首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ba3Al2O5Cl2:Eu2+ phosphor was prepared by combustion synthesis (CS). The prepared phosphor was excited at 329 nm; the phosphors shows an efficient bluish‐green wide‐band emission centred at 490 nm, which originates from the 4f6d1 → 4f7 transition of Eu2+ ions. The excitation spectra of the phosphors have a band centred at 329 nm. It was also characterized by XRD, FT–IR for confirmation of phase purity, and FT–IR analysis indicated the vibrations of metal–oxygen (M–O) groups. SEM shows the morphology of the phosphor at the submicron scale. The results indicate that Ba3Al2O5Cl2:Eu2+ phosphor may be applicable for solid‐state lighting purposes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Ru Liu  Xigui Wang 《Luminescence》2020,35(1):114-119
Eu3+‐doped 6LaPO4–3La3PO7–2La7P3O18 red luminescent phosphors were synthesized by co‐deposition and high‐temperature solid‐state methods and its polyphase state was confirmed by X‐ray diffraction analysis. Transmission electron microscopy showed the grain morphology as a mixture of rods and spheres. Luminescence properties of the phosphor were investigated and its red emission parameters were evaluated as a function of Eu3+ concentration (3.00–6.00 mol%). Excitation spectra of 6LaPO4–3La3PO7–2La7P3O18:Eu3+ showed strong absorption bands at 280, 395, and 466 nm, while the luminescence spectra exhibited prominent red emission peak centred at 615 nm (5D07F2) in the red region. CIE chromaticity coordinates of the 6LaPO4–3La3PO7–2La7P3O18:5%Eu3+ phosphor were (0.668, 0.313) in the red region, and defined its potential application as a red phosphor.  相似文献   

3.
A novel blue‐emitting phosphor, Eu2+‐doping Al4B2O9, was prepared via a modified solid‐state reaction. Al4B2O9:Eu2+ nanoparticles with diameters varying in a range from 20 to 50 nm were obtained using urea as an auxiliary reagent at the optimum temperature of 850°C. The crystallization and particle sizes of Al4B2O9:Eu2+ were investigated using powder X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Photoluminescence (PL) results showed that Al4B2O9:Eu2+ phosphor could be efficiently excited by the ultraviolet region from 240 to 410 nm, exhibiting bright blue emission. Further investigation on concentration‐dependent emission spectra indicated that the Al3.997B2O9:Eu2+0.003 phosphor exhibited the strongest luminescent, and the relative PL intensity decreased with increasing Eu2+ concentration due to concentration quenching. In addition, the concentration quenching for the one‐Eu‐site emission centers was caused by the electric multipole–multipole interaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were synthesized using the solid‐state reaction method. X‐Ray diffraction (XRD) and photoluminescence (PL) analyses were used to characterize the phosphors. The XRD results revealed that the synthesized CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were crystalline and are assigned to the monoclinic structure with a space group C2/c. The calculated crystal sizes of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors with a main (221) diffraction peak were 44.87 and 53.51 nm, respectively. Energy‐dispersive X‐ray spectroscopy (EDX) confirmed the proper preparation of the sample. The PL emission spectra of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors have a broad band peak at 444.5 and 466 nm, respectively, which is due to electronic transition from 4f65d1 to 4f7. The afterglow results indicate that the CaMgSi2O6:Eu2+,Dy3+ phosphor has better persistence luminescence than the CaMgSi2O6:Eu2+,Ce3+ phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, MAl2SixO2x+4:Eu2+/Eu3+ (Eu2+ + Eu3+ = 2%, molar ratio; M = Mg, Ca, Sr, Ba; x = 0, 0.5, 1, 1.5, 2) phosphors with different SiO2 concentrations (the ratio of SiO2 to MAl2O4 is n%, n = 0, 50, 100, 150, 200, respectively) were prepared by high‐temperature solid‐state reaction under atmospheric air conditions. Their structures and photoluminescent properties were systematically researched. The results indicate that Eu3+ ions have been reduced and Eu2+ ions are obtained in air through the self‐reduction mechanism. The alkaline earth metal ions and doping SiO2 strongly affect the crystalline phase and photoluminescent properties of samples, including microstructures, relative intensity of Eu2+ to Eu3+, location of emission lines/bands. It is interesting and important that the emission color and intensities of europium‐doped various phosphors which consist of aluminosilicate matrices prepared under atmospheric air conditions could be modulated by changing the kinds of alkaline earth metal and the content of SiO2.  相似文献   

