首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies on the determinants of distribution and abundance of animals at landscape level have emphasized the usefulness of the metapopulation approach, in which patch area and habitat connectivity have often proved to explain satisfactorily existing patch occupancy patterns. A different approach is needed to study the common situation in which suitable habitat is difficult to determine or does not occur in well‐defined habitat patches. We applied a landscape ecological approach to study the determinants of distribution and abundance of the threatened clouded apollo Parnassius mnemosyne butterfly within an area of 6 km2 of agricultural landscape in south‐western Finland. The relative role of 24 environmental variables potentially affecting the distribution and abundance of the butterfly was studied using a spatial grid system with 2408 grid squares of 0.25 ha, of which 349 were occupied by the clouded apollo. Both the probability of butterfly presence and abundance in a 0.25 ha square increased with the presence of the larval host plant Corydalis solida the cover of semi‐natural grassland, the amount of solar radiation and spalial autocorrelation in butterfly occurrence. Additionally, butterfly abundance increased with overall mean patch size and decreased with maximum slope angle and wind speed. Two advantages of the employment of a spatial grid system included the avoidance of a subjective definition of suitable habitat patches and an evaluation of the relative significance of different components of habitat quality at the same time with habitat availability and connectivity. The large variation in habitat quality was influenced by the abundance of the larval host plant and adult nectar sources but also by climatological. topographical and structural factors. The application of a spatial grid system as used here has potential for a wide use in studies on landscape‐level distribution and abundance patterns in species with complex habitat requirements and habitat availability patterns.  相似文献   

2.
Species distribution models are the tool of choice for large-scale population monitoring, environmental association studies and predictions of range shifts under future environmental conditions. Available data and familiarity of the tools rather than the underlying population dynamics often dictate the choice of specific method – especially for the case of presence–absence data. Yet, for predictive purposes, the relationship between occupancy and abundance embodied in the models should reflect the actual population dynamics of the modelled species. To understand the relationship of occupancy and abundance in a heterogeneous landscape at the scale of local populations, we built a spatio-temporal regression model of populations of the Glanville fritillary butterfly Melitaea cinxia in a Baltic Sea archipelago. Our data comprised nineteen years of habitat surveys and snapshot data of land use in the region. We used variance partitioning to quantify relative contributions of land use, habitat quality and metapopulation covariates. The model revealed a consistent and positive, but noisy relationship between average occupancy and mean abundance in local populations. Patterns of abundance were highly variable across years, with large uncorrelated random variation and strong local population stochasticity. In contrast, the spatio-temporal random effect, habitat quality, population connectivity and patch size explained variation in occupancy, vindicating metapopulation theory as the basis for modelling occupancy patterns in fragmented landscapes. Previous abundance was an important predictor in the occupancy model, which points to a spillover of abundance into occupancy dynamics. While occupancy models can successfully model large-scale population structure and average occupancy, extinction probability estimates for local populations derived from occupancy-only models are overconfident, as extinction risk is dependent on actual, not average, abundance.  相似文献   

3.
Aim Models relating species distributions to climate or habitat are widely used to predict the effects of global change on biodiversity. Most such approaches assume that climate governs coarse‐scale species ranges, whereas habitat limits fine‐scale distributions. We tested the influence of topoclimate and land cover on butterfly distributions and abundance in a mountain range, where climate may vary as markedly at a fine scale as land cover. Location Sierra de Guadarrama (Spain, southern Europe) Methods We sampled the butterfly fauna of 180 locations (89 in 2004, 91 in 2005) in a 10,800 km2 region, and derived generalized linear models (GLMs) for species occurrence and abundance based on topoclimatic (elevation and insolation) or habitat (land cover, geology and hydrology) variables sampled at 100‐m resolution using GIS. Models for each year were tested against independent data from the alternate year, using the area under the receiver operating characteristic curve (AUC) (distribution) or Spearman's rank correlation coefficient (rs) (abundance). Results In independent model tests, 74% of occurrence models achieved AUCs of > 0.7, and 85% of abundance models were significantly related to observed abundance. Topoclimatic models outperformed models based purely on land cover in 72% of occurrence models and 66% of abundance models. Including both types of variables often explained most variation in model calibration, but did not significantly improve model cross‐validation relative to topoclimatic models. Hierarchical partitioning analysis confirmed the overriding effect of topoclimatic factors on species distributions, with the exception of several species for which the importance of land cover was confirmed. Main conclusions Topoclimatic factors may dominate fine‐resolution species distributions in mountain ranges where climate conditions vary markedly over short distances and large areas of natural habitat remain. Climate change is likely to be a key driver of species distributions in such systems and could have important effects on biodiversity. However, continued habitat protection may be vital to facilitate range shifts in response to climate change.  相似文献   

