首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N-acyl homoserine lactone (AHL)-based quorum sensing (QS) has been recognized to play an important role in the formation of biofilm. However, aerobic granular sludge is considered as a special biofilm, and its biological implication and role of AHL-based QS still remain unclear. This study investigated the role of AHL-based QS in aerobic granulation. Results showed that AHLs were necessary to the typical aerobic granulation, and AHL-associated coordination of bacteria in sludge aggregation was sludge density dependent only when it reached a threshold of 1.010 g/mL; AHL-based QS was activated to regulate aerobic granulation. Furthermore, a quorum quenching method was firstly adopted to investigate the role of AHLs in aerobic granules. Results showed inhibition of AHL by acylase that reduced the AHL content in aerobic granules and further weakened its attachment potential, which proved that AHLs play an important role in the formation of aerobic granules. Additionally, the assay of quorum quenching not only proved that AHL-based QS could regulate EPS production but also provided additional evidence for the role of AHLs in aerobic granulation by regulating EPS content and its component proportion.  相似文献   

2.
Many bacteria use quorum sensing (QS) as an intercellular signaling mechanism to regulate gene expression in local populations. Plant and algal hosts, in turn, secrete compounds that mimic bacterial QS signals, allowing these hosts to manipulate QS-regulated gene expression in bacteria. Lumichrome, a derivative of the vitamin riboflavin, was purified and chemically identified from culture filtrates of the alga Chlamydomonas as a QS signal-mimic compound capable of stimulating the Pseudomonas aeruginosa LasR QS receptor. LasR normally recognizes the N-acyl homoserine lactone (AHL) signal, N-3-oxo-dodecanoyl homoserine lactone. Authentic lumichrome and riboflavin stimulated the LasR receptor in bioassays and lumichrome activated LasR in gel shift experiments. Amino acid substitutions in LasR residues required for AHL binding altered responses to both AHLs and lumichrome or riboflavin. These results and docking studies indicate that the AHL binding pocket of LasR recognizes both AHLs and the structurally dissimilar lumichrome or riboflavin. Bacteria, plants, and algae commonly secrete riboflavin or lumichrome, raising the possibility that these compounds could serve as either QS signals or as interkingdom signal mimics capable of manipulating QS in bacteria with a LasR-like receptor.  相似文献   

3.
N-acylhomoserine lactones (AHLs) are used as signal molecules by many quorum-sensing Proteobacteria. Diverse plant and animal pathogens use AHLs to regulate infection and virulence functions. These signals are subject to biological inactivation by AHL-lactonases and AHL-acylases. Previously, little was known about the molecular details underlying the latter mechanism. An AHL signal-inactivating bacterium, identified as a Ralstonia sp., was isolated from a mixed-species biofilm. The signal inactivation encoding gene from this organism, which we call aiiD, was cloned and successfully expressed in Escherichia coli and inactivated three AHLs tested. The predicted 794-amino-acid polypeptide was most similar to the aculeacin A acylase (AAC) from Actinoplanes utahensis and also shared significant similarities with cephalosporin acylases and other N-terminal (Ntn) hydrolases. However, the most similar homologues of AiiD are deduced proteins of undemonstrated function from available Ralstonia, Deinococcus and Pseudomonas genomes. LC-MS analyses demonstrated that AiiD hydrolyses the AHL amide, releasing homoserine lactone and the corresponding fatty acid. Expression of AiiD in Pseudomonas aeruginosa PAO1 quenched quorum sensing by this bacterium, decreasing its ability to swarm, produce elastase and pyocyanin and to paralyze nematodes. Thus, AHL-acylases have fundamental implications and hold biotechnological promise in quenching quorum sensing.  相似文献   

