首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
BMP经典的Smad通路和非经典信号的MAPK通路调控中胚层形成、骨骼发育和肿瘤形成等许多生物学过程.TRAF6作为BMP非经典信号通路中的重要组成部分,在非经典通路激活中有重要的调节作用.对于TRAF6与BMP经典信号通路的关系未见相关报道.本研究发现,过表达TRAF6后Smad1的表达被抑制;反之,敲低TRAF6后Smad1的表达上升.进一步的研究表明,TRAF6对Smad1的调节作用发生在mRNA水平.这些研究揭示了TRAF6在协调BMP经典通路和非经典通路中发挥着重要作用.  相似文献   

2.
自在中枢神经系统中发现谷氨酸发挥功能以来,谷氨酸受体及其在突触内膜偶联的信号通路,就成为神经系统研究的重要内容。近年的研究显示,谷氨酸受体及其胞内信号通路在包括骨在内的非神经组织中表达和发挥功能,在骨细胞中有表达谷氨酸受体、转运子的证据,因而有假说认为谷氨酸成了骨中力学信号潜在的转导子,但还缺乏有利的证据支持。简要综述了谷氨酸信号通路及其在骨中的功能,并就其在骨力学信号转导中潜在的功能和作用机制进行了探讨。  相似文献   

3.
再生是指生物体可以重新生长出损伤的组织和器官的生物学过程。对再生的研究过去主要集中于形态学观察及描述等方面,随着现代生物学的快速发展,对再生的分子机制有了更多的研究,发现多种信号通路参与了再生过程,如FGF信号通路、BMP信号通路、HEDGEHOG信号通路等。研究发现,BMP为转化生长因子β(TGF-β)家族的重要成员,BMP信号通路可以调节细胞的增殖和分化,在胚胎发育过程中具有重要的调控作用。但是目前对于BMP在再生过程中的作用研究相对较少,本文对BMP信号通路在几种模式生物再生过程中的作用进行了综合分析,以期为进一步研究BMP信号通路在再生中的作用提供理论借鉴。  相似文献   

4.
在发育过程中,新生血管的形成与稳态维持是机体生命活动的重要基础.而血管生成机制复杂,参与并促进血管生成的因子众多.此过程发生异常直接与血管类疾病、炎症、癌症等疾病密切相关.除了VEGF/VEGFR,Ang-Tie2,DLL4-Notch和PDGF-BB/PDGFRβ等主要调节血管形成的传导通路外,BMP9/ALK1/Endoglin通路在其中也起着重要的作用.此通路中二聚化配体BMP9作为信号分子,与受体ALK1和Endoglin结合后激活受体,进而调控下游靶基因的表达.本文旨在对此信号通路中关键节点的分子结构和作用机制进行阐述,并对未来的机制研究与药物开发进行展望.  相似文献   