4.
Species monitoring plays an important role in determining whether conservation targets are being met. However, monitoring programs can be costly and logistically demanding. When site characteristics are strongly linked to species’ status, managers may instead choose to monitor the site characteristics themselves as a surrogate of species status. In this study, we modelled the occupancy status and abundance of pond-breeding amphibians in a network of protected areas across Switzerland. We incorporated remotely-sensed data describing habitat within breeding sites in order to identify any characteristics which could act as monitoring surrogates for amphibian species’ status. We found that connectivity between amphibian breeding sites was an important predictor of occupancy patterns for all species, but that abundance patterns were poorly predicted. Despite expectations that the habitat characteristics assessed from aerial images were important for the species studied, we found that these variables were rarely strong predictors of occupancy patterns. These results highlight the importance of caution in identifying species monitoring surrogates, and the need to explicitly demonstrate strong relationships between surrogates and state variables of interest before surrogates are used.  相似文献   

5.
Using species and environmental data from an extensive grassland area in south-western Finland, we investigated the effect of patch area and connectivity, management and local habitat variables on the occurrence of spring-flowering vascular plants and their richness in boreal agricultural landscapes. Generalized linear models (GLM) and variation partitioning were used to study the explanatory power of the three groups of variables and their combined contributions on the richness and occurrence of six spring-flowering plant species. Generalized additive models (GAMs) and associated cross-validation tests were used to evaluate the predictability of the species occurrence and richness patterns. Present-day grassland patch area and connectivity were important predictors for occurrence and richness of the studied plant species. In addition, local habitat factors, especially radiation, accounted for major fractions of occurrence patterns of the studied species. Hybrid models including variables from all three variable groups had higher explanatory power and predictive capability than partial models. However, performance of the separate single-species models varied considerably between the six study species. Exclusion of radiation or connectivity from the hybrid models decreased their predictive performance, suggesting that these factors are of particular importance for grassland plant species at their northern range margins. When developing conservation and management planning for grassland plant species in Northern Europe, attention should be paid to well-connected networks of grassland patches including large, steeply-sloped patches with a favorable microclimate.  相似文献   

6.
Marginal populations are usually small, fragmented, and vulnerable to extinction, which makes them particularly interesting from a conservation point of view. They are also the starting point of range shifts that result from climate change, through a process involving colonization of newly suitable sites at the cool margin of species distributions. Hence, understanding the processes that drive demography and distribution at high‐latitude populations is essential to forecast the response of species to global changes. We investigated the relative importance of solar irradiance (as a proxy for microclimate), habitat quality, and connectivity on occupancy, abundance, and population stability at the northern range margin of the Oberthür's grizzled skipper butterfly Pyrgus armoricanus. For this purpose, butterfly abundance was surveyed in a habitat network consisting of 50 habitat patches over 12 years. We found that occupancy and abundance (average and variability) were mostly influenced by the density of host plants and the spatial isolation of patches, while solar irradiance and grazing frequency had only an effect on patch occupancy. Knowing that the distribution of host plants extends further north, we hypothesize that the actual variable limiting the northern distribution of P. armoricanus might be its dispersal capacity that prevents it from reaching more northern habitat patches. The persistence of this metapopulation in the face of global changes will thus be fundamentally linked to the maintenance of an efficient network of habitats.  相似文献   

