首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
徐满厚  薛娴 《生态学报》2013,33(10):3158-3168
以广布于青藏高原的高寒草甸为研究对象,进行模拟增温实验,探讨高寒草甸植被特征与温度、水分因子关系,并试图论证高寒草甸植被是否符合生物多样性代谢理论.结果表明:①高寒草甸植被物种多样性的对数与绝对温度的倒数呈显著线性递减关系,空气-地表-浅层土壤(0-20 cm)温度(R2 >0.6,P<0.01)较深层土壤(40-100 cm)温度(R2<0.5,P<0.05)对物种多样性影响大;其植被新陈代谢平均活化能为0.998-1.85 eV,高于生物多样性代谢理论预测值0.6-0.7 eV,这是高寒草甸植被对长期低温环境适应进化的结果.②除趋势对应分析和冗余分析显示,温度对植被地上部分影响较大,而土壤水分对全株影响均较大,适当的增温与降水均可极显著促进高寒草甸植被生长.③逐步回归和通径分析显示,40 cm、60 cm深度土壤水分对植被地上部分产生直接影响,20 cm高度空气相对湿度和40 cm深度土壤温度对其产生间接影响;40 cm深度土壤温度和60 cm深度土壤水分对植被地下部分产生直接影响,红外地表温度对其产生间接影响.深层土壤温度和水分对高寒草甸植被具有影响作用,这可能与增温后冻土的融化有关,但其机理尚待进一步研究.  相似文献   

2.
青藏高原高寒草甸夏季植被特征及对模拟增温的短期响应   总被引:2,自引:0,他引:2  
徐满厚  薛娴 《生态学报》2013,33(7):2071-2083
以青藏高原高寒草甸为研究对象,研究了草甸植被夏季生长动态特征;同时采用红外辐射器模拟增温的方法,探讨了草甸植被对增温的短期(1a)响应.结果表明:(1)高寒草甸夏季植被高度与地下生物量、总生物量相关性不显著,盖度与二者相关性极显著;高度对地上生物量影响较大(R=0.892,P<0.01),盖度对地下生物量(R=0.883,P<0.01)和总生物量(R=0.888,P<0.01)影响较大.(2)高寒草甸夏季植被地上部分和地下部分表现出不同的生长模式,地上部分近似等速生长(幂指数为1.011),地下部分则表现为异速生长(幂指数为0.459),但整体呈现异速生长(幂指数为0.473).(3)高寒草甸夏季植被地上生物量(P<0.05)在6月份较地下生物量(P>0.05)对环境更为敏感,且一年之后地上-地下生物量均呈减小趋势,这与空气温度、土壤温度和土壤水分的显著减小密切相关.(4)红外辐射器在高寒草甸的增温度效果较好,空气、地表、土壤温度都随增温幅度增强而增加;短期增温对高寒植被有正效应(T0-T1),而温度持续升高则对植被产生负效应(T1-T2);各植被指标的方差分析都未达到显著水平,表明短期增温对该植被影响不显著.  相似文献   

3.
青藏高原高寒灌丛生态系统草本层生物量分配格局   总被引:8,自引:2,他引:6  
青藏高原高寒灌丛生态系统生物量分配的研究相对较少,尤其是其草本层。为了探究高寒灌丛生态系统草本层生物量分配特征及其影响因素,分析了青藏高原东北部灌丛生态系统的49个高寒灌丛样地的草本层地上与地下生物量特征及其气候因子之间的关系。结果表明1)草本层地上生物量与地下生物量分别为121.1,342.8 g/m2均大于高寒草地的地上生物量与地下生物量。2)草本层的根冠比为3.6低于高寒草地的根冠比。3)地上生物量与地下生物量之间呈现幂函数的关系y=8.0x0.83(R2=0.48,P0.001)。4)根冠比与年均温度、年均降雨量之间没有显著的相关关系。  相似文献   