5.
RGMb蛋白是反义导向分子(repulsive guidance molecule,RGM)家族成员之一,可在细胞水平上介导骨形态发生蛋白(bone morphogenetic protein,BMP)的信号通路。大量研究报道,RGMb参与调控细胞的增殖、分化、凋亡以及细胞间的黏附能力。本研究旨在探讨RGMb对子宫内膜腺细胞的作用及其分子机制。应用siRNA与过表达技术处理子宫内膜腺细胞系(Ishikawa),采用qPCR与Western印迹技术确定其转染效率,以及BMP相关信号通路(MAPK与Smad)成员的表达。结果显示:下调RGMb基因的表达显著降低了p-ERK1/2(1.861 ± 0.1864 vs 0.885 ± 0.0869,P=0.0090)与p-Smad1/5/8(1.624 ± 0.1238 vs 1.093 ± 0.0890,P=0.0253)的表达水平。过表达RGMb基因显著升高了p-ERK1/2(1.237 ± 0.1114 vs 2.089 ± 0.1658,P=0.0130)与p-Smad1/5/8(1.139 ± 0.0562 vs 1.98 ± 0.1449,P=0.0056)的表达水平。而RGMb基因下调和过表达对p-P38 MAPK蛋白表达水平均无显著影响(P>0.05)。采用CCK-8和qPCR技术检测RGMb对Ishikawa细胞增殖活力及增殖相关基因的影响。结果显示:转染80 nmol/L RGMb siRNA显著降低Ishikawa细胞的增殖活力(0.479 ± 0.0271 vs 0.3487 ± 0.0094,P=0.0104),同时降低增殖相关基因CCND1(1 ± 0.0366 vs 0.6719 ± 0.0236,P=0.0017)和CDK2(1 ± 0.0370 vs 0.853 ± 0.0135,P=0.0202)表达水平;转染1 μg/mL RGMb基因过表达质粒显著提高Ishikawa细胞增殖活力(0.283 ± 0.0030 vs 0.3714 ± 0.0140,P=0.0001),同时增加CCND1(1 ± 0.0178 vs 1.375 ± 0.0356,P=0.0007)和CDK2(1 ± 0.0188 vs 1.376 ± 0.0513,P=0.0023)基因的表达水平。以上结果表明,RGMb 可能通过p-ERK1/2与p-Smad1/5/8影响Ishikawa细胞增殖活力,为进一步研究RGMb调控子宫机能的分子机制提供科学依据。  相似文献   

6.
RGMb蛋白是反义导向分子(repulsive guidance molecule,RGM)家族成员之一,可在细胞水平上介导骨形态发生蛋白(bone morphogenetic protein,BMP)的信号通路。大量研究报道,RGMb参与调控细胞的增殖、分化、凋亡以及细胞间的黏附能力。本研究旨在探讨RGMb对子宫内膜腺细胞的作用及其分子机制。应用siRNA与过表达技术处理子宫内膜腺细胞系(Ishikawa),采用qPCR与Western印迹技术确定其转染效率,以及BMP相关信号通路(MAPK与Smad)成员的表达。结果显示:下调RGMb基因的表达显著降低了p-ERK1/2(1.861 ± 0.1864 vs 0.885 ± 0.0869,P=0.0090)与p-Smad1/5/8(1.624 ± 0.1238 vs 1.093 ± 0.0890,P=0.0253)的表达水平。过表达RGMb基因显著升高了p-ERK1/2(1.237 ± 0.1114 vs 2.089 ± 0.1658,P=0.0130)与p-Smad1/5/8(1.139 ± 0.0562 vs 1.98 ± 0.1449,P=0.0056)的表达水平。而RGMb基因下调和过表达对p-P38 MAPK蛋白表达水平均无显著影响(P>0.05)。采用CCK-8和qPCR技术检测RGMb对Ishikawa细胞增殖活力及增殖相关基因的影响。结果显示:转染80 nmol/L RGMb siRNA显著降低Ishikawa细胞的增殖活力(0.479 ± 0.0271 vs 0.3487 ± 0.0094,P=0.0104),同时降低增殖相关基因CCND1(1 ± 0.0366 vs 0.6719 ± 0.0236,P=0.0017)和CDK2(1 ± 0.0370 vs 0.853 ± 0.0135,P=0.0202)表达水平;转染1 μg/mL RGMb基因过表达质粒显著提高Ishikawa细胞增殖活力(0.283 ± 0.0030 vs 0.3714 ± 0.0140,P=0.0001),同时增加CCND1(1 ± 0.0178 vs 1.375 ± 0.0356,P=0.0007)和CDK2(1 ± 0.0188 vs 1.376 ± 0.0513,P=0.0023)基因的表达水平。以上结果表明,RGMb 可能通过p-ERK1/2与p-Smad1/5/8影响Ishikawa细胞增殖活力,为进一步研究RGMb调控子宫机能的分子机制提供科学依据。  相似文献   

