首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
《Mammalian Biology》2008,73(6):415-422
Shrews are small mammals with a high metabolic rate and may potentially be greatly influenced by environmental factors. Several studies have indicated both morphological and genetical variation in the common shrew (Sorex araneus). The aims of this study were to study patterns in size variation and to test which environmental factors influence body size most. Most study sites were located to northern Norway, between 65° and 70°N, one study site in south Norway was also included (60°N). At one site shrews were studied for 10 consecutive years. Three body measurements (body length, tail length and body mass) and two combined estimates (tail proportion and body condition) were compared, where appropriate, among populations (sites), years and months, and along gradients of altitude (habitat), coast–inland and north–south. Effects of summer climate (temperature and precipitation) were also tested. Size variations among populations of common shrews were found in a number of respects; yearly, seasonal, local and regional. Regional variation was most significant, followed by yearly and seasonal variation. The results suggest a strong link between body size and a coast–inland gradient, with smallest shrews (up to 13% smaller) on inland locations. The main differences between coastal and inland sites are lower winter temperatures and less snow cover at inland sites (factors which are also associated with habitat productivity), which could favour smaller shrews with less energetic demands. Most other variation was relatively small (<5%). Most of the results indicate climate and habitat productivity as the most important factors, which may also vary between years at a single site. Bergmanns's rule, Allen's rule or Dehnel's phenomenon were not supported by this study. The insular syndrome was partly supported. Smaller variations in size may only be proximate adaptations to local food supply, but larger variations are likely to be ultimate adaptations.  相似文献   

2.
We tested the validity of Bergmann’s rule and Rosenzweig’s hypothesis through an analysis of the geographical variation of the skull size of Otaria flavescens along the entire distribution range of the species (except Brazil). We quantified the sizes of 606 adult South American sea lion skulls measured in seven localities of Peru, Chile, Uruguay, Argentina, and the Falkland/Malvinas Islands. Geographical and environmental variables included latitude, longitude, and monthly minimum, maximum, and mean air and ocean temperatures. We also included information on fish landings as a proxy for productivity. Males showed a positive relationship between condylobasal length (CBL) and latitude, and between CBL and the six temperature variables. By contrast, females showed a negative relationship between CBL and the same variables. Finally, female skull size showed a significant and positive correlation with fish landings, while males did not show any relationship with this variable. The body size of males conformed to Bergmann’s rule, with larger individuals found in southern localities of South America. Females followed the converse of Bergmann’s rule at the intraspecific level, but showed a positive relationship with the proxy for productivity, thus supporting Rosenzweig’s hypothesis. Differences in the factors that drive body size in females and males may be explained by their different life-history strategies. Our analyses demonstrate that latitude and temperature are not the only factors that explain spatial variation in body size: others such as food availability are also important for explaining the ecogeographical patterns found in O. flavescens.  相似文献   

3.
Changes in body size inversely related to ambient temperatures have been described in woodrats (Neotoma) over time scales ranging from decades to millennia. However, climate-mediated variation in other traits has not been evaluated, and the effects of precipitation have been overlooked. We assessed variation in skull morphology among bushy-tailed woodrats (Neotoma cinerea) over two sampling transects spanning coastal rainforest and interior desert environments to determine whether skull morphology varied with climate. We also tested whether previously described size-temperature relationships could be generalized to our study populations. In both transects, linear measurements of functionally significant traits differed between coastal and interior populations. Geometric morphometric analyses of shape confirmed some of those differences and revealed additional patterns of skull variation. Variation in some linear measurements, including body size, was predicted by climate. However, body and skull size, as well as measurements of skull components, displayed varying responses. Although longitudinal patterns of body size variation supported Bergmann’s rule, skull size variation was only weakly associated with climate. The strongest phenotypic responses to climate were those of auditory, dental, and palatal skull traits. Altogether, our findings suggest that geographic variation in temperature and precipitation mediated selective heterogeneity and plasticity in skull traits associated with food processing and sensory organs in N. cinerea. This was consistent with our expectation of resource-dependent phenotypic variation among populations in environments with highly contrasting climatic regimes.  相似文献   

