首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
凋落物分解是森林生态系统碳循环的重要组成部分。建立中国森林凋落叶分解速率数据库, 分析凋落叶分解速率与其主要影响因素之间的关系, 对精确地预测中国森林生态系统碳收支具有重要意义。该研究通过收集已报道的中国森林凋落叶分解常数(k)及其相关变量, 分析探讨地理因素(纬度、经度和海拔)、气候因素(年平均气温和年降水量)、凋落叶质量(氮、磷、钾、木质素、木质素:氮和碳氮比)和叶特性(常绿与落叶、阔叶与针叶)对中国森林凋落叶分解速率的影响。结果表明, 在国家尺度上, k随年平均气温、年降水量、氮、磷和钾的增加而增加, 随纬度、经度、海拔、碳氮比、木质素和木质素:氮的增大而减小, 叶特性对k的影响不显著。气候与地理因素(年平均气温、年降水量和纬度)能解释k值变异的34.1%, 凋落叶质量(氮、钾、木质素和木质素:氮)能解释k值变异的21.7%, 它们能共同解释k值变异的74.4%。了解森林凋落叶分解速率在国家尺度上的格局和主控因素可为中国森林生态系统碳循环相关模型提供基础参数。  相似文献   

2.
《植物生态学报》2014,38(6):529
凋落物分解是森林生态系统碳循环的重要组成部分。建立中国森林凋落叶分解速率数据库, 分析凋落叶分解速率与其主要影响因素之间的关系, 对精确地预测中国森林生态系统碳收支具有重要意义。该研究通过收集已报道的中国森林凋落叶分解常数(k)及其相关变量, 分析探讨地理因素(纬度、经度和海拔)、气候因素(年平均气温和年降水量)、凋落叶质量(氮、磷、钾、木质素、木质素:氮和碳氮比)和叶特性(常绿与落叶、阔叶与针叶)对中国森林凋落叶分解速率的影响。结果表明, 在国家尺度上, k随年平均气温、年降水量、氮、磷和钾的增加而增加, 随纬度、经度、海拔、碳氮比、木质素和木质素:氮的增大而减小, 叶特性对k的影响不显著。气候与地理因素(年平均气温、年降水量和纬度)能解释k值变异的34.1%, 凋落叶质量(氮、钾、木质素和木质素:氮)能解释k值变异的21.7%, 它们能共同解释k值变异的74.4%。了解森林凋落叶分解速率在国家尺度上的格局和主控因素可为中国森林生态系统碳循环相关模型提供基础参数。  相似文献   

3.
大熊猫栖息环境的森林凋落物动态研究   总被引:13,自引:0,他引:13       下载免费PDF全文
本文以王朗自然保护区冷杉、云杉暗针叶林为对象,在定位测定森林凋落量及其动态和枯枝落叶贮量的基础上,研究了凋落物分解速率及其主要营养元素含量的变化,结果表明:(1)地表枯枝落叶总贮量变化在30.0—91.8t/ha,其中未分解层4.9—17.8,半分解层11.5—19.7,腐殖质层13.6—57.3t/ha。(2)森林凋落的枯枝落叶量因林型不同而略有差异,平均为2.8 t/ha·yr,其凋落高峰期分别在生长季开始的5月和生长季末的10月。(3)每年以凋落物形式返回林地的养分,氮为35.5kg/ha、磷为5.7kg/ha、钾为7.0kg/ha、镁为6.8kg/ha、钙为62.9kg/ha。(4)森林各种凋落物的混合物年分解率为0.3041g/g。95%的凋落物被分解需时约10年,在分解一段时间后,凋落物中的氮、钙、镁含量略有上升,钾明显减少,而磷含量变化不大。(5)森林凋落物的混合物腐解过程中,养分释放速率大小的顺序为:K>P>Mg>Ca>N,大熊猫主食竹的凋落叶则为:K>N>Ca>Mg>P。  相似文献   

