persistence of this metapopulation in the face of global changes will thus be fundamentally linked to the maintenance of an efficient network of habitats.  相似文献   

8.
Population abundance estimates using predictive models are important for describing habitat use and responses to population-level impacts, evaluating conservation status of a species, and for establishing monitoring programs. The golden-cheeked warbler (Setophaga chrysoparia) is a neotropical migratory bird that was listed as federally endangered in 1990 because of threats related to loss and fragmentation of its woodland habitat. Since listing, abundance estimates for the species have mainly relied on localized population studies on public lands and qualitative-based methods. Our goal was to estimate breeding population size of male warblers using a predictive model based on metrics for patches of woodland habitat throughout the species' breeding range. We first conducted occupancy surveys to determine range-wide distribution. We then conducted standard point-count surveys on a subset of the initial sampling locations to estimate density of males. Mean observed patch-specific density was 0.23 males/ha (95% CI = 0.197–0.252, n = 301). We modeled the relationship between patch-specific density of males and woodland patch characteristics (size and landscape composition) and predicted patch occupancy. The probability of patch occupancy, derived from a model that used patch size and landscape composition as predictor variables while addressing effects of spatial relatedness, best predicted patch-specific density. We predicted patch-specific densities as a function of occupancy probability and estimated abundance of male warblers across 63,616 woodland patches accounting for 1.678 million ha of potential warbler habitat. Using a Monte Carlo simulation, our approach yielded a range-wide male warbler population estimate of 263,339 (95% CI: 223,927–302,620). Our results provide the first abundance estimate using habitat and count data from a sampling design focused on range-wide inference. Managers can use the resulting model as a tool to support conservation planning and guide recovery efforts. © 2012 The Wildlife Society.  相似文献   

9.
The factors shaping the ways in which animals use resources are a key element of conservation biology, but ecological studies on resource use typically neglect to consider how the study’s spatial scale may have affected the outcomes. We used the dryad butterfly, inhabiting xerothermic grassland and wet meadow, to test for differences in its resource use at two scales–habitat patch and landscape. Based on records of plant species composition from random points within four habitat patches and from points in 53 patches along surveyed transects, we compared the microhabitat preferences of the butterfly on the patch scale, and species occurrence and abundance patterns on the landscape scale. We distinguished four main groups of factors related to vegetation structure which affected the butterfly’s resource use—factors having similar effects on both spatial scales, factors operating primarily on one of the scales considered, factors relevant only on a single spatial scale, and factors operating on both scales but with effects differing between the two habitat types. We suggest that invertebrates may respond on two spatial levels or on only one, and conclude that larger-scale studies can meet the challenges of a sophisticated metapopulation approach and can give insight into the habitat characteristics affecting the persistence of species in landscapes. We stress the value of large-scale studies on species’ habitat preferences when planning conservation strategies, while pointing out that small-scale studies provide useful information about species ecology and behavior, especially if conducted in multiple habitats.  相似文献   

10.
Human‐induced alteration of habitat is a major threat to biodiversity worldwide, especially in areas of high biological diversity and endemism. Polylepis (Rosaceae) forest, a unique forest habitat in the high Andes of South America, presently occurs as small and isolated patches in grassland dominated landscapes. We examine how the avian community is likely influenced by patch characteristics (i.e., area, plant species composition) and connectivity in a landscape composed of patches of Polylepis forest surrounded by páramo grasslands in Cajas National Park in the Andes of southern Ecuador. We used generalized linear mixed models and an information‐theoretic approach to identify the most important variables probably influencing birds inhabiting 26 forest patches. Our results indicated that species richness was associated with area of a patch and floristic composition, particularly the presence of Gynoxys (Asteraceae). However, connectivity of patches probably influenced the abundance of forest and generalists species. Elsewhere, it has been proposed that effective management plans for birds using Polylepis should promote the conservation of mature Polylepis patches. Our results not only suggest this but also show that there are additional factors, such as the presence of Gynoxys plants, which will probably play a role in conservation of birds. More generally, these findings show that while easily measured attributes of the patch and landscape may provide some insights into what influences patch use by birds, knowledge of other factors, such as plant species composition, is essential for better understanding the distribution of birds in fragmented landscapes.  相似文献   