4.
杜抱朴  杜靖 《人类学学报》2021,40(4):644-652
观察中国不同区域内现代人群四肢形态变化是否与艾伦法则相一致。本文搜集中国各区域102处地点的现代人群上、下肢测量性状中17项指标,探讨其与温度(年平均温度、年最高温度、年最低温度和气温年较差)间的线性关系。结果表明,随着环境温度降低,中国现代人的上肢相对长度逐渐变短,前臂和手则逐渐增粗;下肢(下肢全长、大腿长和小腿长)逐渐变长,且下肢相对长度同样渐增。手长、手宽、上臂围和前臂围与气温年较差呈正相关,而身高上肢长指数与气温年较差呈负相关;下肢全长、大腿长、足长和小腿围与气温年较差呈正相关。环境温度作为一项选择性压力,作用于上肢发育或形态塑造过程的显著程度上要高于下肢。中国现代人群的四肢形态变化规律并不完全符合艾伦法则,可能与遗传、地理环境、功能性需求、生存策略和营养等因素共同影响现代人群的四肢发育密切相关。  相似文献   

5.
Aim  We examine the effect of island area on body dimensions in a single species of primate endemic to Southeast Asia, the long-tailed macaque ( Macaca fascicularis ). In addition, we test Allen's rule and a within-species or intraspecific equivalent of Bergmann's rule (i.e. Rensch's rule) to evaluate body size and shape evolution in this sample of insular macaques.
Location  The Sunda Shelf islands of Southeast Asia.
Methods  Body size measurements of insular macaques gathered from the literature were analysed relative to island area, latitude, maximum altitude, isolation from the mainland and other islands, and various climatic variables using linear regression.
Results  We found no statistically significant relationship between island area and body length or head length in our sample of insular long-tailed macaques. Tail length correlated negatively with island area. Head length and body length exhibited increases corresponding to increasing latitude, a finding seemingly consistent with the expression of Bergmann's rule within a single species. These variables, however, were not correlated with temperature, indicating that Bergmann's rule is not in effect. Tail length was not correlated with either temperature or increasing latitude, contrary to that predicted by Allen's rule.
Main conclusions  The island rule dictating that body size will covary with island area does not apply to this particular species of primate. Our study is consistent with results presented in the literature by demonstrating that skull and body length in insular long-tailed macaques do not, strictly speaking, conform to Rensch's rule. Unlike previous studies, however, our findings suggest that tail-length variation in insular macaques does not support Allen's rule.  相似文献   

6.
7.
Aim To test the abundant centre hypothesis by analysing the physical and climatic factors that influence body size variation in the European badger (Meles meles). Location Data were compiled from 35 locations across Europe. Methods We used body mass, body length and condylo‐basal length (CBL) as surrogates of size. We also compiled data on latitude, several climatic variables, habitat type and site position relative to the range edge. We collapsed all continuous climatic variables into independent vectors using principal components analysis (PCA), and used a general linear model to explain the morphometric variation in badger populations across the species’ range. Results Body mass and body length were nonlinearly and significantly related to latitude. In contrast, CBL was linearly related to latitude. Body mass changed nonlinearly along the temperature (PC1) gradient, with the highest values observed at mid‐range. Furthermore, body mass, body length and CBL differed significantly among habitats, with badgers showing larger size in temperate habitats and core areas relative to peripheral zones. Main conclusions Our analysis supports the nonlinear pattern predicted by the abundant centre hypothesis only for body mass and body length. These results imply that individuals are largest and heaviest at the centre of the climatic range of badger distribution. Variation of CBL with latitude follows a linear trend, consistent with Bergmann’s rule. Our results provide mixed support for the abundant centre hypothesis, and suggest food availability/quality to be the main mechanism underlying body size clines in this species.  相似文献   

8.
There are a number of ecogeographical “rules” that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller‐bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small‐bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules.  相似文献   

