首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Using far- and near-UV circular dichroism, viscosity, tryptophan fluorescence, NMR spectra, binding of a hydrophobic probe, and microcalorimetry, we have shown that the apo form of human retinol-binding protein (RBP) at neutral pH is in a rigid state with properties similar to those of holo-RBP. On the contrary, at acidic pH apo-RBP is in the molten globule state which has been earlier revealed for a number of proteins under mild denaturing conditions. We have also shown that, at equilibrium, the pH-induced retinol release from holo-RBP parallels denaturation of the apoprotein. These findings are consistent with our hypothesis that the transformation of RBP into the molten globule state is involved in the mechanism whereby retinol is delivered to target cells. In particular, a local acidic pH near the membrane surface of target cells might cause the transition of RBP to the molten globule state as well as the release of retinol.  相似文献   

2.
The relevance of partially ordered states of proteins (such as the molten globule state) in cellular processes is beginning to be understood. Bovine α-lactalbumin (BLA) assumes the molten globule state at acidic pH. We monitored the organization and dynamics of the functionally important tryptophan residues of BLA in native and molten globule states utilizing the wavelength-selective fluorescence approach and fluorescence quenching. Quenching of BLA tryptophan fluorescence using quenchers of varying polarity (acrylamide and trichloroethanol) reveals varying degrees of accessibility of tryptophan residues, characteristic of native and molten globule states. We observed red edge excitation shift (REES) of 6 nm for the tryptophans in native BLA. Interestingly, we show here that BLA tryptophans exhibit REES (3 nm) in the molten globule state. These results constitute one of the early reports of REES in the molten globule state of proteins. Taken together, our results indicate that tryptophan residues in BLA in native as well as molten globule states experience motionally restricted environment and that the regions surrounding at least some of the BLA tryptophans offer considerable restriction to the reorientational motion of the water dipoles around the excited-state tryptophans. These results are supported by wavelength-dependent changes in fluorescence anisotropy and lifetime for BLA tryptophans. These results could provide vital insight into the role of tryptophans in the function of BLA in its molten globule state in particular, and other partially ordered proteins in general.  相似文献   

3.
4.
The molten globule state of equine lysozyme is more stable than that of alpha-lactalbumin and is stabilized by non-specific hydrophobic interactions and native-like hydrophobic interactions. We constructed a chimeric protein which is produced by replacing the flexible loop (residues 105-110) in human alpha-lactalbumin with the helix D (residues 109-114) in equine lysozyme to investigate the possible role of the helix D for the high stability and native-like packing interaction in the molten globule state of equine lysozyme. The stability of the molten globule state formed by the chimeric protein to guanidine hydrochloride-induced unfolding is the same as that of equine lysozyme and is substantially greater than that of human alpha-lactalbumin, although only six residues come from equine lysozyme. Our results also suggest that the non-native interaction in the molten globule state of alpha-lactalbumin changes to the native-like packing interaction due to helix substitution. The solvent-accessibility of the Trp residues in the molten globule state of the chimeric protein is similar to that in the molten globule state of equine lysozyme in which packing interaction around the Trp residues in the native state is partially preserved. Therefore, the helix D in equine lysozyme is one of the contributing factors to the high stability and native-like packing interaction in the molten globule state of equine lysozyme. Our results indicate that the native-like packing interaction can stabilize the rudimentary intermediate which is stabilized by the non-specific hydrophobic interactions.  相似文献   

5.
6.
Partially folded protein species transiently form during folding of most proteins. Often, these species are molten globules, which may be on- or off-pathway to the native state. Molten globules are ensembles of interconverting protein conformers that have a substantial amount of secondary structure, but lack virtually all tertiary side-chain packing characteristics of natively folded proteins. Due to solvent-exposed hydrophobic groups, molten globules are prone to aggregation, which can have detrimental effects on organisms. The molten globule observed during folding of the 179-residue apoflavodoxin from Azotobacter vinelandii is off-pathway, as it has to unfold before native protein can form. Here, we study folding of apoflavodoxin and characterize its molten globule using fluorescence spectroscopy and Förster Resonance Energy Transfer (FRET). Apoflavodoxin is site-specifically labeled with fluorescent donor and acceptor dyes, utilizing dye-inaccessibility of Cys69 in cofactor-bound protein. Donor (i.e., Alexa Fluor 488) is covalently attached to Cys69 in all apoflavodoxin variants used. Acceptor (i.e., Alexa Fluor 568) is coupled to Cys1, Cys131 and Cys178, respectively. Our FRET data show that apoflavodoxin’s molten globule forms in a non-cooperative manner and that its N-terminal 69 residues fold last. In addition, striking conformational differences between molten globule and native protein are revealed, because the inter-label distances sampled in the 111-residue C-terminal segment of the molten globule are shorter than observed for native apoflavodoxin. Thus, FRET sheds light on the off-pathway nature of the molten globule during folding of an α-β parallel protein.  相似文献   