11.
Animals use and select habitat at multiple hierarchical levels and at different spatial scales within each level. Still, there is little knowledge on the scale effects at different spatial levels of species occupancy patterns. The objective of this study was to examine nonlinear effects and optimal‐scale landscape characteristics that affect occupancy of the Siberian flying squirrel, Pteromys volans, in South‐ and Mid‐Finland. We used presence–absence data (n = 10,032 plots of 9 ha) and novel approach to separate the effects on site‐, landscape‐, and regional‐level occupancy patterns. Our main results were: landscape variables predicted the placement of population patches at least twice as well as they predicted the occupancy of particular sites; the clear optimal value of preferred habitat cover for species landscape‐level abundance is a surprisingly low value (10% within a 4 km buffer); landscape metrics exert different effects on species occupancy and abundance in high versus low population density regions of our study area. We conclude that knowledge of regional variation in landscape utilization will be essential for successful conservation of the species. The results also support the view that large‐scale landscape variables have high predictive power in explaining species abundance. Our study demonstrates the complex response of species occurrence at different levels of population configuration on landscape structure. The study also highlights the need for data in large spatial scale to increase the precision of biodiversity mapping and prediction of future trends.  相似文献   

12.
Corresponding to theory, the persistence of metapopulations in fragmented landscapes depends on the area of suitable habitat patches and their degree of isolation, mediating the individual exchange between habitats. More recently, habitat quality has been highlighted as being equally important. We therefore assess the role of habitat area, isolation and quality for the occupancy of larval stages of the regionally threatened butterfly Euphydryas desfontainii occurring in grassland habitats comprising the host plant Dipsascus comosus. We put a special focus on habitat quality which was determined on two spatial scales: the landscape (among patches) and the within-patch level. On the landscape level, occupancy of caterpillars was determined by a presence-absence analysis at 28 host plant patches. On the within-patch level, oviposition site selection was studied by comparing 159 host plants with egg clutches to a random sample of 253 unoccupied host plants within six habitat patches. The occupancy of caterpillars and presence of egg clutches on host plants was then related to several predictors such as patch size and isolation on the landscape level and host plant characteristics and immediate surroundings on the within patch level. On the landscape level, only host plant abundance was related to the presence of caterpillars, while size and isolation did not differ between occupied and unoccupied patches. However, the weak discrimination of larval stages among patches changed on the within-patch level: here, several microclimatic predictors such as sunshine hours and topography, host plant morphology and phenology as well as further potential host plants in the immediate surroundings of the plant chosen for oviposition strongly determined the presence of egg clutches. We strongly suggest promoting the presence of the host plant in topographically and structurally rich habitat patches to offer potential for microclimatic compensation for a species considered threatened by climate change.  相似文献   

13.
Abstract This study investigates how abundance, diversity and composition of understorey spiders were influenced by four different forest habitats in a southern Brazilian Araucaria forest. The study area encompasses a landscape mosaic comprised of Araucaria forest, Araucaria plantation, Pinus plantation, and Eucalyptus plantation. Understorey spiders were collected by beating the vegetation inside three patches of each forest habitat. To assess possible predictors of spider assemblage structure, several patch features were analysed: potential prey abundances, estimation of vegetation cover, diversity index of vegetation types, patch ages, patch areas, and geographical distance between patches. To assess the influence of high‐level taxa approaches on spider assemblage patterns, analyses were carried out individually for family, genera and species levels. Additionally, Mantel tests were carried out in underlying similarity matrices between each taxon. Significant differences in spider abundances among forest habitats were found. Pinus plantations showed the highest abundance of spiders and Eucalyptus plantations showed the lowest abundance. Spider abundance was significantly influenced by patch ages, geographical distance and vegetation cover. Expected numbers of families, genera and species did not vary among forest habitats. Spider composition of two Eucalyptus patches differed from the other forest patches, probably due to their low vegetation cover and isolation. Genera composition was the best correlate of species composition, showing that a higher‐level surrogate can be an alternative to the species approach. The understorey spider diversity in this managed area could be maintained when suitable habitat structures are provided, thus ensuring the connectivity between different habitat types. Further studies should focus on individual species responses to the conversion of native forest to monocultures.  相似文献   

