首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
在生物医学领域,用小动物建立有关人类免疫系统的病毒感染模型是一个重要的目标,尤其是HIV-1感染的研究。这是因为HIV-1的易感性局限于人类。C.B-17-scid/scid小鼠由于T细胞受体基因和免疫球蛋白基因缺陷性的重新整合导致缺乏成熟的T、B淋巴细胞。现已在scid小鼠身上建立了两种人淋巴细胞chime-ra。第一种已经取得了成功。人胎儿肝脏和胸腺移植到肾囊内,最终在小鼠体内发育成正常的人胸腺组织。这种带人淋巴组织的scid小鼠被确认为scid-hu小鼠,它的胸腺组织易被HIV-1感染。看起来HIV-1的感染局限于新的胸腺组织。另一个人类淋巴组织s…  相似文献   

2.
人细胞巨化病毒(HCMV)和带状疱疹病毒(VZV)属于疱疹病毒家族。对于有免疫力的宿主,HCMV很少引起疾病症状,但对于有免疫损害和成长中的胎儿,HCMV是引起感染性疾病和死亡的主要病因。VZV感染可引起水痘和带状疱疹。由于这些种属特异性疱疹病毒不能感染其他动物,没有动物模型可用于发病机理的研究。移植了人免疫组织的严重联合免疫缺陷小鼠(SCID-hu)为这项研究提供了一个有价值的模型。我们用HCMV或VZV感染SCID-hu以调查在人胎儿胸腺/肝脏组织的发病机理。HCMV临床分离株能在SCID-hu小鼠的移植组织中复制达到较高的滴度。然而…  相似文献   

3.
缺乏合适的动物模型将严重限制登革病毒(DENV)致病机制研究的进展。本研究旨在构建DENV感染小鼠模型,为阐明其致病机制提供实验材料。首先在严重联合免疫缺陷( SCID)小鼠腹腔内接种人肝癌细胞株HepG2,构建人鼠嵌合体动物模型;移植后10 d腹腔接种DENV,通过检测病毒在体内分布及主要器官的组织学改变,评价该动物模型的实用价值。结果显示,在SCID小鼠成功移植HepG2并感染DENV后,出现病毒血症及主要器官严重损伤等现象,但无后肢麻痹等人类登革热无关症状。本研究成功构建了SCID-HepG2人鼠嵌合模型,该模型能支持DENV复制,并表现出部分人类DENV感染的临床症状,为研究DENV的致病机制提供了有价值的实验材料。  相似文献   

4.
猴/人类免疫缺陷病毒(SHIV)自20世纪80年代末开始构建,并被广泛应用于人类免疫缺陷病毒Ⅰ型(HIV-1)疫苗的攻毒实验和抗HIV中和抗体的活性评价.随着研究的深入,SHIV构建涉及的HIV-1病毒亚型也越来越多,如HIV-1 B、HIV-1 C、HIV-1 E等;同时,对SHIV致病性、细胞嗜性和应用的研究也有长足的进步,促进了HIV疫苗研究,并为HIV致病性研究提供了宝贵经验.  相似文献   

5.
人CCR5Delta32突变个体能有效抵制HIV-1感染,主要是由于该个体淋巴细胞内表达的CCR5Delta32突变蛋白能通过反式显性失活效应(TDN)抑制细胞表面HIV-1辅受体CCR5和CXCR4的产生.通过构建CCR5Delta32慢病毒载体,体外转染人外周血单个核细胞(PBMCs),研究细胞内表达CCR5Delta32蛋白对HIV-1感染的抑制作用.结果表明,表达CCR5Delta32蛋白的人PBMCs对HIV-1 R5、X4及R5X4毒株感染均具有显著的抑制作用.这些工作为后续的AIDS基因治疗研究奠定了基础.  相似文献   

6.
《生命科学》2008,20(2):299-299
在国家自然科学基金和“973”项目的支持下,中国科学院昆明动物研究所研究员郑永唐组和宿兵组合作,发现在旧大陆猴平顶猴对HIV-1易感的重要分子机制,并首次发现新型天然免疫分子mnTRIMCyp。此项研究进一步阐明了天然免疫分子TRIM5α限制HIV-1感染和复制的作用机制,也为国际HIV/AIDS研究广泛关注的HIV/AIDS非人灵长类动物模型建立提供了重要思路。  相似文献   