4.
两种不同森林类型叶凋落物分解特征及影响因子研究 叶凋落物分解为森林生态系统提供了重要的能量和养分来源。除传统的环境因素外,叶凋落物的降解过程也受到绿叶功能性状和叶凋落物基质质量的影响。然而,在群落水平上,绿叶功能性状和叶凋落物基质质量对不同森林群落叶凋落物分解的相对重要性仍不清楚。因此,本研究以北京东灵山地区7种典型森林群落类型的混合叶凋落物为研究对象,利用分解袋法通过360天的野外相似环境分解实验对叶凋落物的分解过程进行了研究。这些森林群落包括6种分别以胡桃楸(Juglans mandshurica)、青杨(Populus cathayana)、棘皮桦(Betula dahurica)、白桦(Betula platyphylla)、油松(Pinus tabuliformis) 和华北落叶松(Larix gmelinii var. principis-rupprechtii) 为优势种的单优种群落,以及一种以大叶白蜡(Fraxinus rhynchophylla)、蒙古栎(Quercus mongolica)和蒙椴(Tilia mongolica)为优势种的共优种群落。研究结果表明,不同森林群落之间叶凋落物分解速率存在显著差异。群落聚合的植物功能性状和叶凋落物基质质量分别解释了群落叶凋落物分解速率变异的35.60%和9.05%,两者交互作用解释率为23.37%,表明群落聚合的植物功能性状及其与叶凋落物基质质量的共同作用是影响群落叶凋落物分解速率变异的主要因素。通过冗余分析发现,叶片氮含量、叶干物质含量、叶片单宁含量和比叶面积能显著影响群落叶凋落物分解速率的变异。因此,在对群落水平上叶凋落物分解的研究应该关注群落聚合的绿叶功能性状对分解的影响。  相似文献   

5.
川西高山林线交错带凋落叶分解速率与初始质量的关系   总被引:2,自引:2,他引:0  
杨林  邓长春  陈亚梅  和润莲  张健  刘洋 《生态学杂志》2015,26(12):3602-3610
对我国川西高山林线交错带14种代表性植物凋落叶分解速率与初始质量的关系进行研究.结果表明: 高山林线交错带植物凋落叶分解速率(k)为0.16~1.70,乔木和苔藓凋落叶分解较慢,灌木凋落叶次之,草本凋落叶分解最快.凋落叶分解速率与N、木质素、酚类物质、C/N、C/P、木质素/N均具有显著的线性回归关系.通径分析得出,木质素/N和半纤维素含量可以解释k变异的78.4%,其中木质素/N可以解释k变异的69.5%,木质素/N对k的直接通径系数为-0.913.主成分分析表明,第1排序轴k、分解时间(t)的贡献率达99.2%,木质素/N、木质素含量、C/N、C/P与第1排序轴呈显著正相关,其中木质素/N与第1排序轴的相关关系最强(r=0.923).木质素/N是影响川西高山林线交错带植物凋落叶分解速率的关键质量指标,且凋落叶初始木质素/N越高,分解速率越低.  相似文献   

6.
凋落物分解是森林生态系统生物元素循环和能量流动的重要环节,其过程是植物与土壤获得养分的主要途径。为了量化凋落叶化学计量学性状变化过程对分解的影响及对凋落物-土壤生物化学连续体的深层理解,用凋落物分解袋法研究了不同林型各自凋落叶化学计量学性状变化及与分解速率关系,结果表明:林下各自凋落叶分解速率是马尾松林栓皮栎林马尾松-栓皮栎混交林,马尾松林、栓皮栎林、马尾松-栓皮栎混交林凋落叶分解50%和95%的时间分别是2.11 a和9.15 a,1.93 a和8.45 a,1.76 a和7.77 a;凋落叶分解过程中,化学计量学性状变化明显,分解450 d后马尾松-栓皮栎混交林碳释放最快,栓皮栎林最慢;3种凋落叶起始N含量是栓皮栎林最高,马尾松林最低,分解450 d后马尾松林、栓皮栎林和马尾松-栓皮栎混交林N含量分别增加了66.67%、44.91%和44.52%,而P含量分别释放了30.80%、38.89%和42.29%。凋落物不同化学计量学性状与分解速率关系不同,3种林型凋落叶分解速率均与N含量呈正相关(P0.01),与C含量(P0.01)、C/N比(P0.01)呈负相关,与N/P比呈负二次函数关系(P0.01),而P含量与3种林型关系不同,与栓皮栎林(P0.01)和马尾松林(P0.05)呈负线性关系,与马尾松-栓皮栎混交林呈负二次函数关系(P0.05)。研究表明,不同林型凋落叶分解中的养分动态趋向利于分解变化,N、P养分动态是生态系统碳平衡和凋落物分解速率的主要因素,混交林中混合凋落物的养分迁移是分解相对较快的原因。  相似文献   