7.
Bai P  Luo L  Peng Zy 《Biochemistry》2000,39(2):372-380
The molten globule state of alpha-lactalbumin (alpha-LA) has been considered a prototype of partially folded proteins. Despite the importance of molten globules in understanding the mechanisms of protein folding and its relevance to some biological phenomena, site-specific information on the structure and dynamics of a molten globule is limited, largely because of the high conformational flexibility and heterogeneity. Here, we use selective isotope labeling and (19)F NMR to investigate the solvent accessibility and side-chain dynamics of aromatic residues in the molten globule of alpha-LA. Comparison of these properties with those of the native and unfolded protein indicates that the alpha-LA molten globule is highly heterogeneous; each residue has its unique solvent accessibility and motional environment. Many aromatic residues normally buried in the interior of native alpha-LA remain significantly buried in the molten globule and the side-chain dynamics of these residues are highly restricted. Our results suggest that hydrophobic and van der Waals interactions mediated by the inaccessible surface area could be sufficient to account for all the stability of the alpha-LA molten globule, which is approximately 50% of the value for the native protein.  相似文献   

8.
The susceptibility of a-lactalbumin to transglutaminase reactions was studied using an enzyme from Streptoverticillium which can catalyze the reactions irrespective of the presence or absence of Ca2+. Transglutaminase-catalyzed polymerization of a-lactalbumin in the native state occurred to a very limited extent. Transformation from the native state to the molten globule state brought about by Ca2+-removal from holo-a-lactalbumin enhanced the polymerization of the protein catalyzed by transglutaminase. The incorporation of Carbobenzoxy-Gln-Gly into a-lactalbumin through the enzyme reaction was investigated to determine the amounts of lysine residues which are present at molecular surface and available to the enzyme. There was no significant difference in the amount of available lysine residues between the native: and the molten globule molecule. However, the amount of surface glutamine residues incorporated with monodansylcadaverine by transglutaminase was remarkably higher in the molten globule state than that in the native state. The monodansylcadaverine-incorporated site of a-lactalbumin in the molten globule state was identified as Gln-54 by amino-acid sequence analysis of fluorescence-labeled peptides separated from chymotryptic digests of the protein. Possible reason for selective labeling of Gln-54 in molten globule a-lactalbumin was proposed.  相似文献   

9.
pH and chemical denaturant dependent conformational changes of a serine protease cryptolepain from Cryptolepis buchanani are presented in this paper. Activity measurements, near UV, far UV CD, fluorescence emission spectroscopy, and ANS binding studies have been carried out to understand the folding mechanism of the protein in the presence of denaturants. pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins due to their ability to influence the electrostatic interactions. The preliminary biophysical study on cryptolepain shows that major elements of secondary structure are beta-sheets. Under neutral conditions the enzyme was stable in urea while GuHCl-induced equilibrium unfolding was cooperative. Cryptolepain shows little ANS binding even under neutral conditions due to more hydrophobicity of beta-sheets. Multiple intermediates were populated during the pH-induced unfolding of cryptolepain. Temperature-induced denaturation of cryptolepain in the molten globule like state is non-cooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts, possibly domains, in the molecular structure of cryptolepain, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of A state (molten globule state) of cryptolepain is unique, as lower concentration of denaturant, not only induces structure but also facilitate transition from one molten globule like state (MG(1)) into another (MG(2)). The increase of pH drives the protein into alkaline denatured state characterized by the absence of any ANS binding. GuHCl- and urea-induced unfolding transition curves at pH 12.0 were non-coincidental indicating the presence of an intermediate in the unfolding pathway.  相似文献   