7.
目的:构建并鉴定表达HIV-1 CRF01_AE亚型结构基因的小鼠模型。方法:使用哺乳动物密码子优化的HIV-1 CRF01_AE gp160基因,通过慢病毒包装系统构建重组慢病毒LV-GFP-AE gp160,将上述重组慢病毒感染小鼠肺上皮细胞TC-1,经嘌呤霉素抗性筛选获得稳定表达gp160基因的TC-1细胞。采用RT-PCR、流式细胞术检测gp160基因在细胞内的表达稳定性,将稳定表达Gp160蛋白的TC-1-HIV AE gp160细胞接种小鼠,用免疫组化方法检测小鼠体内细胞团块中HIV Gp160蛋白的表达。结果:菌落PCR、酶切鉴定和测序表明重组质粒pLVX-AE gp160构建正确,RT-PCR、GFP荧光及流式细胞术结果均显示gp160基因能在细胞TC-1中稳定表达,免疫组化结果也表明小鼠体内接种的细胞可以稳定表达HIV Gp160蛋白。结论:建立了稳定表达HIV-1 CRF01_AE亚型Gp160蛋白的TC-1细胞及小鼠模型,为HIV-1 CRF01_AE亚型HIV疫苗的临床前研究提供了可靠的体外、体内免疫原性评价工具,为该疫苗的进一步开发奠定了坚实的实验基础。  相似文献   

8.
艾滋病病毒 (Human immunodeficiency virus,HIV) 通过与靶细胞膜的融合感染宿主细胞,研究表明阻断HIV与受体靶分子的结合可以阻止HIV进入宿主细胞,抑制HIV病毒的感染。设计合成了一个包含CD4和CCR5与HIV-1结合的主要功能结构区,及Flt3-L和Mip-3α分子的融合基因,构建了2个融合基因的真核表达载体pABK-CKR5-CD4/Flt3L-Mip3α (pABK-HIV-MF) 和pABK-CKR5-CD4 (pABK-HIV-MT),在人胚肾293细胞中进行了表达。RT-PCR、细胞免疫荧光技术、ELISA和Western blotting检测结果表明融合基因在真核细胞中获得了正确的表达,这为进一步研究其对于HIV-1的拮抗并靶向树突状细胞 (DC) 清除研究奠定了基础。  相似文献   

9.
自从发现人类免疫缺陷病毒1型(HIV-1)是引起获得性免疫缺陷综合征(AIDS)的病原体后,人们对HIV-1与人体相互作用的过程进行了深入研究.通过研究发现了HIV-1与机体相互作用的多种机制,例如HIV-1主要侵犯人体以CD4 T细胞为主的表达其结合表位(如CCR5和CXCR4)的免疫活性细胞[1].目前研究者在正常机体内发现多种物质与HIV-1致病有关.例如APOBEC蛋白(人体内主要为APOBEC3G),当HIV-1侵入机体后,该蛋白表达减少,这一过程在HIV-1的致病过程中发挥重要作用.通过对这些蛋白或分子的研究,进一步揭示了HIV-1的致病机制,为治疗HIV感染/AIDS提供了新思路.同时不同的HIV-1感染细胞模型的构建为AIDS的研究提供了多种工具.  相似文献   

10.
目的:构建抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因动物乳腺特异性表达载体并制备和验证抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器模型。方法:利用PCR法扩增出抗人p185~(erbB2)人鼠嵌合抗体ChAb26的重链基因H和轻链基因L,然后分别将嵌合抗体重链基因H和嵌合抗体轻链基因L连接到乳腺特异性表达质粒pBC1,从而构建抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因动物乳腺特异性表达载体pBC1-H和pBC1-L。分别将抗p185~(erbB2)人鼠嵌合抗体ChAb26乳腺特异表达载体pBC1-H和pBC1-L线性化,然后使用原核显微共注射法获得8只转基因FVB小鼠,通过鼠尾直接PCR鉴定其转基因阳性。通过RT-PCR、荧光定量PCR鉴定转基因小鼠乳腺组织中抗p185~(erbB2)人鼠嵌合抗体ChAb26的mRNA表达。使用小鼠乳汁采集器收集其乳汁并通过Western blot和夹心ELISA等实验鉴定抗p185~(erbB2)人鼠嵌合抗体ChAb26是否获得表达。结果:经测序验证,抗p185~(erbB2)人鼠嵌合抗体ChAb26的嵌合重链基因H和嵌合轻链基因L分别与乳腺特异表达质粒pBC1正确正向连接。鼠尾直接PCR结果显示所获8只转基因FVB小鼠均为转基因双阳性小鼠,且抗p185~(erbB2)人鼠嵌合抗体ChAb26的重链基因H和轻链基因L在它们的后代中稳定遗传,它们的后代中转基因小鼠双阳性率约为30%; RT-PCR和荧光定量PCR的结果显示,转基因双阳性小鼠及其双阳性后代的乳腺组织中存在抗p185~(erbB2)人鼠嵌合抗体ChAb26的mRNA表达; Western blot和ELISA等实验结果显示,转基因双阳性小鼠乳汁中存在抗p185~(erbB2)人鼠嵌合抗体ChAb26的蛋白质表达,而且抗p185~(erbB2)人鼠嵌合抗体ChAb26与羊抗人κ链抗体和羊抗人Ig G Fc-HRP抗体均能特异性结合。结论:成功构建抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因动物乳腺特异性表达载体pBC1-H和pBC1-L和制备了抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器模型,为今后抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因牛乳腺生物反应器的研究奠定了理论和技术基础。  相似文献   