7.
李巧玲  曾辉 《生态学报》2017,37(7):2342-2351
凋落叶分解是控制森林湿地物质循环的重要生态过程,是全球C、N等元素循环的重要一部分。以美国南卡罗来纳州10种典型植物的凋落叶为研究对象,通过2a的分解实验测定分解阶段凋落叶的生物量残留率、分解速率常数k和C、N残留百分比,探讨初始凋落叶化学性质对分解速率常数k的影响。结果表明:(1)十种凋落叶生物量在两年内降解至初始的14.5%—66.2%,种间差异可达4倍以上;分解速率常数k在0.26—1.64a~(-1)之间,针叶分解速率阔叶分解速率;(2)分解速率常数k与初始凋落叶酸溶性组分(AS)极显著正相关(P0.001),与初始C含量、酸不溶组分(AIF)和AIF/N比均显著负相关(P0.05);(3)凋落叶C残留百分比持续下降至10.2%—66.1%,而N残留百分比因物种与分解阶段不同呈现不同变化规律。结果表明,森林湿地中凋落叶初始C组分差异是其分解速率的种间极大差异的主要原因,评估森林湿地的C、N循环应充分考虑种间差异。  相似文献   

8.
模拟冻融环境下亚高山森林凋落物分解速率及有机碳动态   总被引:2,自引:0,他引:2  
森林凋落物分解是森林生态系统物质循环的重要环节,季节性冻融交替是影响凋落物分解的重要环境因素之一,但不同林型的凋落物对冻融响应的差异性很少被量化。为了解冻融环境对森林凋落物分解进程的影响,以川西亚高山森林地区阔叶林、针叶林和针阔混交林3种典型林型的凋落物为实验材料,从凋落物基质质量、冻融环境等影响凋落分解的因素着手,采用模拟冻融循环过程(-5-5℃),研究了冻融循环中3种林型凋落物分解速率和有机碳含量的动态变化。结果发现,3中典型林型凋落物经过不同冻融处理后,其质量损失、质量损失速率均存在显著差异(P<0.05)。混交林凋落物和针叶林凋落物的分解速率呈慢-快-慢的趋势,而阔叶林凋落物的分解速率逐渐减小。在冻融循环处理下,3种林型的凋落物碳绝对含量呈波动下降的趋势,说明微生物固定外源碳和凋落物释放碳间存在动态平衡。相同林型的凋落物在不同冻融处理下,有机碳释放有显著差异(P<0.05)。其中,冻融环境显著(P<0.05)促进了混交林凋落物和针叶林凋落物有机碳的释放,但是对阔叶林凋落物有机碳的释放没有起到促进作用。这表明全球气候变暖情景下,亚高山森林土壤冻融事件频发将加快凋落物的分解,但变化程度受到凋落物质量控制。  相似文献   