14.
One of the most widespread approaches for setting spatially‐explicit priorities for connectivity conservation consists in evaluating the effects of the individual removal of each habitat patch (one at a time) from the landscape. It however remains unknown the degree to which such priorities are valid and reliable in the longer term, as subsequent habitat losses and other disruptions accumulate in the landscape. We compared the patch prioritizations and estimated connectivity losses resulting from individual patch removals and from a more exhaustive assessment accounting for the potentially synergistic impacts of multiple habitat losses by testing all possible combinations of patch removals. Habitat availability (reachability) metrics and metapopulation capacity were calculated in purposefully simulated landscapes and in habitat distribution data for three bird species (NE Spain). We found that 1) individual patch removals allowed identifying areas of low contribution to connectivity that remained so after subsequent network modifications, 2) the most important patches identified through individual removals often did not coincide with those patches whose removal would actually be most detrimental after multiple habitat losses. However, these differences were smaller for the habitat reachability metrics, as well as for very mobile species that were largely insensitive to habitat spatial arrangement. If many patch losses over time are likely, it might be a more robust and fruitful conservation strategy for managers to pinpoint those patches that, with a low negative impact on connectivity, can be converted to other land uses, instead of trying to elucidate through individual patch removals which subset of protected patches would be the most effective for conserving as much connectivity as possible in the long term. Individual patch removals provide useful but non‐permanent guidelines that may need to be reassessed when substantial landscape modifications occur, which requires dynamic strategies for connectivity conservation in the face of global change.  相似文献   

15.
Studies on the effects of habitat fragmentation on small mammals often lead to confounding results as they only consider taxonomic groups in their analysis and neglect functional diversity of the communities. Here we describe the structure and composition of small mammal communities at 22 sites, ranging from 41 to 7035 ha, in a hyper‐fragmented landscape of an Amazonia‐Cerrado ecotone. Also, in considering a taxonomic and habitat guild approach, we report the effects of habitat structures and patch spatial attributes on richness, abundance and species composition. Small mammal richness reported in southern Amazonia (N = 23 species) is greater than most previous studies in the tropics. All rare small mammals captured in this study were forest interior species. Richness of forest interior species was positively related to larger patches, as shown by the species–area relationship. However, 52% of the small mammal species were in forest fragments smaller than 50 ha, highlighting the importance of preserving both large and small forest fragments in a landscape with accelerated habitat reduction. Richness of edge‐tolerant species was not associated with the tested variables, yet edge‐tolerant species were more abundant in degraded environments. Marsupials were positively associated with vertical habitat structures, while rodents were more strongly related to a ground‐level habitat structure. The landscape studied is extremely variable and has contributed to the difficulty in detecting clear patterns, particularly when considering only one approach. Because of the complementary outputs when analysing either taxonomic groups or habitat guilds, we recommend the use of multi‐taxa studies of different guilds to assist decision makers in designing conservation strategies and appropriate management of small mammal populations.  相似文献   

16.
Quantifying dispersal is fundamental to understanding the effects of fragmentation on populations. Although it has been shown that patch and matrix quality can affect dispersal patterns, standard metapopulation models are usually based on the two basic variables, patch area and connectivity. In 2004 we studied migration patterns among 18 habitat patches in central Spain for the butterfly Iolana iolas, using mark–release–recapture methods. We applied the virtual migration (VM) model and estimated the parameters of emigration, immigration and mortality separately for males and females. During parameter estimation and model simulations, we used original and modified patch areas accounting for habitat quality with three different indices. Two indices were based on adult and larval resources (flowers and fruits) and the other one on butterfly density. Based on unmodified areas, our results showed that both sexes were markedly different in their movements and mortality rates. Females emigrated more frequently from patches, but males that emigrated were estimated to move longer daily dispersal distances and suffer higher mortality than females during migration. Males were more likely to emigrate from small than from large patches, but patch area had no significant effect on female emigration. The effects of area on immigration rate and the within-patch mortality were similar in both sexes. Based on modified areas, the estimated parameter values and the model simulation results were similar to those estimated using the unmodified patch areas. One possible reason for the failure to significantly improve the parameter estimates of the VM model is the fact that resource quantity and butterfly population sizes were strongly correlated with patch area. Our results suggest that the standard VM modelling approach, based on patch area and connectivity, can provide a realistic picture of the movement patterns of I. iolas .  相似文献   