11.
The SCID-hu Thy/Liv mouse and human fetal thymic organ culture (HF-TOC) models have been used to explore the pathophysiologic mechanisms of HIV-1 infection in the thymus. We report here that HIV-1 infection of the SCID-hu Thy/Liv mouse leads to the induction of MHC class I (MHCI) expression on CD4+CD8+ (DP) thymocytes, which normally express low levels of MHCI. Induction of MHCI on DP thymocytes in HIV-1-infected Thy/Liv organs precedes their depletion and correlates with the pathogenic activity of the HIV-1 isolates. Both MHCI protein and mRNA are induced in thymocytes from HIV-1-infected Thy/Liv organs, indicating induction of MHCI gene expression. Indirect mechanisms are involved, because only a fraction (<10%) of the DP thymocytes were directly infected by HIV-1, although the majority of DP thymocytes are induced to express high levels of MHCI. We further demonstrate that IL-10 is induced in HIV-1-infected thymus organs. Similar HIV-1-mediated induction of MHCI expression was observed in HF-TOC assays. Exogenous IL-10 in HF-TOC induces MHCI expression on DP thymocytes. Therefore, HIV-1 infection of the thymus organ leads to induction of MHCI expression on immature thymocytes via indirect mechanisms involving IL-10. Overexpression of MHCI on DP thymocytes can interfere with thymocyte maturation and may contribute to HIV-1-induced thymocyte depletion.  相似文献   

12.
Human herpesvirus 6 (HHV-6) has been proposed as a potential cofactor in the progression of human immunodeficiency virus type 1 (HIV-1) disease. We used the SCID-hu Thy/Liv mouse model to evaluate the in vivo interactions between HHV-6 and HIV-1. Our results demonstrate that HHV-6 and HIV-1 can simultaneously replicate in the human thymus in vivo. In this model, however, the presence of one virus appears not to modify the replication or cytopathicity of the other.  相似文献   

13.
SCID-hu mice are heterochimeric animals that are constructed by transplanting human fetal thymus (Thy), liver (Liv), and/or lymph nodes into congenitally immunodeficient C.B-17 scid/scid (SCID) mice. Sensitive and specific two-color flow cytometric assays were used to evaluate human lymphocytes from peripheral blood of SCID-hu mice. Kinetic studies presented in this report show long term T lymphopoiesis in SCID-hu mice. Approximately one-half of SCID-hu mice constructed with Thy and Liv tissue develop detectable levels of circulating human T cells by 4 mo after transplantation. The average level of circulating human cells in SCID-hu mice is generally less than 2% of the total lymphoid cells in the peripheral blood of these mice. Some SCID-hu mice with as high as 13% human lymphocytes, however, have been detected. Nearly all human cells in the peripheral blood of SCID-hu mice are CD3+ cells that express TCR-alpha beta. The percentages of gamma delta+, CD4+, CD8+, CD25+, CD69+, and Leu-8+ cells among CD45+ cells in SCID-hu blood are similar to the levels found in adult peripheral blood. On average, 74% of SCID-hu T cells express CD45RA and 18% express CD29. Functional studies demonstrate that cells from SCID-hu Thy/Liv grafts or human T cells from SCID-hu peripheral blood are functionally competent to respond to mitogens or allogeneic human cells in vitro. They are similar to fetal thymocytes or adult T cells, respectively, in these responses. These studies demonstrate that the SCID-hu mouse is a useful model for the analysis of human immune differentiation and function in vivo.  相似文献   