9.
从2013年11月至2015年5月,采用凋落物分解袋法,设置了对照(CK)、氮沉降(N)、减雨(R)、增雨(A)、氮沉降+减雨(NR)、氮沉降+增雨(NA)6个处理水平,研究了模拟氮沉降和降雨对华西雨屏区常绿阔叶林凋落物分解的影响。结果表明:华西雨屏区常绿阔叶林凋落叶分解较快,凋落枝分解较慢;凋落物夏季分解较快,其他季节分解较慢。经过18个月的分解后,凋落叶和枝的质量残留率分别为45.86%和86.67%,凋落叶分解50%需要的时间为1.42 a,比枝短6.19 a。各处理凋落物叶分解系数表现为:k(A)k(CK)k(NA)k(N)k(R)k(NR),凋落枝质量残留率表现为:NNRRNACKA。模拟氮沉降、减雨和增雨处理凋落叶分解50%分别需要1.79、1.94a和1.36a,凋落枝分解50%分别需要8.84、8.63 a和6.47 a。各处理凋落叶分解95%需要5.37—11.33 a,凋落枝分解95%需要27.41—33.84 a。同一氮沉降条件下,增雨处理促进凋落叶分解,减雨处理抑制凋落叶分解;同一降雨条件下,氮沉降抑制凋落叶分解。氮沉降或降雨对凋落物的分解产生显著影响(P0.05),其交互作用影响不显著(P0.05)。可见,在氮沉降持续增加和降雨格局改变的背景下,增雨促进了华西雨屏区天然常绿阔叶林凋落物的分解,氮沉降和减雨抑制了凋落物的分解,模拟氮沉降和降雨对凋落物的分解交互作用表现不明显。  相似文献   

10.
川西高山林线交错带凋落叶分解初期转化酶特征   总被引:1,自引:1,他引:0  
胞外酶对于有机质的降解具有重要的作用。在凋落物分解过程中,酶活性不仅受到凋落物种类或基质质量的影响,还受到环境因素的影响。转化酶催化蔗糖水解为葡萄糖和果糖,因此在凋落物分解早期,转化酶比降解难分解物质的酶具有更重要的作用。以川西高山林线交错带12种代表性凋落叶为研究对象,对林线交错带不同植被类型下的凋落叶转化酶活性以及物种和环境因子对转化酶活性的影响进行了研究。结果表明:同一植被类型下,12个物种转化酶活性具有极显著差异(P0.01)。物种、环境因子及其交互作用对转化酶活性有极显著的影响(P0.01)。初始纤维素含量与转化酶活性极显著正相关(P0.01)。初始木质素和总酚含量与转化酶活性极显著负相关(P0.01),能够共同解释转化酶活性变异的50.8%。不同植物生活型中,禾草类转化酶活性均为最高,这可能与禾草类较高的初始纤维素含量、较低的木质素和总酚含量有关。多元线性回归分析表明,凋落叶含水量能单独解释转化酶活性变量的62.1%,是环境因子中最重要的变量。从植被类型来看,大多数物种的转化酶活性在针叶林中均极显著高于高山草甸和灌丛(P0.01),这可能与针叶林中凋落叶的含水量最高且雪被最厚有关。历经一个雪被期分解后,凋落叶初始质量与环境因子的综合作用能够解释转化酶活性变异的79.1%,表明川西高山林线交错带凋落叶分解前期转化酶活性主要受初始木质素含量、总酚含量和含水量的调控。在全球气候变化情景下,凋落物水分含量的变化将会强烈的影响凋落叶分解前期的转化酶活性。  相似文献   

11.
滇中亚高山地带性植被凋落物分解对模拟氮沉降的响应   总被引:4,自引:0,他引:4  
模拟氮(N)沉降对凋落物分解特征的影响对研究森林生态系统物质循环响应大气N沉降的内在机理和应对N沉降全球化具有重要意义。从2018年2月至2019年1月,对滇中亚高山常绿阔叶林(Evergreen broad-leaf forest)和高山栎林(Quercus semecarpifolia forest)两种地带性植被进行模拟N沉降试验,利用尼龙网袋法对两种林型凋落叶和凋落枝进行原位分解试验,N沉降处理水平分别为对照CK(Control check,0 g N m-2 a-1)、低氮LN(Low nitrogen,5 g N m-2 a-1)、中氮MN(Medium nitrogen,15 g N m-2 a-1)和高氮HN(High nitrogen,30 g N m-2 a-1)。结果表明:常绿阔叶林凋落叶和凋落枝分解率分别为44.84%和21.96%,均高于高山栎林的35.97%(凋落叶)和17.51%(凋落枝);N沉降处理使得常绿阔叶林和高山栎林的凋落叶和凋落枝质量损失95%的时间在对照(CK)的基础上均有一定程度的增加,其中以HN处理下最为显著;经过1年的分解,两种林型凋落叶、枝纤维素和木质素降解均受到N沉降的抑制作用;两种林型中凋落物质量残留率、纤维素和木质素残留率三者间呈极显著正相关。针对滇中亚高山区域范围内的两种地带性植被,凋落物分解对N沉降的响应方向主要取决于凋落物基质质量,其中尤以纤维素和木质素为重要影响因素。  相似文献   