7.
细胞凋亡在神经系统发育、神经系统疾病和外伤中扮演着重要角色。死亡受体不仅能触发细胞凋亡,还能促进细胞的生存和生长。最近研究显示,部分死亡受体在神经发育或退化等方面发挥着重要作用。死亡受体在帕金森病中具有神经保护的作用,在肌萎缩性脊髓侧索硬化和脑缺血性疾病中诱发凋亡前体的产生。这种不同的功能反映出在神经元和神经胶质细胞中死亡受体在转录和翻译信号通路下游的不同机制。本文就死亡受体在神经系统发育和疾病中的作用及其细胞内信号通路作一综述。  相似文献   

8.
目的:观察sonic hedgehog(Shh)信号通路在骨形态发生蛋白9(BMP9)诱导的小鼠间充质干细胞(MSCs)C3H10T1/2和C2C12成骨分化中的作用,并初步探讨其作用机制。方法:Shh信号通路抑制剂Cyclopamine和激活剂Purmorphamine以及过表达Shh腺病毒分别作用于BMP9处理的C3H10T1/2和C2C12细胞,碱性磷酸酶(ALP)检测早期成骨指标ALP,茜素红S染色检测晚期成骨指标钙盐沉积,RT-PCR检测Shh信号相关基因以及成骨关键转录因子的表达,Western blot检测Shh的表达,荧光素酶报告基因检测Smad1/5/8的转录调控活性。结果:BMP9促进Shh信号相关基因的表达,激活Shh信号可增强BMP9诱导的C3H10T1/2和C2C12细胞早晚期成骨分化并促进了BMP9诱导的Smad荧光素酶活性,抑制Shh信号后作用相反。结论:激活Shh信号通路可促进BMP9诱导的小鼠MSCs成骨分化,抑制其活性后作用相反。  相似文献   

9.
Sonichedgehog(Shh)信号通路在牙早期发育中起关键作用,Shh通过与其特定的受体Ptc/Smo蛋白复合物相互作用来激活整个信号通路。Shh在牙早期发育过程中的表达具有时间和空间特异性,通过自分泌和旁分泌作用于上皮组织以及周围的间充质,促进细胞增殖、分化,调控牙的形态发生。Shh基因缺失将导致小鼠在帽状期牙形态的严重畸形,牙体变小,牙索缺失。对Shh信号通路在牙早期发育的作用及其与Wnt信号通路、BMP家族、FGF家族和MSX家族之间的相互关系进行综述。  相似文献   

10.
骨形态发生蛋白(BMP)是转化生长因子β超家族成员,细胞外基质磷酸化糖蛋白(MEPE)是一种细胞外基质的非胶原磷酸化糖蛋白,两者都是成骨信号通路中的重要蛋白。近年来发现MEPE表达水平受BMP的调节,并在磷酸盐代谢调节、成骨细胞增殖分化中发挥重要作用,同时与肿瘤细胞的骨转移有着密切的关联。在此,我们简要综述近年来BMP与MEPE的关系以及它们在肿瘤细胞骨转移方面的作用。  相似文献   

11.

Background

The repulsive guidance molecule (RGM) proteins, originally discovered for their roles in neuronal development, have been recently identified as co-receptors in the bone morphogenetic protein (BMP) signaling pathway. BMPs are members of the TGFβ superfamily of signaling cytokines, and serve to regulate many aspects of cellular growth and differentiation.

Results

Here, we investigate whether RGMa, RGMb, and RGMc play required roles in BMP and TGFβ signaling in the mouse myoblast C2C12 cell line. These cells are responsive to BMPs and are frequently used to study BMP/TGFβ signaling pathways. Using siRNA reagents to specifically knock down each RGM protein, we show that the RGM co-receptors are required for significant BMP signaling as reported by two cell-based BMP activity assays: endogenous alkaline phosphatase activity and a luciferase-based BMP reporter assay. Similar cell-based assays using a TGFβ-induced luciferase reporter show that the RGM co-receptors are not required for TGFβ signaling. The binding interaction of each RGM co-receptor to each of BMP2 and BMP12 is observed and quantified, and equilibrium dissociation constants in the low nanomolar range are reported.