14.
Koka PS  Kitchen CM  Reddy ST 《Journal of virology》2004,78(20):11385-11392
The inhibition of multilineage hematopoiesis which occurs in the severe combined immunodeficiency mouse with transplanted human fetal thymus and liver tissues (SCID-hu Thy/Liv) due to human immunodeficiency virus type 1 (HIV-1) infection is also accompanied by a severe loss of c-Mpl expression on these progenitor cells. Inhibition of colony-forming activity (CFA) of the CD34(+) progenitor cells is partially revived to about 40% of mock-infected Thy/Liv implants, following reconstitution of the CD34(+) cells that were exposed to HIV-1 infection, in a new Thy/Liv stromal microenvironment of irradiated secondary SCID-hu recipients at 3 weeks post-re-engraftment. In addition, in these reconstituted animals, the proportion of c-Mpl(+) CD34(+) cells relative to c-Mpl(-) CD34(+) cells increased by about 25%, to 35% of mock-infected implants, suggesting a reacquirement of c-Mpl phenotype by the c-Mpl(-) CD34(+) cells. These results suggest a correlation between c-Mpl expression and multilineage CFA of the human CD34(+) progenitor cells that have experienced the effects of HIV-1 infection. Treatment of the secondary-recipient animals with the c-Mpl ligand, thrombopoietin (Tpo), further increased c-Mpl expression and CFA of re-engrafted CD34(+) cells previously exposed to virus in the primary implants to about 50 to 70% over that of those re-engrafted CD34(+) cells derived from implants of untreated animals. Blocking of c-Mpl with anti-c-Mpl monoclonal antibody in vivo by injecting the SCID-hu animals resulted in the reduction or loss of CFA. Thus, inhibition, absence, or loss of c-Mpl expression as in the c-Mpl(-) CD34(+) subset of cells is the likely cause of CFA inhibition. Further, CFA of the CD34(+) cells segregates with their c-Mpl expression. Therefore, c-Mpl may play a role in hematopoietic inhibition during HIV-1 infection, and control of its expression levels may aid in hematopoietic recovery and thereby reduce the incidence of cytopenias occurring in infected individuals.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) is frequently attenuated after long-term culture in vitro. The attenuation process probably involves mutations of functions required for replication and pathogenicity in vivo. Analysis of attenuated HIV-1 for replication and pathogenicity in vivo will help to define these functions. In this study, we examined the pathogenicity of an attenuated HIV-1 isolate in a laboratory worker accidentally exposed to a laboratory-adapted HIV-1 isolate. Using heterochimeric SCID-hu Thy/Liv mice as an in vivo model, we previously defined HIV-1 env determinants (HXB/LW) that reverted to replicate in vivo (L. Su, H. Kaneshima, M. L. Bonyhadi, R. Lee, J. Auten, A. Wolf, B. Du, L. Rabin, B. H. Hahn, E. Terwilliger, and J. M. McCune, Virology 227:46-52, 1997). Here we further demonstrate that HIV-1 replication in vivo can be separated from its pathogenic activity, in that the HXB/LW virus replicated to high levels in SCID-hu Thy/Liv mice, with no significant thymocyte depletion. Restoration of the nef gene in the recombinant HXB/LW genome restored its pathogenic activity, with no significant effect on HIV-1 replication in the thymus. Our results suggest that in vitro-attenuated HIV-1 lacks determinants for pathogenicity as well as for replication in vivo. Our data indicate that (i) the replication defect can be recovered in vivo by mutations in the env gene, without an associated pathogenic phenotype, and (ii) nef can function in the HXB/LW clone as a pathogenic factor that does not enhance HIV-1 replication in the thymus. Furthermore, the HXB/LW virus may be used to study mechanisms of HIV-1 nef-mediated pathogenesis in vivo.  相似文献   

16.
CCR5-utilizing (R5) and CXCR4-utilizing (X4) strains of human immunodeficiency virus type 1 (HIV-1) have been studied intensively in vitro, but the pathologic correlates of such differential tropism in vivo remain incompletely defined. In this study, X4 and R5 strains of HIV-1 were compared for tropism and pathogenesis in SCID-hu Thy/Liv mice, an in vivo model of human thymopoiesis. The X4 strain NL4-3 replicates quickly and extensively in thymocytes in the cortex and medulla, causing significant depletion. In contrast, the R5 strain Ba-L initially infects stromal cells including macrophages in the thymic medulla, without any obvious pathologic consequence. After a period of 3 to 4 weeks, Ba-L infection slowly spreads through the thymocyte populations, occasionally culminating in thymocyte depletion after week 6 of infection. During the entire time of infection, Ba-L did not mutate into variants capable of utilizing CXCR4. Therefore, X4 strains are highly cytopathic after infection of the human thymus. In contrast, infection with R5 strains of HIV-1 can result in a two-phase process in vivo, involving apparently nonpathogenic replication in medullary stromal cells followed by cytopathic replication in thymocytes.  相似文献   