10.
Chakraborty S  Ittah V  Bai P  Luo L  Haas E  Peng Z 《Biochemistry》2001,40(24):7228-7238
The fluorescence properties of three variants of alpha-lactalbumin (alpha-LA) containing a single tryptophan residue were investigated under native, molten globule, and unfolded conditions. These proteins have levels of secondary structure and stability similar to those of the wild type. The fluorescence signal in the native state is dominated by that of W104, with the signal of W60 and W118 significantly quenched by the disulfide bonds in their vicinity. In the molten globule state, the magnitude of the fluorescence signal of W60 and W118 increases, due to the loss of rigid, specific side chain packing. In contrast, the magnitude of the signal of W104 decreases in the molten globule state, perhaps due to the protonation of H107 or quenching by D102 or K108. The solvent accessibilities of individual tryptophan residues were investigated by their fluorescence emission maximum and by acrylamide quenching studies. In the native state, the order of solvent accessibility is as follows: W118 > W60 > W104. This order changes to W60 > W104 > W118 in the molten globule state. Remarkably, the solvent accessibility of W118 in the alpha-LA molten globule is lower than that in the native state. The dynamic properties of the three tryptophan residues were examined by time-resolved fluorescence anisotropy decay studies. The overall rotation of the molecule can be observed in both the native and molten globule states. In the molten globule state, there is an increase in the extent of local backbone fluctuations with respect to the native state. However, the fluctuation is not sufficient to result in complete motional averaging. The three tryptophan residues in the native and molten globule states have different degrees of motional freedom, reflecting the folding pattern and dynamic heterogeneity of these states. Taken together, these studies provide new insight into the structure and dynamics of the alpha-LA molten globule, which serves as a prototype for partially folded proteins.  相似文献   

11.
Demarest SJ  Horng JC  Raleigh DP 《Proteins》2001,42(2):237-242
The molten globule state of alpha-lactalbumin (alpha LA) has served as a paradigm for understanding the role of these partially folded states in protein folding. We previously showed that a peptide construct consisting of the A and B helices (residues 1-38) cross-linked to the D- and C-terminal 3(10) helices (residues 101-120) of alpha LA is capable of folding to a stable molten globule-like state. Here, we report the study of three peptide constructs that are designed to investigate the contribution two short hydrophobic sequences located near the C-terminus of alpha LA make to the structure and stability of the alpha LA molten globule state. These regions of the protein have been shown to form stable non-native structures in isolation. The three peptide constructs contain residues 1-38 cross-linked to three separate C-terminal peptides via the native 28-111 disulfide bond. The C-terminal peptides consist of residues 101-114, 106-120, and 106-114. The results of CD, fluorescence, ANS binding, and urea denaturation experiments indicate that constructs that lack either of the hydrophobic sequences (residues 101-105 and 115-120) are significantly less structured. These results highlight the importance of long-range, mutually stabilizing interactions within the molten globule state of the protein. Proteins 2001;42:237-242.  相似文献   

12.
The molten globule state is a partially folded conformer of proteins that has been the focus of intense study for more than two decades. This non-native fluctuating conformation has been linked to protein-folding intermediates, to biological function, and more recently to precursors in amyloid fibril formation. The molten globule state of human serum retinol-binding protein (RBP) has been postulated previously to be involved in the mechanism of ligand release (Ptitsyn, O. B., et al. (1993) FEBS Lett. 317, 181-184). Conserved residues within RBP have been identified and proposed to be key to folding and stability, although a link to a molten globule state has not previously been shown (Greene, L. H., et al. (2003) FEBS Lett. 553, 39-44). In this work, a detailed characterization of the acid-induced molten globule of RBP is presented. Using stopped-flow fluorescence spectroscopy in the presence of 8-anilino-1-naphthalene sulfonic acid (ANS), we show that RBP populates a state with molten-globule-like characteristics early in refolding. To gain insight into the structural features of the molten globule of RBP, we have monitored the denaturant-induced unfolding of this ensemble using NMR spectroscopy. The transition at the level of individual residues is significantly more cooperative than that found previously for the archetypal molten globule, alpha-lactalbumin (alpha-LA); this difference may be due to a predominantly beta-sheet structure present in RBP in contrast to the alpha-helical nature of the alpha-LA molten globule.  相似文献   

13.
Fluorescence anisotropy kinetics were employed to quantify the nanosecond mobility of tryptophan residues in different conformational states (native, molten globule, unfolded) of apomyoglobins. Of particular interest is the similarity between the fluorescence anisotropy decays of tryptophans in the native and molten globule states. We find that, in these compact states, tryptophan residues rotate rapidly within a cone of semiangle 22-25 degrees and a correlation time of 0.5 ns, in addition to rotating together with the whole protein with a correlation time of 7-11 ns. The similar nanosecond dynamics of tryptophan residues in both states suggests that the conformation changes that distinguish the molten globule and native states of apomyoglobins originate from either subtle, slow rearrangements or fast changes distant from these tryptophans.  相似文献   