9.
运用单因素方差分析、主成分分析、判别分析和聚类分析,对高原鼢鼠(Eospalax baileyi)4个地区(临潭、天祝、玛曲和碌曲)8个地理群体的头骨形态特征进行综合分析,比较13个特征变量的地理分异,挖掘形态特征的主要变量,并探讨其形态变异与环境的关系。结果发现,群体间13个特征变量均存在显著差异,主成分分析表明13个头骨特征变量可用3个主成分来表述,其累计贡献率达96.981%。颅全长、上齿列长及齿隙长是高原鼢鼠头骨发生分化的主要变量。天祝种群与碌曲种群,及玛曲种群与临潭种群都有重叠,其中碌曲的两个种群相似性最高,玛曲种群和临潭种群与其他种群几乎无重叠,显示完全分化,聚类分析结果与判别分析结果一致。头骨形态与地理因子的相关性分析发现头骨形态大小与海拔成显著的正相关关系。综合分析认为地理隔离、栖息地海拔因子影响下的生态条件等是高原鼢鼠头骨分化的主要因素。  相似文献   

10.
Aim  In order to understand how ground squirrels ( Spermophilus beecheyi ) may respond to future environmental change, we investigated five biotic and environmental factors potentially responsible for explaining body-size variation in this species across California. We examined the concordance of spatial patterns with temporal body-size change since the last glacial maximum (LGM).
Location  California, western North America.
Methods  We quantified body size of modern populations of ground squirrels ( n  = 81) and used a model-selection approach to determine the best variables (sex, vegetation, number of congeners, temperature and/or precipitation) explaining geographical variation in body size among modern populations. We also quantified body size of one fossil population in northern California ( n  = 39) and compared temporal body-size change in S. beecheyi at this location since the LGM with model predictions.
Results  Body size of modern populations conformed to Bergmann's rule, with larger individuals in northern (wetter and cooler) portions of California. However, the models suggest that precipitation, rather than temperature or other variables, may best explain variation in body size across modern spatial gradients. Our conclusion is supported by the temporal data, demonstrating that the body size of S. beecheyi has increased in northern California since the LGM, concordant with precipitation but not temperature change in the region.
Main conclusions  Precipitation, rather than temperature, vegetation or number of congeneric species, was the main factor explaining both spatial and temporal patterns of body-size variation in S. beecheyi . The integration of space and time provides a powerful mechanism for predicting how local populations may respond to current and future climatic changes.  相似文献   

11.
树麻雀(Passer montanus)分布范围广、海拔梯度大,也是人类活动的伴随物种。对中国837个样本的10个形态特征与温度、日照、海拔和风速等4个主要环境因子进行相关分析,结果显示:树麻雀的体重、嘴裂、翅长、尾长、跗跖长、脑骨宽、眼间距与日照因子显著相关(P0.05),体重、体长、翅长、尾长、跗跖长与海拔因子显著相关(P0.05),体重、嘴峰、翅长、脑骨长与温度因子显著相关(P0.05),表明树麻雀的形态指标易随环境因子的变化而变化。通过控制经度和海拔两个变量,对形态指标与纬度的偏相关分析表明,体重、翅长、脑骨长和脑骨宽与纬度呈显著正相关(P0.05),体表突出部分嘴峰、嘴裂与纬度呈显著负相关(P0.05),即随着纬度的升高,树麻雀身体逐渐变大,符合贝格曼规律;体表突出部分嘴峰和嘴裂随纬度升高变短,符合阿伦规律。飞行能力与海拔因子呈极显著正相关(n=92,r=0.217,P=0.038),表明树麻雀在高海拔地区具有更强的飞行能力,这也许是它成为广布种的重要原因。  相似文献   