17.
The nef gene products encoded by human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus type 1 (SIV-1) increase viral loads in infected hosts and accelerate clinical progression to AIDS. Nef exhibits a spectrum of biological activities, including the ability to downregulate surface expression of CD4 and major histocompatibility complex (MHC) class I antigens, to alter the state of T-cell activation, and to enhance the infectivity of viral particles. To determine which of these in vitro functions most closely correlates with the pathogenic effects of Nef in vivo, we constructed recombinant HIV-1 NL4-3 viruses carrying mutations within the nef gene that selectively impair these functions. These mutant viruses were evaluated for pathogenic potential in severe combined immunodeficiency (SCID) mice implanted with human fetal thymus and liver (SCID-hu Thy/Liv mice), in which virus-mediated depletion of thymocytes is known to be Nef dependent. Disruption of the polyproline type II helix (Pxx)4 within Nef (required for binding of Hck and p21-activated kinase-like kinases, downregulation of MHC class I, and enhancement of HIV-1 infectivity in vitro but dispensable for CD4 downregulation) did not impair thymocyte depletion in virus-infected Thy/Liv human thymus implants. Conversely, three separate point mutations in Nef that compromised its ability to downregulate CD4 attenuated thymocyte depletion while not diminishing viral replication. These findings indicate that the functional ability of Nef to downregulate CD4 and not MHC class I downregulation, Hck or PAK binding, or (Pxx)4-associated enhancement of infectivity most closely correlates with Nef-mediated enhancement of HIV-1 pathogenicity in vivo. Nef-mediated CD4 downregulation merits consideration as a new target for the development of small-molecule inhibitors.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1)-infected individuals often exhibit multiple hematopoietic abnormalities reaching far beyond loss of CD4+ lymphocytes. We used the SCID-hu (Thy/Liv) mouse (severe combined immunodeficient mouse transplanted with human fetal thymus and liver tissues), which provides an in vivo system whereby human pluripotent hematopoietic progenitor cells can be maintained and undergo T-lymphoid differentiation and wherein HIV-1 infection causes severe depletion of CD4-bearing human thymocytes. Herein we show that HIV-1 infection rapidly and severely decreases the ex vivo recovery of human progenitor cells capable of differentiation into both erythroid and myeloid lineages. However, the total CD34+ cell population is not depleted. Combination antiretroviral therapy administered well after loss of multilineage progenitor activity reverses this inhibitory effect, establishing a causal role of viral replication. Taken together, our results suggest that pluripotent stem cells are not killed by HIV-1; rather, a later stage important in both myeloid and erythroid differentiation is affected. In addition, a primary virus isolated from a patient exhibiting multiple hematopoietic abnormalities preferentially depleted myeloid and erythroid colony-forming activity rather than CD4-bearing thymocytes in this system. Thus, HIV-1 infection perturbs multiple hematopoietic lineages in vivo, which may explain the many hematopoietic defects found in infected patients.  相似文献   

19.
Entry inhibitors of human immunodeficiency virus, type 1 (HIV-1) have been the focus of much recent research. C34, a potent fusion inhibitor derived from the HR2 region of gp41, was engineered into a 1:1 human serum albumin conjugate through stable covalent attachment of a maleimido-C34 analog onto cysteine 34 of albumin. This bioconjugate, PC-1505, was designed to require less frequent dosing and less peptide than T-20 and was assessed for its antifusogenic activity both in vitro and in vivo in the SCID-hu Thy/Liv mouse model. PC-1505 was essentially equipotent to the original C34 peptide and to T-20 in vitro. In HIV-1-infected SCID-hu Thy/Liv mice, T-20 lost activity with infrequent dosing, whereas the antiviral potency of PC-1505 was sustained, and PC-1505 was active against T-20-resistant ("DIV") virus with a G36D substitution in gp41. The in vivo results are the direct result of a significantly improved pharmacokinetic profile for the C34 peptide following albumin conjugation. Contrary to previous reports that the gp41 NHR trimer is poorly accessible to C34 fused to protein cargoes of increasing size (Hamburger, A. E., Kim, S., Welch, B. D., and Kay, M. S. (2005) J. Biol. Chem. 280, 12567-12572), these results are the first demonstration of the capacity for a large, endogenous serum protein to gain unobstructed access to the transient gp41 intermediates that exist during the HIV fusion process, and it supports further development of albumin conjugation as a promising approach to inhibit HIV-1 entry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号