14.
The molten globule state was shown to be the third thermodynamic state of protein molecules in addition to their native and unfolded states. On the other hand, it was reported that optical and hydrodynamic properties of pH-denatured apomyoglobin depend on the nature of anions added to the protein solution. This observation was used to conclude that there are many 'partly folded' intermediates between the native and unfolded states rather than one distinct molten globule state. However, little is known on the structures of pH-denatured apomyoglobin in the presence of different anions. Two tyrosine residues in horse apomyoglobin have been successively modified by the reaction with tetranitromethane. This approach was employed to measure the distances between tryptophans and modified tyrosines in different states of apomyoglobin by the method of direct energy transfer. Experimental data show that the distance between the middle of the A-helix and the beginning of the G-helix and/or the end of the H-helix in 'anion-induced' states are very close to those in the native holo- and apomyoglobins. This suggests that the AGH helical complex, being the most structured part of apomyoglobin in the molten globule state, exists also in pH-denatured apomyoglobin in the presence of different anions. Consequently, all non-native forms of apomyoglobin studied so far share the common important feature of its native structure.  相似文献   

15.
The apoflavodoxin fragment comprising residues 1-149 that can be obtained by chemical cleavage of the C-terminal alpha-helix of the full-length protein is known to populate a molten globule conformation that displays a cooperative behaviour and experiences two-state urea and thermal denaturation. Here, we have used a recombinant form of this fragment to investigate molten globule energetics and to derive structural information by equilibrium Phi-analysis. We have characterized 15 mutant fragments designed to probe the persistence of native interactions in the molten globule and compared their conformational stability to that of the equivalent full-length apoflavodoxin mutants. According to our data, most of the mutations analysed modify the stability of the molten globule fragment following the trend observed when the same mutations are implemented in the full-length protein. However, the changes in stability observed in the molten globule are much smaller and the Phi-values calculated are (with a single exception) below 0.4. This is consistent with an overall and significant debilitation of the native structure. Nevertheless, the fact that the molten globule fragment can be stabilised using as a guide the native structure of the full-length protein (by increasing helix propensity, optimising charge interactions and filling small cavities) suggests that the overall structure of the molten globule is still quite close to native, in spite of the lowered stability observed.  相似文献   

16.
Bovine α-lactalbumin (BLA) is known to be present in molten globule form in its apo-state (i.e., Ca2+ depleted state). We explored the organization and dynamics of the functionally important tryptophan residues of BLA in native, molten globule and denatured states utilizing the wavelength-selective fluorescence approach. We observed red edge excitation shift (REES) of 7 nm for the tryptophans in native BLA. Interestingly, we show here that BLA tryptophans exhibit considerable REES (8 nm) in its molten globule state. Taken together, these results indicate that tryptophan residues in BLA in native as well as molten globule states experience motionally restricted environment. We further show that even the denatured form of BLA exhibits a modest REES of 3 nm, indicating that the tryptophans are shielded from bulk solvent, even when denatured, due to the presence of residual structure around tryptophan(s). This is further supported by wavelength-dependent changes in fluorescence anisotropy and lifetime for BLA tryptophans. These novel results constitute one of the first reports of REES in the molten globule state of proteins, and could provide vital insight into the role of tryptophans in the function of BLA in its molten globule state in particular, and other partially ordered proteins in general.  相似文献   

17.
Pressure-induced reversible conformational changes of sperm whale apomyoglobin have been studied between 30 bar and 3000 bar on individual residue basis by utilizing 1H/15N hetero nuclear single-quantum coherence two-dimensional NMR spectroscopy at pH 6.0 and 35 degrees C. Apomyoglobin showed a series of pressure-dependent NMR spectra as a function of pressure, assignable to the native (N), intermediates (I), molten globule (MG) and unfolded (U) conformers. At 30 bar, the native fold (N) shows disorder only in the F helix. Between 500 bar and 1200 bar, a series of locally disordered conformers I are produced, in which local disorder occurs in the C helix, the CD loop, the G helix and part of the H helix. At 2000 bar, most cross-peaks exhibit severe line-broadening, suggesting the formation of a molten globule, but at 3000 bar all the cross-peaks reappear, showing that the molten globule turns into a well-hydrated, mobile unfolded conformation U. Since all the spectral changes were reversible with pressure, apomyoglobin is considered to exist as an equilibrium mixture of the N, I, MG and U conformers at all pressures. MG is situated at 2.4+/-(0.1) kcal/mol above N at 1 bar and the unfolding transition from the combined N-I state to MG is accompanied by a loss of partial molar volume by 75+/-(3) ml/mol. On the basis of these observations, we postulate a theorem that the partial molar volume of a protein decreases in parallel with the loss of its conformational order.  相似文献   