12.
Aim  Island populations of small mammals are often characterized by a larger body size compared with neighbouring mainland or continental populations of the same species. A number of reasons have been put forward to explain this phenomenon. The aim of this study was to test which of these hypotheses can best explain the increase of body size in common shrews ( Sorex araneus ) on islands.
Location  The fieldwork for this study was carried out on the islands of the Inner Hebrides, Clyde Islands and the west coast of Scotland.
Methods  This study compared body sizes of common shrews from mainland and island sites on the west coast of Scotland, based on measurements of hind foot lengths. On 10 of the 13 islands sampled, common shrews were significantly larger than on the mainland. Body size did not vary significantly among mainland populations. We used the directional contrasts method to test the relative contributions of possible factors explaining the large body size observed in the island populations.
Results  We found that body size of common shrews on islands was positively related to distance from mainland, negatively related to average annual temperature, negatively related to island size, and may also be influenced by the presence or absence of pygmy shrews ( Sorex minutus ) on the island.
Main conclusions  Our results suggest a role for founder events, Bergmann's rule and K -selection in determining body size of common shrews on islands.  相似文献   

13.
Understanding the factors that drive geographic variation in life history is an important challenge in evolutionary ecology. Here, we analyze what predicts geographic variation in life‐history traits of the common lizard, Zootoca vivipara, which has the globally largest distribution range of all terrestrial reptile species. Variation in body size was predicted by differences in the length of activity season, while we found no effects of environmental temperature per se. Females experiencing relatively short activity season mature at a larger size and remain larger on average than females in populations with relatively long activity seasons. Interpopulation variation in fecundity was largely explained by mean body size of females and reproductive mode, with viviparous populations having larger clutch size than oviparous populations. Finally, body size‐fecundity relationship differs between viviparous and oviparous populations, with relatively lower reproductive investment for a given body size in oviparous populations. While the phylogenetic signal was weak overall, the patterns of variation showed spatial effects, perhaps reflecting genetic divergence or geographic variation in additional biotic and abiotic factors. Our findings emphasize that time constraints imposed by the environment rather than ambient temperature play a major role in shaping life histories in the common lizard. This might be attributed to the fact that lizards can attain their preferred body temperature via behavioral thermoregulation across different thermal environments. Length of activity season, defining the maximum time available for lizards to maintain optimal performance, is thus the main environmental factor constraining growth rate and annual rates of mortality. Our results suggest that this factor may partly explain variation in the extent to which different taxa follow ecogeographic rules.  相似文献   

14.
Morphological characteristics reflect geographical variation resulting from adaptation to varying environmental conditions. Carnivore species distributed over a wide geographical range generally have highly polymorphic morphological variation. The raccoon dog (Nyctereutes procyonoides) has a longitudinal distribution restricted to East Asia and the northern Indochina Peninsula. Its unique geographical range makes it an appropriate model to examine how morphological differences are influenced by geography. To demonstrate morphological evolution of Russian, Chinese, Korean and Japanese raccoon dogs predicted by geographical differences, we tested the island rule and Bergmann's rule. We compared craniodental variation among populations and examined morphological implications for intraspecific taxonomic status. Insular raccoon dogs possessed substantially smaller body size than those from the mainland. Moreover, different island effects among Japanese islands were demonstrated by markedly larger occipital condyle breath in the Hokkaido population. Larger skull size in Russian and Hokkaido raccoon dogs could be explained by Bergmann's rule. Based on previous chromosomal and molecular studies and results of our morphological analyses, we suggest Japanese raccoon dogs are a distinct species from the mainland N. procyonoides.  相似文献   