4.
在青藏高原高寒草甸区设置模拟增温和氮添加处理,研究长期增温与外源氮输入对高寒草甸群落生产及其分配的影响.结果表明:开顶箱增温装置造成小环境暖干化,即显著提高地表空气温度1.6℃,提高表层土壤温度1.4℃,降低土壤含水量4.7%.2012、2013和2014年不施氮处理下增温分别降低地上生物量61.5%、108.8%和77.1%,在高氮(40和80kg N·hm-2·a-1)处理下增温对群落地上生物量无显著影响,这说明增温的影响依赖于氮添加水平,且施氮补偿了增温导致的土壤氮损失.增温导致根冠比增加,2012、2013和2014年不施氮处理下增温分别增加根冠比98.6%、60.7%和97.8%.在不增温处理下,植物群落地上、地下生物量的变化率均表现出低氮(10、20 kg N·hm-2·a-1)促进、高氮抑制的趋势,达到饱和阈值时的氮添加剂量分别为56.0和55.5 kg N·hm-2·a-1;而在增温处理下,地上、地下生物量随施氮量增加呈线性增加趋势.这说明增温改变了高寒草甸生物量分配对外源氮输入的响应模式,增温导致的土壤无机氮含量变化是生物量分配模式改变的主要原因.由氮添加试验估算的高寒草甸氮饱和阈值表明,高寒草甸对氮输入的敏感性高于其他类型草地.  相似文献   

5.
我国高寒草甸表现出退化现象,严重影响着植被物种多样性和生物量生产。本研究以青藏高原高寒草甸为研究区,采用随机区组设计,设置对照、增温、刈割、增温+刈割交互作用4种试验样地,于植被生长季进行植被物种多样性(Margalef指数、Shannon指数、Simpson指数、Pielou指数)和地下生物量的调查,研究增温、刈割对高寒草甸植被物种多样性和地下生物量的影响。结果表明:(1)高寒草甸植被物种多样性在生长季中期(6、7、8月)显著高于初期(5月)和末期(9月),且显著性从2012年到2013年增强。(2)植被物种多样性对增温(3年)、刈割(2年)的响应并不敏感,在增温、刈割单独作用下略有增加,在增温+刈割交互作用下略有减小。(3)增温、刈割趋于增加地下生物量,促使地下生物量在不同土层的分配比例发生变化;随着时间延长,刈割对土壤浅层(0~30 cm土层)地下生物量的影响逐渐加强,而增温对土壤深层(30~50 cm土层)地下生物量的影响逐渐加强。  相似文献   

6.
采用增温棚模拟增温的方法,对比研究了青藏高原腹地典型高寒草甸和沼泽草甸在两种增温梯度条件下植物群落结构及植物生长对温度升高的初期响应。由于开顶式生长室(OTC)的增温作用,在整个生长季内,沼泽草甸月平均气温分别较对照提高2.98℃ (OTC1)和 5.52℃((OTC2),20cm处土壤水分分别减少了2.45%(OTC1)和3.44%(OTC2);高寒草甸月平均气温分别比对照升高了2.59℃(OTC1)和 5.16℃ (OTC2)。20cm处土壤水分分别减少了1.83%(OTC1)和7.71%(OTC2)。受温度升高及土壤含水量减少的影响,模拟增温2个生长季后,与对照样地相比,群落种群高度、密度、盖度、频度和重要值发生变化,群落结构也发生一定变化。增温处理使高寒草甸禾草和莎草盖度减少,杂草盖度增加,而使沼泽草甸中禾草和莎草盖度增加,杂草盖度减少。增温后,两种草甸总生物量均增加,但大幅度的增温条件抑制了高寒草甸的这种促进作用,而促进了沼泽草甸的这种促进作用。两种草甸的地下生物量主要分布在土壤表层,模拟增温使得高寒草甸的生物量分配格局向深层转移,但不明显;而使沼泽草甸生物量明显的趋向深层土壤中转移。  相似文献   

7.
青藏高原典型草地植被退化与土壤退化研究   总被引:4,自引:0,他引:4  
采用野外样方调查和室内分析法,探讨了青藏高原不同退化程度高寒草原和高寒草甸植被群落结构、植物多样性、地上-地下生物量、根系分配及土壤理化特性差异。研究表明:(1)随着退化程度加剧,高寒草原禾草优势地位未改变,高寒草甸优势种莎草逐渐被杂类草取代。(2)随着退化程度加剧,高寒草原地上生物量显著降低(P0.05),高寒草甸地上生物量先保持稳定再下降。高寒草甸地下生物量较高寒草原地下生物量对退化响应更敏感。(3)高寒草原退化过程中,莎草地上物生量变化不明显(P0.05),禾草地上生物量贡献率由88.12%减少至53.54%,杂类草地上生物量贡献率由0.08%增加至42.81%;高寒草甸退化过程中,禾草和杂类草地上生物量先增加后减小,莎草地上生物量占比由69.15%减少至0.04%,杂类草地上生物量占比由12.56%增加至92.61%。(4)随着退化程度加剧,高寒草原根系向浅层迁移,高寒草甸根系向深层迁移。(5)退化对高寒草甸土壤含水量(θ)、土壤有机碳(SOC)、总氮(TN)及土壤容重(BD)影响均比高寒草原更强烈。本研究对青藏高原退化草地恢复治理具有重要的参考价值。  相似文献   