17.
Because spatial connectivity is critical to dispersal success and persistence of species in highly fragmented landscapes, the way that we envision and measure connectivity is consequential for biodiversity conservation. Connectivity metrics used for predictive modeling of spatial turnover and patch occupancy for metapopulations, such as with Incidence Function Models (IFM), incorporate distances to and sizes of possible source populations. Here, our focus is on whether habitat quality of source patches also is considered in these connectivity metrics. We propose that effective areas (weighted by habitat quality) of source patches should be better surrogates for population size and dispersal potential compared to unadjusted patch areas. Our review of a representative sample of the literature revealed that only 12.5% of studies incorporated habitat quality of source patches into IFM-type connectivity metrics. Quality of source patches generally was not taken into account in studies even if habitat quality of focal patches was included in analyses. We provide an empirical example for a metapopulation of a rare wetland species, the round-tailed muskrat (Neofiber alleni), demonstrating that a connectivity metric based on effective areas of source patches better predicts patch colonization and occupancy than a metric that used simple patch areas. The ongoing integration of landscape ecology and metapopulation dynamics could be hastened by incorporating habitat quality of source patches into spatial connectivity metrics applied to species conservation in fragmented landscapes.  相似文献   

18.
Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i) habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height); (ii) factors associated with habitat spatial structure (patch size, patch isolation and fragmentation); and (iii) features of patch surroundings (100-m buffers around patches) that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and more fragmented ones, including those with relatively low resource availability, because such habitat fragments have an important role to play for specialist species.  相似文献   

19.
Many insect species dependent on patchily distributed habitats have been shown to exist as metapopulations. Here I investigated the occurrence patterns of the butterfly Pyrgus armoricanus at its northern range margin in Sweden. This was done by mapping all potentially suitable habitat patches within the only area in Sweden where the species occurs (ca. 10├ù20┬ákm), and thereafter checking for presence of the butterfly in all these patches. P. armoricanus was found in 15 patches of dry grassland with presence of one of its potential larval host plants. Both the probability of occurrence and local abundance increased with patch area and decreased with increased isolation. Local abundance was positively related to the presence of an additional host plant. The results support the hypothesis that the persistence of P. armoricanus in Sweden is dependent on metapopulation dynamics. However, further studies, both on dispersal ability and on habitat requirements are needed before this can be ascertained.  相似文献   

20.
Lack of landscape connectivity and habitat loss is major threats to biodiversity and ecosystem integrity in nature reserves aimed at conservation. In this study, we used structural pattern and functional connectivity metrics to analyze the spatial patterns and landscape connectivity of habitat patches for the Shangyong sub-reserve of the Xishuangbanna Nature Reserve from 1970, 1990, and 2000. On the basis of vegetation and land cover data, we applied the equivalent connected area ECA(PC) indicator to analyze the changes in forest connectivity. Four distance thresholds (2, 4, 8, 12 km) were considered to compare the patch importance of connectivity by dECA values. The results showed the declining trends of landscape connectivity measured by ECA(PC) index from 1970 to 2000. The importance of connectivity in each forest patch varied with the increment of dispersal distances at the patch level, and some important habitat patches, which exhibit a potential to enhance landscape connectivity, should be given more attention. The least-cost pathways based on network structure were displayed under four dispersal distances in three periods. The results showed that the number of paths among the fragments of forest patches exhibited radical increases for larger dispersal distances. Further correlation analyses of AWF, ECA (IIC), and ECA (PC) showed the weakest and least-frequent correlations with the structural pattern indices, while H presented more significant correlations with the PD fragmentation metric. Furthermore, Kendall's rank correlations between the forest patch area and functional connectivity indicators showed that dECA (PC) and dAWF indicators should provided the area-based prioritization of habitat patches. Moreover, the low-rank correlations showed that dF and dLCP can be considered as effective and appropriate indicators for the evaluation of habitat features and network patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号