15.
Body size evolution in insular vertebrates: generality of the island rule   总被引:8,自引:1,他引:7  
Aim My goals here are to (1) assess the generality of the island rule – the graded trend from gigantism in small species to dwarfism in larger species – for mammals and other terrestrial vertebrates on islands and island‐like ecosystems; (2) explore some related patterns of body size variation in insular vertebrates, in particular variation in body size as a function of island area and isolation; (3) offer causal explanations for these patterns; and (4) identify promising areas for future studies on body size evolution in insular vertebrates. Location Oceanic and near‐shore archipelagos, and island‐like ecosystems world‐wide. Methods Body size measurements of insular vertebrates (non‐volant mammals, bats, birds, snakes and turtles) were obtained from the literature, and then regression analyses were conducted to test whether body size of insular populations varies as a function of body size of the species on the mainland (the island rule) and with characteristics of the islands (i.e. island isolation and area). Results The island rule appears to be a general phenomenon both with mammalian orders (and to some degree within families and particular subfamilies) as well as across the species groups studied, including non‐volant mammals, bats, passerine birds, snakes and turtles. In addition, body size of numerous species in these classes of vertebrates varies significantly with island isolation and island area. Main conclusions The patterns observed here – the island rule and the tendency for body size among populations of particular species to vary with characteristics of the islands – are actually distinct and scale‐dependent phenomena. Patterns within archipelagos reflect the influence of island isolation and area on selective pressures (immigration filters, resource limitation, and intra‐ and interspecific interactions) within particular species. These patterns contribute to variation about the general trend referred to as the island rule, not the signal for that more general, large‐scale pattern. The island rule itself is an emergent pattern resulting from a combination of selective forces whose importance and influence on insular populations vary in a predictable manner along a gradient from relatively small to large species. As a result, body size of insular species tends to converge on a size that is optimal, or fundamental, for a particular bau plan and ecological strategy.  相似文献   

16.

Dam constructions cause fundamental changes in the natural landscape, creating new ecological and evolutionary challenges for aquatic organisms. In some cases, such water impoundments have been related with morphological changes in organisms. Understanding how populations respond to rapid environmental changes imposed by dams is the first step to elucidate the consequences that disturbed habitats may have on species evolution. In this work, we analyzed shape and size variation in Bryconamericus iheringii Boulenger 1887 from the Chasqueiro stream basin, south of Brazil, which was recently dammed. We used linear measurements and geometric morphometrics to identify morphological differences among specimens from the reservoir (lentic habitat) compared to the habitat upstream and downstream of the dam (lotic habitats). We also tested for size- and shape-related sexual dimorphism to determine whether variations observed were the same for both sexes. We found that B. iheringii from the artificial reservoir were distinct in shape and size to those from their natural habitat in the stream. The size variation between environments was the same for both sexes, but the shape variation differed between males and females. Regarding the linear measurements, lotic populations were larger (greater body length, width, pectoral fin base length and caudal peduncle length), probably in response to increased swimming activity. Regarding body shape, we found that both sexes have a more fusiform body in lotic habitats than in the reservoir. In addition, females showed an altered mouth position that was distinct between these environments. This work indicates that the water reservoir seems to be an important factor influencing morphological variation in B. iheringii, a species with sexual shape dimorphism.

  相似文献   

17.
According to Bergmann's rule, individuals of a given species tend to be larger in colder (northern) climates. Traditional explanation points to the relatively lower surface‐to‐volume ratio in larger animals and, consequently, relatively lower costs of thermoregulation. We examined intraspecific covariation of body size with geographical location and climate in five species of Sorex shrews, animals that are among the smallest extant mammals. The condylobasal length of skull (CBL), compiled from literature data and measured on museum specimens, was used as an indicator of the overall body size of shrews. Surprisingly, in three out of five shrew species, the CBL was negatively correlated with latitude, and the same trend, although not statistically significant, was found in the fourth species. In general, shrews were smaller in colder areas, as evidenced by the positive correlations between the CBL and temperature. In two species, these positive correlations appeared when the effect of longitude was held constant in the partial correlation analysis. Characteristically, the strongest negative correlation with latitude and positive with temperatures was found in S. minutus, the smallest species under study. Shrews were in general larger in environments with high actual evapotranspiration. Body mass reviewed in S. araneus paralleled the pattern found in the CBL variation in this species, i.e. it decreased northward, both in summer‐ and winter‐caught animals. In addition, contrary to the widely accepted ? but not rigorously tested ? belief, body mass recession from summer to winter (the Dehnel Effect) did not correlate with latitude. We concluded that shrews followed the converse to Bergmann's rule, and hypothesize that part of their body size variation along the west‐east axis may be explained by character displacement. We also hypothesize that scarcity of food, especially in winter, is a major factor selecting for small body size in shrews in northern areas, as smaller individuals should require less food. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 78 , 365–381.  相似文献   