8.
徐满厚  刘敏  翟大彤  薛娴  彭飞  尤全刚 《生态学报》2016,36(21):6812-6822
在青藏高原高寒草甸布设模拟增温实验样地,采用土钻法于2012—2013年植被生长季获取5个土层的根系生物量,探讨增温处理下根系生物量在生长季不同月份、不同土壤深度的变化趋势及其与相应土层土壤水分、温度的关系。结果表明:(1)根系生物量在2012年随月份呈增加趋势,其中7—9月较大,其平均值在对照、增温处理下分别为3810.88 g/m~2和4468.08 g/m~2;在2013年随月份呈减小趋势,其中5—6月较大,其平均值在对照、增温处理下分别为4175.39 g/m~2和4141.6 g/m~2。增温处理下的总根系生物量高出对照处理293.97 g/m~2,而各月份总根系生物量在处理间的差值均未达到显著水平。表明在增温处理下根系生物量略有增加,但在生长季不同月份其增加的程度不同,致使年际间的增幅出现差异。(2)根系生物量主要分布在0—10 cm深度,所占百分比为50.61%。在增温处理下,0—10 cm深度的根系生物量减少,减幅为8.38%;10—50 cm深度的根系生物量增加,增幅为2.1%。相对于对照处理,增温处理下0—30 cm深度的根系生物量向深层增加,30—50 cm深度的根系生物量增加趋势略有减缓。可见,在增温处理下根系生物量的增幅趋向于土壤深层。(3)根系生物量与土壤水分呈极显著的递减关系,在增温处理下线性关系减弱;与土壤温度呈极显著的递增关系,在增温处理下线性关系增强。表明土壤水分、温度都可极显著影响根系生物量,但在增温处理下土壤温度对根系生物量的影响较土壤水分更为敏感而迅速。  相似文献   

9.
青藏高原气候变暖幅度显著高于全球其他区域,深刻影响着该地区植物群落的结构和稳定性。选择西藏念青唐古拉山的三种典型植物群落(高寒草原、高寒草甸和流石滩)作为研究对象,采用开顶式增温箱(OTC)模拟增温,研究了短期增温对植物群落结构和稳定性的影响。结果表明:(1)增温改变了群落的优势物种,影响其结构组成,而对物种多样性无显著影响;(2)增温显著降低了高寒草甸的地上生物量(P < 0.05),增加地下生物量(P < 0.01),从而导致了群落地下地上生物量分配策略的改变;(3)增温降低群落中部分物种的生态位宽度,进而影响群落稳定性,其中高寒草甸变化最大,达到-66.8%。研究结果可为青藏高原高寒草地生态系统应对和适应未来气候变化提供一定科学依据。  相似文献   

10.
刘美  马志良 《生态学报》2021,41(4):1421-1430
植物生物量分配特征的变化反映了不同环境条件下植物的适应策略,全球气候变暖正在改变青藏高原高寒生态系统植被动态和生物量分配格局。然而,到目前为止,有关青藏高原高寒灌丛生物量分配特征对气候变暖的响应研究较少。为了探究气候变暖对高寒灌丛生物量分配的影响,以青藏高原东部典型的窄叶鲜卑花高寒灌丛为研究对象,分析了高寒灌丛灌木层、草本层和群落水平生物量分配特征对开顶式生长室(OTC)模拟增温的响应。研究结果表明:整个生长季节,模拟增温使空气温度和表层土壤温度分别升高0.6℃和1.2℃,使表层土壤水分含量下降2.7%。模拟增温使草本层和群落地上生物量显著增加57.8%和7.2%,使灌木层、草本层和群落根系生物量显著增加42.5%、105.6%和45.6%。然而,模拟增温没有显著影响灌木层地上生物量。同时,模拟增温使灌木层、草本层和群落总生物量显著增加25.6%、85.7%和28.4%,使灌木层、草本层和群落根冠比显著增加33.2%、30.4%和36.0%。由此可见,模拟增温在促进高寒灌丛生物量生产的同时将显著提高向地下根系部分的分配比例。Pearson相关分析表明,高寒灌丛生物量分配与空气温度、土壤温度和土壤硝态氮含量呈显著正相关关系;多元线性回归分析结果也表明,空气温度、土壤温度和土壤硝态氮含量解释了高寒灌丛生物量分配变异的50.8%以上。这些结果表明,青藏高原东部高寒灌丛植被能够通过调节生物量分配模式应对未来气候变暖。  相似文献   