7.
Animals use and select habitat at multiple hierarchical levels and at different spatial scales within each level. Still, there is little knowledge on the scale effects at different spatial levels of species occupancy patterns. The objective of this study was to examine nonlinear effects and optimal‐scale landscape characteristics that affect occupancy of the Siberian flying squirrel, Pteromys volans, in South‐ and Mid‐Finland. We used presence–absence data (n = 10,032 plots of 9 ha) and novel approach to separate the effects on site‐, landscape‐, and regional‐level occupancy patterns. Our main results were: landscape variables predicted the placement of population patches at least twice as well as they predicted the occupancy of particular sites; the clear optimal value of preferred habitat cover for species landscape‐level abundance is a surprisingly low value (10% within a 4 km buffer); landscape metrics exert different effects on species occupancy and abundance in high versus low population density regions of our study area. We conclude that knowledge of regional variation in landscape utilization will be essential for successful conservation of the species. The results also support the view that large‐scale landscape variables have high predictive power in explaining species abundance. Our study demonstrates the complex response of species occurrence at different levels of population configuration on landscape structure. The study also highlights the need for data in large spatial scale to increase the precision of biodiversity mapping and prediction of future trends.  相似文献   

8.
Metapopulation theory predicts that species richness and total population density of habitat specialists increase with increasing area and regional connectivity of the habitat. To test these predictions, we examined the relative contributions of habitat patch area, connectivity of the regional habitat network and local habitat quality to species richness and total density of butterflies and day-active moths inhabiting semi-natural grasslands. We studied butterflies and moths in 48 replicate landscapes situated in southwest Finland, including a focal patch and the surrounding network of other semi-natural grasslands within a radius of 1.5 km from the focal patch. By applying the method of hierarchical partitioning, which can distinguish between independent and joint contributions of individual explanatory variables, we observed that variables of the local habitat quality (e.g. mean vegetation height and nectar plant abundance) generally showed the highest independent effect on species richness and total density of butterflies and moths. Habitat area did not show a significant independent contribution to species richness and total density of butterflies and moths. The effect of habitat connectivity was observed only for total density of the declining butterflies and moths. These observations indicate that the local habitat quality is of foremost importance in explaining variation in species richness and total density of butterflies and moths. In addition, declining butterflies and moths have larger populations in well-connected networks of semi-natural grasslands. Our results suggest that, while it is crucial to maintain high-quality habitats by management, with limited resources it would be appropriate to concentrate grassland management and restoration to areas with well-connected grassland networks in which the declining species currently have their strongest populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The red-crowned crane (Grus japonensis (Statius Müller, 1776)) is a rare and endangered species that lives in wetlands. In this study, we used variance partitioning and hierarchical partitioning methods to explore the red-crowned crane–habitat relationship at multiple scales in the Yellow River Delta Nature Reserve (YRDNR). In addition, we used habitat modeling to identify the cranes’ habitat distribution pattern and protection gaps in the YRDNR. The variance partitioning results showed that habitat variables accounted for a substantially larger total and pure variation in crane occupancy than the variation accounted for by spatial variables at the first level. Landscape factors had the largest total (45.13%) and independent effects (17.42%) at the second level. The hierarchical partitioning results showed that the percentage of seepweed tidal flats were the main limiting factor at the landscape scale. Vegetation coverage contributed the greatest independent explanatory power at the plot scale, and patch area was the predominant factor at the patch scale. Our habitat modeling results showed that crane suitable habitat covered more than 26% of the reserve area and that there remained a large protection gap with an area of 20,455 ha, which accounted for 69.51% of the total suitable habitat of cranes. Our study indicates that landscape and plot factors make a relatively large contribution to crane occupancy and that the focus of conservation effects should be directed toward landscape- and plot-level factors by enhancing the protection of seepweed tidal flats, tamarisk-seepweed tidal flats, reed marshes and other natural wetlands. We propose that efforts should be made to strengthen wetland restoration, adjust functional zoning maps, and improve the management of human disturbance in the YRDNR.  相似文献   