Conclusion

Our results demonstrate that the RGMs play a significant role in BMP signaling and reveal that these molecules cannot functionally compensate for one another.  相似文献   

12.
Neuronal axons are guided by attractive and repulsive cues in their local environment. Since the identification of the repulsive guidance molecule (RGM) a (RGMa) as an axon repellent in the visual system, diverse functions, as part of the developing and adult central nervous system (CNS), have been ascribed to it. The binding of RGMa to its receptor neogenin has been shown to induce RhoA activation, leading to inhibitory/repulsive behavior and the collapse of the neuronal growth cone. In this paper, we provide evidence to suggest the involvement of RGMb, another member of the RGM family, in the rat CNS. RGMb inhibits neurite outgrowth in postnatal cerebellar granule neurons (CGNs) in vitro. RGMb is expressed by oligodendrocytes and neurons in the adult rat CNS, and the expression of this molecule is upregulated around the site of spinal cord injury. RGMb is present in myelin isolated from an adult rat brain. RGMb and neogenin are coexpressed in CGNs and entorhinal cortex neurons. These findings suggest that RGMb is a myelin-derived inhibitor of axon growth in the CNS. Inhibition of RGMb may provide an alternative approach for the treatment of spinal injuries.  相似文献   

13.
Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.  相似文献   

14.
We used in-situ hybridization to analyze the expression patterns of three known members (a, b and c) of the RGM ("repulsive guidance molecule") gene family and of the RGMa receptor neogenin in a glaucoma mouse model (DBA/2J strain) and the C57BL/6J strain, which served as a control. In order to understand the role of the RGMs and neogenin in glaucoma, we characterized their expression patterns in the developing and mature mouse retina and in the optic nerve. In all investigated stages from post-natal day (P) 0 to 15 months (M) RGMa, RGMb and neogenin expression was detected in the ganglion cell layer (GCL). From P10 to 15M, we found RGMa, RGMb and neogenin expression in the inner nuclear layer (INL) and the outer nuclear layer (ONL). In P10- and older mice, the expression patterns of RGMa and its receptor neogenin were similar, while that of RGMb differed from both. As expected, no specific retinal expression of RGMc was detected in any of the age groups investigated. C57BL/6J mice and DBA/2J mice displayed no differences in the expression pattern of RGMa, RGMb, RGMc and neogenin in the developing retina (gestational age 14.5 days (E14.5), P0 & P10). Interestingly, we found a higher expression of RGMa, RGMb and neogenin in the retinas of all glaucoma-affected mice than in the age-matched control strain. Furthermore, we detected a higher RGMa and RGMb expression in the optic nerves of glaucoma-affected DBA/2J-mice older than 11M than in C57BL/6J mice of the same age.  相似文献   

15.
Due to improved understanding of the role of bone morphogenetic protein 4 (BMP4) in an increasing number of diseases, the development of selective inhibitors of BMP4 is an attractive therapeutic option. The currently available BMP4 inhibitors are not suitable as therapeutics because of their low specificity and low effectiveness. Here, we compared newly generated anti-BMP4 llama-derived antibodies (VHHs) with 3 different types of commercially available BMP4 inhibitors, natural antagonists, small molecule BMPR inhibitors and conventional anti-BMP4 monoclonal antibodies. We found that the anti-BMP4 VHHs were as effective as the natural antagonist or small molecule inhibitors, but had higher specificity. We also showed that commercial anti-BMP4 antibodies were inferior in terms of both specificity and effectiveness. These findings might result from the fact that the VHHs C4C4 and C8C8 target a small region within the BMPR1 epitope of BMP4, whereas the commercial antibodies target other areas of the BMP4 molecule. Our results show that the newly developed anti-BMP4 VHHs are promising antibodies with better specificity and effectivity for inhibition of BMP4, making them an attractive tool for research and for therapeutic applications.  相似文献   