18.
Molten globules are partially folded states of proteins which are generally believed to mimic structures formed during the folding process. In order to determine the minimal requirements for the formation of a molten globule state, we have prepared a set of peptide models of the molten globule state of human alpha-lactalbumin (alphaLA). A peptide consisting of residues 1-38 crosslinked, via the native 28-111 disulfide bond, to a peptide corresponding to residues 95-120 forms a partially folded state at pH 2.8 which has all of the characteristics of the molten globule state of alphaLA as judged by near and far UV CD, fluorescence, ANS binding and urea denaturation experiments. The structure of the peptide construct is the same at pH 7.0. Deletion of residues 95-100 from the construct has little effect. Thus, less than half the sequence is required to form a molten globule. Further truncation corresponding to the selective deletion of the A (residues 1-19) or D (residues 101-110) helices or the C-terminal 310 helix (residues 112-120) leads to a significant loss of structure. The loss of structure which results from the deletion of any of these three regions is much greater than that which would be expected based upon the non-cooperative loss of local helical structure. Deletion of residues corresponding to the region of the D helix or C-terminal 310 helix region results in a peptide construct which is largely unfolded and contains no more helical structure than is expected from the sum of the helicity of the two reduced peptides. These experiments have defined the minimum core structure of the alphaLA molten globule state.  相似文献   

19.
The structure, stability, and unfolding-refolding kinetics of a chimeric protein, in which the amino acid sequence of the flexible loop region (residues 105-110) comes from equine lysozyme and the remainder of the sequence comes from bovine alpha-lactalbumin were studied by circular dichroism spectroscopy and stopped-flow measurements, and the results were compared with those of bovine alpha-lactalbumin. The substitution of the flexible loop in bovine alpha-lactalbumin with the helix D of equine lysozyme destabilizes the molten globule state, although the native state is significantly stabilized by substitution of the flexible loop region. The kinetic refolding and unfolding experiments showed that the chimeric protein refolds significantly faster and unfolds substantially slower than bovine alpha-lactalbumin. To characterize the transition state between the molten globule and the native states, we investigated the guanidine hydrochloride concentration dependence of the rate constants of refolding and unfolding. Despite the significant differences in the stabilities of both the molten globule and native states between the chimeric protein and bovine alpha-lactalbumin, the free energy level of the transition state is not affected by the amino acid substitution in the flexible loop region. Our results suggest that the destabilization in the molten globule state of the chimeric protein is caused by the disruption of the non-native interaction in the flexible loop region and that the disruption of the non-native interaction reduces the free energy barrier of refolding. We conclude that the non-native interaction in the molten globule state may act as a kinetic trap for the folding of alpha-lactalbumin.  相似文献   

20.
Molecular dynamics simulations are used to probe the properties of non-native states of the protein human alpha-lactalbumin (human alpha-LA) with a detailed atomistic model in an implicit aqueous solvent environment. To sample the conformational space, a biasing force is introduced that increases the radius of gyration relative to the native state and generates a large number of low-energy conformers that differ in terms of their root-mean-square deviation, for a given radius of gyration. The resulting structures are relaxed by unbiased simulations and used as models of the molten globule and partly denatured states of human alpha-LA, based on measured radii of gyration obtained from nuclear magnetic resonance experiments. The ensembles of structures agree in their overall properties with experimental data available for the human alpha-LA molten globule and its more denatured states. In particular, the simulation results show that the native-like fold of the alpha-domain is preserved in the molten globule. Further, a considerable proportion of the antiparallel beta-strand in the beta-domain are present. This indicates that the lack of hydrogen exchange protection found experimentally for the beta-domain is due to rearrangement of the beta-sheet involving transient populations of non-native beta-structures. The simulations also provide details concerning the ensemble of structures that contribute as the molten globule unfolds and shows, in accord with experimental data, that unfolding is not cooperative; i.e. the various structural elements do not unfold simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号