10.
Wildlife populations in semi-arid regions are increasingly challenged by human activities and dependent on the connectivity of riparian corridors for access to surface water. The Madrean Archipelago is a biodiversity hotspot along the arid United States–Mexico borderlands that support both Neotropical and Nearctic wildlife. Infrastructure development (e.g., the border wall and the expansion of Mexican Federal Highway 2) in this region inhibits wildlife movement along the transnational mountain archipelago by disconnecting habitat. To explore the relationship between habitat variables and mammal use of riparian corridors in northern Sonora, Mexico, we collected data from 19 motion-sensitive cameras between October 2018 and April 2019 and used single-season occupancy models and Royle-Nichols abundance estimation models to analyze our data. We recorded 21 species of mammals, including the first sighting of jaguar (Panthera onca) in this region in 25 years. River characteristics (distance from river, riparian corridor width, water availability), remoteness (distance from highway, productivity, elevation), and topographic variety (vertical elevation difference) influenced patterns of occupancy probability and estimated abundance of mammals >1 kg, but the strength and direction of these relationships varied by species. Additionally, intermittently wet desert washes were comparable in species richness to the perennial system. These results highlight the importance of examining physical and biological aspects of habitat. This is especially true when identifying corridors where mitigation structures should be placed to improve wildlife connectivity in biodiversity hotspots like the Madrean Archipelago and semi-arid ecosystems worldwide.  相似文献   

11.
Theory predicts that dispersal throughout metapopulations has a variety of consequences for the abundance and distribution of species. Immigration is predicted to increase abundance and habitat patch occupancy, but gene flow can have both positive and negative demographic consequences. Here, we address the eco‐evolutionary effects of dispersal in a wild metapopulation of the stick insect Timema cristinae, which exhibits variable degrees of local adaptation throughout a heterogeneous habitat patch network of two host‐plant species. To disentangle the ecological and evolutionary contributions of dispersal to habitat patch occupancy and abundance, we contrasted the effects of connectivity to populations inhabiting conspecific host plants and those inhabiting the alternate host plant. Both types of connectivity should increase patch occupancy and abundance through increased immigration and sharing of beneficial alleles through gene flow. However, connectivity to populations inhabiting the alternate host‐plant species may uniquely cause maladaptive gene flow that counters the positive demographic effects of immigration. Supporting these predictions, we find the relationship between patch occupancy and alternate‐host connectivity to be significantly smaller in slope than the relationship between patch occupancy and conspecific‐host connectivity. Our findings illustrate the ecological and evolutionary roles of dispersal in driving the distribution and abundance of species.  相似文献   

12.
Metapopulation dynamics lead to predictable patterns of habitat occupancy, population density and trophic structure in relation to landscape features such as habitat patch size and isolation. Comparable patterns may occur in behavioural, physiological and life‐history traits but remain little studied. In the Glanville fritillary butterfly, females in newly established populations were more mobile than females in old populations. Among females from new populations, mobility decreased with increasing connectivity (decreasing isolation), but in females from old populations mobility increased with connectivity. The [ATP]/[ADP] ratio of flight muscles following controlled activity showed the same pattern as mobility in relation to population age and connectivity, suggesting that physiological differences in flight metabolic performance contribute to the observed variation in mobility. We demonstrate with an evolutionary metapopulation model parameterised for the Glanville fritillary that increasing spatial variation in landscape structure increases variance in mobility among individuals in a metapopulation, supporting the general notion that complex landscape structure maintains life‐history variation.  相似文献   

13.
Recent studies on the threatened clouded apollo butterfly, Parnassius mnemosyne, have identified suitable habitats on a large scale. More detailed knowledge on specific habitat requirements of ovipositing females is still needed. Some earlier observations suggest that females just drop their eggs without discrimination. This study suggests that females can be rather choosy in their oviposition site selection and that they actively search for oviposition sites with suitable vegetation structure. By identifying factors influencing female oviposition, such as distance to shrub, valuable knowledge is generated for restoration plans considered in the study area. This stresses the importance of proper management of extant habitats in order to prevent local extinctions of P. mnemosyne and it also highlights the need for data on specific oviposition requirements in butterfly conservation.  相似文献   