4.
Many bacteria use quorum sensing (QS) to coordinate responses to environmental changes. In Gram-negative bacteria, the most extensively studied QS systems rely on the use of N -acylhomoserine lactones (AHLs) signal molecules. Some bacteria produce enzymes that are able to inactivate AHL signals produced by other bacteria and hence interfere with QS-mediated processes via a phenomenon known as quorum quenching. Acylase-type AHL degradation activity has been found in the biomass of the filamentous nitrogen-fixing cyanobacterium Anabaena ( Nostoc ) sp. PCC 7120, being absent from the culture media. The gene all3924 has been identified and cloned whose product exhibits homology to the acylase QuiP of Pseudomonas aeruginosa PAO1, demonstrating that it is at least partially responsible for the AHL-acylase activity. The recombinant enzyme, which was named auto-inducer inhibitor from Cyanobacteria (AiiC), shows broad acyl-chain length specificity. Because the presence of AHLs in the biomass of nitrogen-fixing cultures of Anabaena sp. PCC 7120 has been described recently, AiiC could represent a self-modulatory system to control the response to its own QS signals but could also be involved in the interference of signalling within complex microbial communities in which Cyanobacteria are present.  相似文献   

5.
应用N-酰基高丝氨酸内酯(N-acyl-L-homoserine lactones,AHL)介导的群体感应(quorum sensing,QS)系统调控生物膜形成和次级代谢物合成具有巨大的商业价值,但自然界中许多微生物能够产生群体淬灭(Quorum Quenching,QQ)酶,QQ酶能够降解天然AHL信号分子,使外源天然 AHL 信号分子的半衰期缩短,限制了天然AHL 信号分子的应用范围。化学合成的AHL类似物作为QS促进剂,通过与天然信号分子类似的结合方式形成转录二聚体,激活下游基因表达,但与天然AHL信号分子相比,化学合成的QS促进剂具有活性高、半衰期长等优点。本文综述了化学合成AHL类似物的设计思路、种类、作用机制及其在提高次级代谢物产量和生物浸矿方面的应用,并讨论了QS促进剂今后主要的研究方向,以期为QS促进剂的合成设计和实际应用提供参考。  相似文献   

6.
Plant aerial surfaces comprise a complex habitat for microorganisms, and many plant-associated bacteria, such as the pathogen Pseudomonas syringae, exhibit density-dependent survival on leaves by utilizing quorum sensing (QS). QS is often mediated by diffusible signals called N-acyl-homoserine lactones (AHLs), and P. syringae utilizes N-3-oxo-hexanoyl-dl-homoserine lactone (3OC6HSL) to control traits influencing epiphytic fitness and virulence. The P. syringae pathovar syringae B728a genome sequence revealed two putative AHL acylases, termed HacA (Psyr_1971) and HacB (Psyr_4858), which are N-terminal nucleophile hydrolases that inactivate AHLs by cleaving their amide bonds. HacA is a secreted AHL acylase that degrades only long-chain (C > or = 8) AHLs, while HacB is not secreted and degrades all tested AHLs. Targeted disruptions of hacA, hacB, and hacA and hacB together do not alter endogenous 3OC6HSL levels under the tested conditions. Surprisingly, targeted disruptions of hacA alone and hacA and hacB together confer complementable phenotypes that are very similar to autoaggregative phenotypes seen in other species. While AHL acylases might enable P. syringae B728a to degrade signals of competing species and block expression of their QS-dependent traits, these enzymes also play fundamental roles in biofilm formation.  相似文献   

7.
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signal molecules by many gram-negative bacteria. We have reported that Shewanella sp. strain MIB015 degrades AHLs. In the present study, we cloned the aac gene from MIB015 by PCR with specific primers based on the aac gene in Shewanella oneidensis strain MR-1, which showed high homology with the known AHL-acylases. Escherichia coli expressing Aac showed high degrading activity of AHLs with long acyl chains. HPLC analysis revealed that Aac worked as AHL-acylase, which hydrolyzed the amide bond of AHL. In addition, expression of Aac in fish pathogen Vibrio anguillarum markedly reduced AHL production and biofilm formation. In conclusion, this study indicates that Aac might be effective in quenching quorum sensing of fish pathogens.  相似文献   

8.
Acylhomoserine lactone (AHL) analogues in which the amide function is replaced by a triazole group were synthesized and evaluated for their effect on quorum sensing (QS) and biofilm formation in Burkholderia cenocepacia and Pseudomonas aeruginosa. In addition, the influence of the length of the acyl-mimicking chain was investigated. The compounds showed selectivity between two different AHL QS systems. 3-(1H-1,2,3-Triazol-1-yl)dihydrofuran-2(3H)-ones, in which the 4-substituent best resembled the acyl chain of the native AHL molecule exhibited significant QS agonistic and antagonistic activities. Replacing this aliphatic substituent by a phenyl-containing moiety resulted in active inhibitors of QS. The most active compounds showed biofilm inhibitory as well as biofilm eradicating activities in both test organisms.  相似文献   