18.
Variation in body size represents one of the crucial raw materials for evolution. However, at present, it is still being debated what is the main factor affecting body size or if the final body size is the consequence of several factors acting synergistically. To evaluate this, widespread species seem to be suitable models because the different populations occur along a geographical gradient and under contrasted climatic and environmental conditions. Here we describe the spatial pattern of variation in body size and sexual size dimorphism in the snouted treefrog Scinax fuscovarius (Anura, Hylidae) along a 10° range in latitude, 25° longitude, and 2000 m in altitude from Argentina, Brazil and Paraguay using an information‐theoretic approach to evaluate the support of the data for eight a priori hypotheses proposed in the literature to account for geographical body size, and three hypotheses for sexual size dimorphism variation. Body size of S. fuscovarius varied most dramatically with longitude and less so with latitude; frogs were largest in the northwestern populations. Body size was positively related with precipitation seasonality, and negatively with annual precipitation. Furthermore, the degree of sexual size dimorphism was greatest in the western populations with less annual precipitation, as the increase in body size was stronger for females. Our results on body size variation are consistent with two ecogeographical hypotheses, the starvation resistance and the water availability hypotheses, while our results on sexual size dimorphism in S. fuscovarius supports the differential‐plasticity hypothesis but the inverse to Rensch's rule and the parental investment hypothesis. Due to the weak association between environmental variables and body size and sexual size dimorphism variation, we stress that there are other factors, mainly those related to the life history, driving the geographical variation of S. fuscovarius.  相似文献   

19.
Size evolution in island lizards   总被引:2,自引:0,他引:2  
Aim  The island rule, small animal gigantism and large animal dwarfism on islands, is a topic of much recent debate. While size evolution of insular lizards has been widely studied, whether or not they follow the island rule has never been investigated. I examined whether lizards show patterns consistent with the island rule.
Location  Islands worldwide.
Methods  I used literature data on the sizes of island–mainland population pairs in 59 species of lizards, spanning the entire size range of the group, and tested whether small insular lizards are larger than their mainland conspecifics and large insular lizards are smaller. I examined the influence of island area, island isolation, and dietary preferences on lizard size evolution.
Results  Using mean snout–vent length as an index of body size, I found that small lizards on islands become smaller than their mainland conspecifics, while large ones become larger still, opposite to predictions of the island rule. This was especially strong in carnivorous lizards; omnivorous and herbivorous species showed a pattern consistent with the island rule but this result was not statistically significant. No trends consistent with the island rule were found when maximum snout–vent length was used. Island area had, at best, a weak effect on body size. Using maximum snout–vent length as an index of body size resulted in most lizard populations appearing to be dwarfed on islands, but no such pattern was revealed when mean snout–vent length was used as a size index.
Main conclusions  I suggest that lizard body size is mostly influenced by resource availability, with large size allowing some lizard populations to exploit resources that are unavailable on the mainland. Lizards do not follow the island rule. Maximum snout–vent length may be biased by sampling effort, which should be taken into account when one uses this size index.  相似文献   

20.
Mean adult size has been used as the traditional measure of body size to explain trends of insular gigantism and dwarfism in a wide array of taxa. However, patterns of variation in body size at birth have received surprisingly little attention, leaving open the possibility that adult body-size differences are nonadaptive consequences of selection acting on neonate body size. Here I used an empirical and correlative approach to test this hypothesis in a mosaic of 12 island and mainland snake populations in Australia. Data collected on 597 adult and 1,084 neonate tiger snakes showed that (1) both adult and neonate mean body sizes varied strongly across populations; (2) prey diversity and size convincingly explained birth-size variations: birth size-notably, gape size-correlated with prey size; (3) neonate snout-vent length was significantly correlated with neonate gape size; and (4) neonate snout-vent length was significantly correlated with adult snout-vent length. Postnatal growth rates recorded under common-garden conditions differed across populations and were correlated with mean prey size. These data collectively suggest that (1) prey size is the main driver for the evolution of body size at birth in gape-limited predators, (2) adult size variations may reflect selective forces acting on earlier life stages, and (3) adult size variations may also reflect resource availability during ontogeny (notably, prey diversity).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号