14.
Conservation of rare and endangered species requires assessment of factors that influence the current habitat associations of a species and the role of past habitat degradation in limiting occupancy or abundance. The objective of our 2011–2014 study was to determine how habitat characteristics and wetland history can predict occupancy and abundance patterns of bog turtles (Glyptemys muhlenbergii) at the fringe of their range in the southeastern United States. We used a hurdle model to examine occupancy and abundance patterns while addressing problems associated with zero-inflated data. Occupancy patterns were weakly related to percent of the wetland containing emergent vegetation, whereas abundance patterns were predicted by the percent silt in the wetland substrate, percent forest cover, amount of habitat degradation, and recovery time since past habitat degradation. The effect of historical habitat degradation on abundance rather than occupancy patterns has rarely been documented and its effect is rarely studied in vertebrate populations. Identification of predictors of occupancy and abundance patterns will aid discovery of new populations of bog turtles and improve management of occupied wetlands. © 2019 The Wildlife Society.  相似文献   

15.
The decline in distribution and abundance of biodiversity requires evidence-based guidelines for cost-effective conservation management and systematic quantitative assessments of its effects. We investigated the efficiency of a habitat restoration programme aimed at reducing the risk of extinction of the Iolas blue Iolana iolas (Ochsenheimer, 1816), one of the rarest butterflies of Central Europe. Using occupancy and capture-mark-recapture (CMR) models accounting for probability of detection, we assessed habitat patch occupancy, habitat selection, demography and dispersal with the aim of testing and refining restoration measures. Count surveys performed at 38 plantations dedicated to the species’ unique host plant resulted in an occupancy rate of 50 %, with mostly very low relative abundance indices. The site-occupancy habitat analysis demonstrated that species abundance was best explained by host plant vitality, habitat patch connectivity, and solar radiation. CMR surveys yielded very high catchability (82 %), individual detectability (86 %) rates and limited dispersal capacity. These results form the basis for future efficient count surveys to assess species distribution and abundance. They also provide evidence-based recommendations for improving ongoing habitat restoration: (i) the attractiveness of host plant plantations must be enhanced by promoting mass blossoming, which can be achieved through systematic autumn pruning of the extant plantations; (ii) new plantations should be created in order to fill in the gaps in the landscape matrix, to increase meta-population capacity through improved habitat connectivity. Finally, this study demonstrates the relevance of efficiency tests as an integral, adaptive phase of any conservation research activity.  相似文献   

16.
While there is agreement that both habitat quality and habitat network characteristics (such as patch size and isolation) contribute to the occupancy of patches by any given species, the relative importance of these factors is under debate. This issue is of fundamental ecological importance, and moreover of special concern for conservation biologists aiming at preserving endangered species. Against this background we investigated patch occupancy in the violet copper Lycaena helle, one of the rarest butterfly species in Central Europe, in the Westerwald area (Rhineland-Palatinate, Western Germany). Occupied (n = 102) differed from vacant (n = 128) patches in altitude, size, connectivity, availability of wind shelter, in the abundance of the larval host-plant, in the abundance of a grass species indicating favorable habitat conditions and in the abundance of nitrophilous plants. Overall, patch occupancy was primarily determined by patch size, connectivity and the abundance of the larval host plant, while all other parameters of habitat quality were of subordinate importance. Therefore, our findings suggest that even for extremely sedentary species such as L. helle habitat networks are decisive and—next to the preservation of habitat quality—need to be an integral part of any conservation management for this species.  相似文献   

17.
蝴蝶是进行生物多样性监测、评估及生态环境影响评价的重要指示生物.欧洲对蝴蝶的种类组成、种群动态与分布的长期监测已有数十年的历史,先后实施了许多具有国际性影响的长期监测计划.这些计划的目标是评估区域及国家范围的蝴蝶物种丰富度的变化趋势,分析其与栖境和气候变化等环境因素的相关性,为研究、保护和利用蝴蝶资源及预测环境变化提供基础数据,并在蝴蝶受威胁等级的划分、保护措施的制定、生态环境保护与管理等方面发挥了重要作用.本文在总结欧洲蝴蝶监测历史及现状的基础上,着重介绍英国蝴蝶监测计划(The UK Butterfly Monitoring Scheme, UKBMS)、德国及欧盟等重要的蝴蝶监测计划,同时提出了开展我国蝴蝶监测工作的具体建议.  相似文献   