16.
We used in-situ hybridization to analyze the expression patterns of three known members (a, b and c) of the RGM (“repulsive guidance molecule”) gene family and of the RGMa receptor neogenin in a glaucoma mouse model (DBA/2J strain) and the C57BL/6J strain, which served as a control. In order to understand the role of the RGMs and neogenin in glaucoma, we characterized their expression patterns in the developing and mature mouse retina and in the optic nerve. In all investigated stages from post-natal day (P) 0 to 15 months (M) RGMa, RGMb and neogenin expression was detected in the ganglion cell layer (GCL). From P10 to 15 M, we found RGMa, RGMb and neogenin expression in the inner nuclear layer (INL) and the outer nuclear layer (ONL). In P10- and older mice, the expression patterns of RGMa and its receptor neogenin were similar, while that of RGMb differed from both. As expected, no specific retinal expression of RGMc was detected in any of the age groups investigated. C57BL/6J mice and DBA/2J mice displayed no differences in the expression pattern of RGMa, RGMb, RGMc and neogenin in the developing retina (gestational age 14.5 days (E14.5), P0 & P10). Interestingly, we found a higher expression of RGMa, RGMb and neogenin in the retinas of all glaucoma-affected mice than in the age-matched control strain. Furthermore, we detected a higher RGMa and RGMb expression in the optic nerves of glaucoma-affected DBA/2J-mice older than 11 M than in C57BL/6J mice of the same age.  相似文献   

17.
Small molecule inhibitors of type 1 receptor serine threonine kinases (ALKs1-7), the mediators of TGFß and BMP signals, have been employed extensively to assess their physiological roles in cells and organisms. While all of these inhibitors have been reported as “selective” inhibitors of specific ALKs, extensive specificity tests against a wide array of protein kinases have not been performed. In this study, we examine the specificities and potencies of the most frequently used small molecule inhibitors of the TGFß pathway (SB-431542, SB-505124, LY-364947 and A-83-01) and the BMP pathway (Dorsomorphin and LDN-193189) against a panel of up to 123 protein kinases covering a broad spectrum of the human kinome. We demonstrate that the inhibitors of the TGFß pathway are relatively more selective than the inhibitors of the BMP pathway. Based on our specificity and potency profile and published data, we recommend SB-505124 as the most suitable molecule for use as an inhibitor of ALKs 4, 5 and 7 and the TGFß pathway. We do not recommend Dorsomorphin, also called Compound C, for use as an inhibitor of the BMP pathway. Although LDN-193189, a Dorsomorphin derivative, is a very potent inhibitor of ALK2/3 and the BMP-pathway, we found that it potently inhibited a number of other protein kinases at concentrations sufficient to inhibit ALK2/3 and its use as a selective BMP-pathway inhibitor has to be considered cautiously. Our observations have highlighted the need for caution when using these small molecule inhibitors to assess the physiological roles of BMP and TGFß pathways.  相似文献   

18.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta (TGF-beta) superfamily of ligands, which regulate many mammalian physiologic and pathophysiologic processes. BMPs exert their effects through type I and type II serine/threonine kinase receptors and the Smad intracellular signaling pathway. Recently, the glycosylphosphatidylinositol (GPI)-anchored protein DRAGON was identified as a co-receptor for BMP signaling. Here, we investigate whether a homologue of DRAGON, repulsive guidance molecule (RGMa), is similarly involved in the BMP signaling pathway. We show that RGMa enhances BMP, but not TGF-beta, signals in a ligand-dependent manner in cell culture. The soluble extracellular domain of RGMa fused to human Fc (RGMa.Fc) forms a complex with BMP type I receptors and binds directly and selectively to radiolabeled BMP-2 and BMP-4. RGMa mediates BMP signaling through the classical BMP signaling pathway involving Smad1, 5, and 8, and it up-regulates endogenous inhibitor of differentiation (Id1) protein, an important downstream target of BMP signals. Finally, we demonstrate that BMP signaling occurs in neurons that express RGMa in vivo. These data are consistent with a role for RGMa as a BMP co-receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号