9.
Acinetobacter baumannii and Pseudomonas aeruginosa are pathogens capable of colonizing the same infection sites and employing N-acyl homoserine lactone (AHL) based quorum-sensing systems to co-ordinate biofilm formation. Hence, the effect of P. aeruginosa AHLs on biofilm formation by A. baumannii and vice versa were investigated using the biofilm impaired quorum sensing mutants, A. baumannii M2 (abaI::Km) and P. aeruginosa PAO-JP2. Complementing the mutants with heterologous, extracted and pure AHLs increased biofilm mass significantly. The surface area coverage and biovolume also increased significantly as observed by confocal scanning laser microscopy which corroborated scanning electron microscope analysis. Autoinducer synthase gene promoters of A. baumannii, P( abaI)-lacZ, and P. aeruginosa, P( lasI)-lacZ, were induced (p?相似文献   

10.
11.
Bacteria express certain of their characteristics especially, pathogenicity factors at high cell densities. The process is termed as quorum sensing (QS). QS operates via signal molecules such as acylhomoserine lactones (AHLs). Other bacteria inhibit QS through the inactivation of AHL signals by producing enzymes like AHL-lactonases and -acylases. Comparative genomic analysis has revealed the multiplicity of genes for AHL lactonases (up to 12 copies per genome) among Bacillus spp. and that of AHL-acylases (up to 5 copies per genome) among Pseudomonas spp. This genetic evolution can be envisaged to enable host to withstand the attacks from bacterial population, which regulates its functioning through QS.  相似文献   

12.
【背景】禽致病性大肠杆菌(Avian pathogenic Escherichia coli, APEC)是禽类主要病原菌之一,群体感应(Quorumsensing,QS)系统可通过信号分子调控其生物学特性。在APEC中信号分子AHL对其生物学特性的影响目前尚不清楚。【目的】研究信号分子AHL对APEC生物学特性的影响。【方法】将含铜绿假单胞菌酰基高丝氨酸内脂合成酶(Acyl-homoserine-lactone synthase,lasI)基因的表达质粒转化至APEC菌株DE17中,构建重组菌株DE17-lasI,利用LasI在DE17中合成AHL。比较野生株和重组菌株产生AHL信号分子、生长特性、生物被膜形成能力、运动性以及耐药性等生物学特性的差异;运用Real-timePCR技术,比较野生株和重组菌株中与生物被膜形成、运动性以及毒力因子相关基因的转录水平。【结果】对重组菌株AHL信号分子检测表明,DE17-lasI能够产生AHL信号分子,与野生株DE17相比,DE17-lasI生物被膜形成能力和运动性显著降低(P0.01),但其生长特性和耐药性无显著变化(P0.05);Real-time PCR检测结果表明,重组菌株的毒力因子fimH转录水平上调了58.8倍,而ompA、iss分别下调了95.4%、77.3%。与生物被膜形成相关基因agn43下调了75%,鞭毛合成基因flhA下调了80.8%。此外,AHL受体sdiA的转录水平上调了19.8倍。【结论】转化lasI至APEC中,能促进其在APEC中合成信号分子AHL,并显著影响APEC的部分生物学特性,为进一步探讨AHL型群体感应系统对APEC的调控作用提供参考。  相似文献   

13.
目的利用指示菌紫色杆菌CV026菌株,建立和优化稳定的细菌菌群传感效应信号分子高丝氨酸内酯平板分析方法。方法优化受测铜绿假单胞菌高丝氨酸内酯的提取方法,分析铜绿假单胞菌培养时间对信号分子检测的影响。另一方面,优化指示菌株CV026的培养基成分,并优化紫色菌素的提取方法,以完善信号分子的检测反应。结果恒温水浴挥发法可有效提取高丝氨酸内酯,并且发现当铜绿假单胞菌的培养时间为3d时,高丝氨酸内酯最易被检出。进一步,试验结果显示添加L-Try可提高指示菌株紫色菌素的产量,并利于高丝氨酸内酯的检测。此外,比较发现采用乙醇溶解紫色菌素的方法可更高效的测定紫色菌素的量。结论本课题建立的检测方法将更有效的检测细菌菌群传感系统信号分子高丝氨酸内酯,将有利于细菌菌群传感机制研究和抑制细菌菌群传感药物的开发工作。  相似文献   