12.
海拔和郁闭度对祁连山青海云杉林叶凋落物分解的影响   总被引:4,自引:0,他引:4  
李娜  赵传燕  郝虎  臧飞  常亚鹏  汪红  杨建红 《生态学报》2021,41(11):4493-4502
为了探究海拔和郁闭度对青海云杉林叶凋落物分解的影响,本文选择海拔为2850 m,3050 m,3250 m和3450 m四个梯度和高、中、低三个林分郁闭度,采用分解网袋法,研究青海云杉叶凋落物分解速率及分解过程中N、P元素变化。结果表明,质量损失率随时间在波动增大。分解速率先减小后增大,不同海拔下分解速率为K3450 > K3050 > K3250 > K2850,不同郁闭度下分解速率为K > K > K,青海云杉叶枯落物分解50%和95%所需时间约为5.3 a和22.7 a。枯落物分解过程中,N、P含量和累积系数在不同海拔和郁闭度下的变化不同,与季节变化有关。研究结果为祁连山森林生态系统地球化学循环奠定基础。  相似文献   

13.
华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应   总被引:8,自引:0,他引:8       下载免费PDF全文
从2008年1月至2009年2月, 对华西雨屏区亮叶桦(Betula luminifera)人工林进行了模拟氮(N)沉降试验, N沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低N (5 g N·m-2·a-1)、中N (15 g N·m-2·a-1)和高N (30 g N·m-2·a-1)。利用凋落袋法对亮叶桦凋落叶进行原位分解试验, 并在每月下旬定量地对各处理施N (NH4NO3)。结果表明, 虽然华西雨屏区大气N沉降量较高, 但模拟N沉降试验表明: 在N沉降继续增加的情况下, 凋落叶分解这一碳(C)循环和养分循环过程仍会受到显著影响。在1年的分解试验中, 模拟N沉降显著抑制了亮叶桦凋落叶的分解, N沉降处理使得凋落叶质量损失95%的时间在2.65年的基础上增加了1.14-1.96年。N沉降抑制凋落叶分解的原因在于无机N的富集对木质素和纤维素的分解造成阻碍。N沉降处理也导致C、N、磷、钾和镁元素在凋落物中的残留量增加, 但N沉降加速了钙元素的释放。凋落物基质化学特性在很大程度上决定了凋落物分解对N沉降的响应方向, 以及凋落物分解过程中各元素的动态变化。  相似文献   

14.
阔叶红松林是我国东北地区地带性顶级森林群落,对维持区域生态系统稳定性具有重要作用。对阔叶红松林内主要树种凋落叶分解过程及影响因素进行研究,有助于增加长白山阔叶红松林生态系统的基础数据,为明确阔叶红松林的养分循环和物质流动提供依据。选取了长白山阔叶红松林内30个常见乔灌树种和16个凋落叶性状,采用野外分解袋法和室内样品分析等方法研究了长白山阔叶红松林内主要树种凋落叶分解速率及其与凋落叶性状的关系。1年的野外分解实验表明,30个树种的凋落叶重量损失率表现出较大差异。不同树种凋落叶的重量损失率在20.56%—92.11%之间,以红松(Pinus koraiensis)质量损失率最低,东北山梅花(Philadelphus schrenkii)质量损失率最高。不同生活型树种的凋落叶在质量损失率上存在显著差异,以灌木树种凋落叶的质量损失率最高,小乔木次之,乔木树种质量损失率最低。Olson模型拟合结果表明,不同树种凋落叶的分解速率k以红松最低,瘤枝卫矛(Euonymus verrucosus)最高,分别为0.24和1.64。不同树种分解50%和95%所需的时间分别在0.43—2.86年,1.83—...  相似文献   