11.
杨秀静  黄玫  王军邦  刘洪升 《生态学报》2013,33(7):2032-2042
青藏高原草地生物量大部分分布于地下,地下生物量在其碳循环研究中起着重要的作用.基于大规模野外样地调查数据,分析比较了青藏高原南北和东西样带上草地地下生物量与环境因子的相关关系,探讨了环境因子对地下生物量控制作用的区域差异.研究结果表明:对于所有采样点而言,青藏高原草地地下生物量的环境控制因素主要有土壤含水量、表层土壤有机碳和全氮含量.通过比较南北和东西样带研究结果发现,草地地下生物量与土壤含水量、土壤表层有机碳和全氮含量相关的显著性水平,在东西样带上明显高于南北样带.同时,东西样带上草地地下生物量与降水量有显著正相关关系,这种关系在南北样带上不显著,表明水分对东西样带草地地下生物量的控制作用较强.气温与南北样带草地地下生物量呈显著负相关,但与东西样带草地地下生物量相关不显著,由此说明环境因子对青藏高原草地地下生物量的控制存在显著区域差异.  相似文献   

12.
Knowledge about grassland biomass and its dynamics is critical for studying regional carbon cycles and for the sustainable use of grassland resources. In this study, we investigated the spatio-temporal variation of biomass in the Xilingol grasslands of northern China. Field-based biomass samples and MODIS time series data sets were used to establish two empirical models based on the relationship of the normalized difference vegetation index (NDVI) with above-ground biomass (AGB) as well as that of AGB with below-ground biomass (BGB). We further explored the climatic controls of these variations. Our results showed that the biomass averaged 99.01 Tg (1 Tg=1012 g) over a total area of 19.6×104 km2 and fluctuated with no significant trend from 2001 to 2012. The mean biomass density was 505.4 g/m2, with 62.6 g/m2 in AGB and 442.8 g/m2 in BGB, which generally decreased from northeast to southwest and exhibited a large spatial heterogeneity. The year-to-year AGB pattern was generally consistent with the inter-annual variation in the growing season precipitation (GSP), showing a robust positive correlation (R2=0.82, P<0.001), but an opposite coupled pattern was observed with the growing season temperature (GST) (R2=0.61, P=0.003). Climatic factors also affected the spatial distribution of AGB, which increased progressively with the GSP gradient (R2=0.76, P<0.0001) but decreased with an increasing GST (R2=0.70, P<0.0001). An improved moisture index that combined the effects of GST and GSP explained more variation in AGB than did precipitation alone (R2=0.81, P<0.0001). The relationship between AGB and GSP could be fit by a power function. This increasing slope of the GSP–AGB relationships along the GSP gradient may be partly explained by the GST–GSP spatial pattern in Xilingol. Our findings suggest that the relationships between climatic factors and AGB may be scale-dependent and that multi-scale studies and sufficient long-term field data are needed to examine the relationships between AGB and climatic factors.  相似文献   