14.
Acylated homoserine lactones (AHLs) are self-generated diffusible signal molecules that mediate population density dependent gene expression (quorum sensing) in a variety of Gram-negative bacteria, and several virulence genes of human pathogens are known to be controlled by AHLs. In this study, strains of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli and Klebsiella pneumoniae, isolated from intensive care patients, were screened for AHL production by using AHL responsive indicator strains of Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1. Positive reactions were recorded for all 50 isolates of P. aeruginosa and 10 isolates of Acinetobacter baumannii with Agrobacterium tumefaciens NT1. Surprisingly, most P. aeruginosa isolates gave negative results with C. violaceum CV026 in contrast to previous reports. This suggests that the new isolates of P. aeruginosa either failed to make short chain AHLs or the level of the signal molecule is very low.  相似文献   

15.
16.
Gram-negative bacteria communicate with each other by producing and sensing diffusible signaling molecules. This mechanism is called quorum sensing (QS) and regulates many bacterial activities from gene expression to symbiotic/pathogenic interactions with hosts. Therefore, the elucidation and control of bacterial QS systems have been attracted increasing attention over the past two decades. The most common QS signals in Gram-negative bacteria are N-acyl homoserine lactones (AHLs). There are also bacteria that employ different QS systems, for example, the plant pathogen Ralstonia solanacearum utilizes 3-hydroxy fatty acid methyl esters as its QS signals. The QS system found in the endosymbiotic bacterium associated with the fungus Mortierella alpina, the development of an affinity pull-down method for AHL synthases, and the elucidation of a unique QS circuit in R. solanacearum are discussed herein.  相似文献   

17.
Many Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum-sensing (QS) signal molecules. AHL QS has been the subject of extensive investigation in the last decade and has become a paradigm for bacterial intercellular signaling. Research in AHL QS has been considerably aided by simple methods devised to detect AHLs using bacterial biosensors that phenotypically respond when exposed to exogenous AHLs. This article reviews and discusses the currently available bacterial biosensors which can be used in detecting and studying the different AHLs.  相似文献   

18.
The inactivation of quorum sensing signals, a phenomenon known as quorum quenching, has been described in diverse microorganisms, though it remains almost unexplored in yeasts. Beyond the well-known properties of these microorganisms for the industry or as eukaryotic models, the role of yeasts in soil or in the inner tissues of a plant is largely unknown. In this report, the wider survey of quorum quenching activities in yeasts isolated from Antarctic soil and the inner tissues of sugarcane, a tropical crop, is presented. Results show that, independently of their niche, quorum quenching activities are broadly present in unicellular fungi. Although yeasts showing a broad range of quorum quenching activity are present in the two niches, at the same time specific AHL inactivation profiles can also be found. Furthermore, yeasts from both sampling sites show quorum quenching activities compatible with lactonase-like and acylase-like inactivations of AHLs. Interestingly, the characterization of Rhodotorula mucilaginosa 7Apo1 showed that the presence of a particular AHL does not interfere with the quenching of a second molecule. Evidence suggests that yeasts could play a role in the modulation of the quorum sensing activity of bacteria. The relationship among phylogeny, sampling sites and yeast quorum quenching activities of the isolates is analyzed.  相似文献   

19.
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signal molecules by many gram-negative bacteria. We have reported that Shewanella sp. strain MIB015 degrades AHLs. In the present study, we cloned the aac gene from MIB015 by PCR with specific primers based on the aac gene in Shewanella oneidensis strain MR-1, which showed high homology with the known AHL-acylases. Escherichia coli expressing Aac showed high degrading activity of AHLs with long acyl chains. HPLC analysis revealed that Aac worked as AHL-acylase, which hydrolyzed the amide bond of AHL. In addition, expression of Aac in fish pathogen Vibrio anguillarum markedly reduced AHL production and biofilm formation. In conclusion, this study indicates that Aac might be effective in quenching quorum sensing of fish pathogens.  相似文献   

20.
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degrees C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号