15.
王敏  容丽  俞国松  李芹 《广西植物》2019,39(8):1081-1091
为了解亚热带气候型的茂兰喀斯特森林退化区次生林和灌木林的凋落物分解动态过程,该研究采用分解袋法,对茂兰喀斯特森林退化区不同类型的凋落物在不同坡位的分解状况进行了为期18个月的观测,并通过分析凋落物分解时的失重量和失重率的动态变化,比较了次生林和灌木林的凋落叶的失重率变化,探讨了不同坡位对凋落物分解的影响。结果表明:各种类型凋落物的分解速率和失重率在退化区内存在明显的差异,落叶>常绿叶>枯枝(P<0.05),三种凋落物整体变化趋势在分解过程中大致相同,它们在早期都快速分解,中期分解变慢,后期开始加速;落叶在次生林与灌木林中的前期分解速率基本同步,后期为灌木林落叶>次生林落叶,而常绿叶在灌木林与次生林中的分解速率则表现为基本同步;利用回归方程对凋落叶分解50%和95%所需时间进行估测,得出落叶和常绿叶在灌木林中分解50%和95%所需时间少于次生林的;在不同坡位,三种凋落物分解速率的总体趋势为中坡>上坡;三种凋落物的C含量波动性较大,但总体变化趋势是随分解时间的增加而减少,随着分解时间增加,N含量增加,而C/N比则降低。  相似文献   

16.
The Long-Term Intersite Decomposition Experiment in China (hereafter referred to as LTIDE-China) was established in 2002 to study how substrate quality and macroclimate factors affect leaf litter decomposition. The LTIDE-China includes a wide variety of natural and managed ecosystems, consisting of 12 forest types (eight regional broadleaf forests, three needle-leaf plantations and one broadleaf plantation) at eight locations across China. Samples of mixed leaf litter from the south subtropical evergreen broadleaf forest in Dinghushan (referred to as the DHS sample) were translocated to all 12 forest types. The leaf litter from each of other 11 forest types was placed in its original forest to enable comparison of decomposition rates of DHS and local litters. The experiment lasted for 30 months, involving collection of litterbags from each site every 3 months. Our results show that annual decomposition rate-constants, as represented by regression fitted k-values, ranged from 0.169 to 1.454/year. Climatic factors control the decomposition rate, in which mean annual temperature and annual actual evapotranspiration are dominant and mean annual precipitation is subordinate. Initial C/N and N/P ratios were demonstrated to be important factors of regulating litter decomposition rate. Decomposition process may apparently be divided into two phases controlled by different factors. In our study, 0.75 years is believed to be the dividing line of the two phases. The fact that decomposition rates of DHS litters were slower than those of local litters may have been resulted from the acclimation of local decomposer communities to extraneous substrate.  相似文献   

17.
 在中国东北长白山、帽儿山、凉水、根河的主要森林类型中设置27个样地, 连续3年(2004~2006年)观测森林凋落物的生产量, 以研究我国东北地区森林凋落物产量及其与环境因子的关系。结果表明, 不同森林类型凋落物年产量存在显著差异, 针阔叶混交林显著高于落叶针叶林和常绿针叶林, 落叶针叶林、常绿针叶林、落叶阔叶林和针阔叶混交林的年平均产量分别为2 337、2 472、3 130和4 146 kg&;#8226;hm–2; 树叶、枝条、繁殖器官和其它组分占总凋落量的平均比例为71%、22%、6%和1%, 不同森林类型凋落物组分的比例差异较大。森林凋落物产量主要受温度限制, 降水、森林类型和群落结构无显著影响。不同组分凋落物量的影响因素不同: 树叶凋落量主要受温度和森林类型的影响; 枝条凋落量主要受降水和蓄积量的影响; 而繁殖器官凋落量则与树种的繁殖特性以及年降水有关。各组分占总凋落量的比例主要受降水影响, 树叶占凋落物比例随降水增加而下降, 枝条所占比例很小, 表现出与叶相反的变化趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号