13.
In vegetated terrestrial ecosystems, carbon in below- and aboveground biomass (BGB, AGB) often constitutes a significant component of total-ecosystem carbon stock. Because carbon in the BGB is difficult to measure, it is often estimated using BGB to AGB ratios. However, this ratio can change markedly along resource gradients, such as water availability, which can lead to substantial errors in BGB estimates. In this study, BGB and AGB sampling was carried out in Eucalyptus populnea-dominated woodland communities of northeast Australia to examine patterns of BGB to AGB ratio and vertical root distribution at three sites along a rainfall gradient (367, 602, and 1,101 mm). At each site, a vegetation inventory was undertaken on five transects (100 × 4 m), and trees representing the E. populnea vegetation structure were harvested and excavated to measure aboveground and coarse-root (diameter of at least 15 mm) biomass. Biomass of fine and small roots (diameter less than 15 mm) at each site was estimated from 40 cores sampled to 1 m depth. The BGB to AGB ratio of E. populnea-dominated woodland plant communities declined from 0.58 at the xeric end to 0.36 at the mesic end of the rainfall gradient. This was due to a marked decline in AGB with increased aridity whereas the BGB was relatively stable. The vertical distribution of fine roots in the top 1 m of soil varied along the rainfall gradient. The mesic sites had more fine-root biomass (FRB) in the upper soil profile and less at depth than the xeric site. Accordingly, at the xeric site, a much larger proportion of FRB was found at depth compared to the mesic sites. The vertical distribution patterns of small roots of the E. populnea woodland plant communities were consistently )-shaped, with the highest biomass occurring at 15–30-cm depth. The potential significance of such a rooting pattern for grass–tree and shrub–tree co-existence in these ecosystems is discussed. Overall, our results revealed marked changes in BGB to AGB ratio of E. populnea woodland communities along a rainfall gradient. Because E. populnea woodlands cover a large area (96 M ha), their contribution to continental-scale carbon sequestration and greenhouse gas emission can be substantial. Use of the rainfall-zone-specific ratios found in this study, in lieu of a single generic ratio for the entire region, will significantly improve estimates of BGB carbon stocks in these woodlands. In the absence of more specific data, our results will also be relevant in other regions with similar vegetation and rainfall gradients (that is, arid and semiarid woodland ecosystems).  相似文献   

14.
The multipurpose tree Faidherbia albida, which is highly recommended for evergreen agriculture, lacks much more recent ecophysiological data. Due to climate change global temperatures are rising; droughts are more common as water is becoming less and less available. How will plants, especially F. albida respond to these changes? We, therefore, set out to understand the effects of varied light and moisture levels. One hundred and thirty-five (135) 120-day-old seedlings were exposed to different light (75, 43 and 16% of full sunlight) and moisture [100, 50 and 25% of field capacity (32.6 ml/100 g of soil)] levels for 12 weeks. There were significant light and water main effects on most growth parameters, below ground biomass (BGB), above ground biomass (AGB), root:shoot ratio (RSR), concentration of chlorophyll b and quantum efficiency of photosystem II of the seedlings. Significant interactions were only recorded on the number of leaves (NL), stem diameter (SD), below ground biomass (BGB) and above ground biomass (AGB). The best water use efficiency, WUE (2661 ml/g), was recorded in the high-light medium-moisture (HLMM) treatment. Our results show that F. albida is affected differently by the different light and moisture levels. There also exists high stress tolerance level. We, therefore, highly recommend it for incorporation into most farming systems even when shading of seedlings constitutes a major intercropping problem.  相似文献   

15.

Aim

Understanding and predicting ecosystem functioning such as biomass accumulation requires an accurate assessment of large-scale patterns of biomass distribution and partitioning in relation to climatic and soil environments.

Methods

We sampled above- and belowground biomass from 26 sites spanning 1500 km in Inner Mongolian grasslands, compared the difference in aboveground, belowground biomass and below-aboveground biomass ratio (AGB, BGB, and B/A, respectively) among meadow steppe, typical steppe, and desert steppe types. The relationships between AGB, BGB, B/A and climatic and soil environments were then examined.

Results

We found that AGB and BGB differed significantly among three types of grasslands while B/A did not differ. Structural equation model analyses indicated that mean annual precipitation was the strongest positive driver for AGB and BGB. AGB was also positively associated with soil organic carbon, whereas B/A was positively associated with total soil nitrogen.