18.
Temporal variability in primary productivity can change habitat quality for consumer species by affecting the energy levels available as food resources. However, it remains unclear how habitat-quality fluctuations may determine the dynamics of spatially structured populations, where the effects of habitat size, quality and isolation have been customarily assessed assuming static habitats. We present the first empirical evaluation on the effects of stochastic fluctuations in primary productivity—a major outcome of ecosystem functions—on the metapopulation dynamics of a primary consumer. A unique 13-year dataset from an herbivore rodent was used to test the hypothesis that inter-annual variations in primary productivity determine spatiotemporal habitat occupancy patterns and colonization and extinction processes. Inter-annual variability in productivity and in the growing season phenology significantly influenced habitat colonization patterns and occupancy dynamics. These effects lead to changes in connectivity to other potentially occupied habitat patches, which then feed back into occupancy dynamics. According to the results, the dynamics of primary productivity accounted for more than 50% of the variation in occupancy probability, depending on patch size and landscape configuration. Evidence connecting primary productivity dynamics and spatiotemporal population processes has broad implications for metapopulation persistence in fluctuating and changing environments.  相似文献   

19.
The majority of forests in urban areas are small and isolated. Improving habitat quality of small forests instead of increasing habitat size and connectivity could be an effective means of conserving the biodiversity of such highly fragmented landscapes. In this study, we investigated the relative importance of habitat quantity, quality and isolation on butterfly assemblages in urban fragmented forests in Tokyo, Japan. We used four habitat geographic parameters: (1) fragment size, (2) shape index, (3) isolation (distance to the mainland), and (4) connectivity; and three habitat quality parameters: (1) herbaceous nectar plant abundance, (2) herbaceous nectar plant diversity, and (3) larval host plant diversity. We surveyed butterfly assemblages along transects in 20 forest fragments that ranged in size from 1 to 122 ha. We used generalized linear models to relate the number of species in a fragment to four habitat geographic parameters and three habitat quality parameters. The averaged models based on AICc showed that fragment size had a strong positive effect on butterfly species richness. There was also a positive effect of herbaceous nectar plant abundance on species diversity. These findings suggest that improving the habitat quality of small and isolated forests in highly fragmented landscapes may be capable of maintaining levels of butterfly diversity comparable to those of large fragments.  相似文献   

20.
Aim Habitat loss and fragmentation are amongst the greatest threats to biodiversity world‐wide. However, there is still little evidence on the relative influence of these two distinct processes on biodiversity, and no study, to date, has investigated the independent contribution of structural connectivity in addition to habitat loss and fragmentation. The aim of this study is to evaluate the independent effects of habitat loss (the decrease in total amount of habitat), habitat fragmentation per se (habitat subdivision) and structural connectivity (in the form of hedgerow networks) on the distribution of seven resident forest‐dependent birds in central Italy. Location Central Italy. Methods We strategically selected 30 landscapes (each of 16 km2 in size) with decreasing total amount of forest cover and with contrasting configuration of patches and contrasting lengths of hedgerow networks. Presence/absence of birds in each landscape unit was studied through point counts. Results The amount of forest cover in the landscape had the strongest relative influence on birds’ occupancy, whilst habitat subdivision played a negligible role. Structural connectivity and the geographic position of the landscape unit played a relatively important role for four species. Main conclusions Our study shows the importance of disentangling the contribution of different landscape properties in determining distribution patterns. Our results are consistent with the fact that halting habitat loss and carrying out habitat restoration should be conservation priorities, since habitat loss is the main factor affecting the distribution of the target species; implementation of structural connectivity through hedgerows, instead, should be evaluated with caution since its contribution is secondary to the predominant role of habitat loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号