Conclusions

These results indicated that precipitation positively influence plant production in Inner Mongolian grasslands. Contrary to the prediction from the optimal partitioning hypothesis, biomass allocation to belowground increased with soil total nitrogen, suggesting that more productive sites may increase belowground allocation as an adaptive strategy to potentially high fire frequencies.  相似文献   

16.
The Qinghai–Tibet Plateau (QTP) is particularly sensitive to global climate change, especially to elevated temperatures, when compared with other ecosystems. However, few studies use long‐term field measurements to explore the interannual variations in plant biomass under climate fluctuations. Here, we examine the interannual variations of plant biomass within two vegetation types (alpine meadow and alpine shrub) during 2008–2017 and their relationships with climate variables. The following results were obtained. The aboveground biomass (AGB) and belowground biomass (BGB) response differently to climate fluctuations, the AGB in KPM was dominated by mean annual precipitation (MAP), whereas the AGB in PFS was controlled by mean annual air temperature (MAT). However, the BGB of both KPM and PFS was only weakly affected by climate variables, suggesting that the BGB in alpine ecosystems may remain as a stable carbon stock even under future global climate change. Furthermore, the AGB in PFS was significantly higher than KPM, while the BGB and R/S in KPM were significantly higher than PFS, reflecting the KPM be more likely to allocate more photosynthates to roots. Interestingly, the proportion of 0–10 cm root biomass increased in KPM and PFS, whereas the other proportions both decreased, reflecting a shift in biomass toward the surface layer. Our results could provide a new sight for the prediction how alpine ecosystem response to future climate change.  相似文献   

17.
Aims Belowground to aboveground biomass (BGB/AGB) ratio is a highly valued parameter of the terrestrial carbon cycle and productivity. However, it remains far from clear whether plant biomass partitioning to aboveground and belowground is isometric (equal partitioning) or allometric (unequal partitioning) at community levels and what factors are necessary in order to regulate the partitioning. This study aimed to comprehensively find out the patterns of biomass partitioning and their regulatory factors across forests in China.Methods The data of AGB and BGB were compiled from 1542 samples for communities across forests in China. Standardized major axis regression was conducted to examine whether AGB and BGB were allocated isometrically or allometrically at a community level. Redundancy analysis was used to analyze the relationships of BGB/AGB ratio with climatic factors and soil properties.Important findings We found that the slopes of the relationship between logAGB and logBGB were not always comparable to 1.0 (isometric allocation) at community levels, including primary forest, secondary forest, and planted forest. Meanwhile, samples in clay, loam, and sand soil types also presented the same phenomenon. Furthermore, the radically different allocations of AGB and BGB were found in northern and southern China. Environmental factors totally explained 3.86% of the variations in the BGB/AGB ratio at the community level, which include the mean annual precipitation, mean annual temperature, potential water deficit index, soil carbon content, soil nitrogen content, soil clay, soil loam, soil sand, soil pH, and soil bulk density. In addition, the environmental factors also have effects on the BGB/AGB ratio in other categories. The patterns revealed in this study are helpful for better understanding biomass partitioning and spreading the carbon circle models.  相似文献   

18.
Plant biomass is a key parameter for estimating terrestrial ecosystem carbon (C) stocks, which varies greatly as a result of specific environmental conditions. Here, we tested environmental driving factors affecting plant biomass in natural grassland in the Loess Plateau, China. We found that above-ground biomass (AGB) and below-ground biomass (BGB) had a similar change trend in the order of Stipa bungeana > Leymus secalinus > Artemisia sacrorum > Artemisia scoparia, whereas shoot ratio (R/S) displayed an opposite change trend. There was a significantly positive linear relationship between the AGB and BGB, regardless of plant species (p < 0.05). Furthermore, more than 50% of the AGB were found in 20–50 cm of plant height in Compositae plants (A. sacrorum, A. scoparia), whereas over 60% of the AGB were found in 20–80 cm of plant height in Gramineae plants (S. bungeana, L. secalinus). For each plant species, more than 75% of the BGB was distributed in 0–10 cm soil depth, and 20% was distributed in 10–20 cm soil depth, while less than 5% was distributed in 20–40 cm soil depth. Further, AGB and BGB were highly affected by environmental driving factors (soil properties, plant traits, topographic properties), which were identified by the structural equation model (SEM) and the generalized additive models (GAMs). In addition, AGB was directly affected by plant traits, and BGB was directly affected by soil properties, and soil properties associated with plant traits that affected AGB and BGB through interactive effects were 9.12% and 3.59%, respectively. However, topographic properties had a weak influence on ABG and BGB (as revealed by the lowest total pathway effect). Besides, soil organic carbon (SOC), soil microbial biomass carbon (MBC), and plant height had a higher relative contribution to AGB and BGB. Our results indicate that environmental driving factors affect plant biomass in natural grassland in the Loess Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号