6.
A series of Ca2Mg0.25Al1.5Si1.25O7:Ce3+/Eu2+/Tb3+ phosphors was been prepared via a conventional high temperature solid‐state reaction and their luminescence properties were studied. The emission spectra of Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+ and Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Tb3+ phosphors show not only a band due to Ce3+ ions (409 nm) but also as a band due to Eu2+ (520 nm) and Tb3+ (542 nm) ions. More importantly, the effective energy transfer from Ce3+ to Eu2+ and Tb3+ ions was confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and energy transfer mechanism were investigated and were demonstrated to be of resonant type via dipole–dipole (Ce3+ to Eu2+) and dipole–quadrupole (Ce3+ to Tb3+) reactions, respectively. Under excitation at 350 nm, the emitting color could be changed from blue to green by adjusting the relative doping concentration of Ce3+ and Eu2+ ions as well as Ce3+ and Tb3+ ions. The above results indicate that Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+/Tb3+ are promising single‐phase blue‐to‐green phosphors for application in phosphor conversion white‐light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Gd2O2S:Eu3+ nanophosphors have been successfully synthesized using microwave irradiation and γ‐irradiation methods with polyvinyl pyrrolidone as a stabilizer. The physical and luminescence spectra were compared. The morphologies of both Gd2O2S:Eu3+ nanophosphors were in the hexagonal phase and mainly consisted of spherical nanostructures with diameters of ~90 nm and ~50 nm for both microwave irradiation and γ‐irradiation methods. Upon 325 nm of ultraviolet (UV) light excitation, strong red emissions (626 nm) were observed for both methods; these emissions corresponded to the 5D07F2 transition of Eu3+ ions. However, Gd2O2S:Eu3+ nanophosphors following microwave treatment showed better luminescence intensity than Gd2O2S:Eu3+ nanophosphors treated with γ‐irradiation. This difference was attributed to the crystallinity phase and surface quenching effects of Gd2O2S:Eu3+ nanophosphors. The reaction mechanisms of Gd2O2S:Eu3+ nanophosphors in both methods are discussed in detail.  相似文献   

8.
We have synthesized and characterized a new BaCa2Al8O15:Eu2+,Dy3+ phosphor prepared by the combustion method. X‐ray diffraction, thermoluminescence, scanning electron microscope, time decay and optical spectral analysis photoluminescence excitation, emission spectra were used to characterize the phosphors. Broadband ultraviolet excited luminescence of the BaCa2Al8O15:Eu2+,Dy3+ was observed in the blue region (λmax = 435 nm) due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. Scanning electron microscopy has been used for exploring the morphological properties of the prepared phosphors. The BaCa2Al8O15:Eu2+ phosphor has a blue afterglow when Dy3+ ions were co‐doped. The thermoluminescence spectra show that the Dy3+ ion induces a proper trap in the phosphor with a depth of 0.67 eV and results in a long afterglow phosphorescence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The BaB2O4:Eu3+ nano/microphosphors with sphere‐, rod‐, and granular‐like morphologies were successfully obtained by a two‐step method using Ba‐B‐O:Eu3+ as the precursor. The structure, morphology and photoluminescent properties of the products were characterized by Fourier transfer infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermogravimetry‐differential thermal analysis (TG‐DTA), scanning electron microscopy (SEM) and photoluminescence (PL). The formation mechanisms of Ba‐B‐O:Eu3+ and BaB2O4:Eu3+ were proposed. The results show that the BaB2O4:Eu3+ could retain the original morphologies of their respective precursors largely. The BaB2O4:Eu3+ prepared by this two‐step method exhibited better morphology, smaller particle size and better crystallinity than when prepared by a solid‐state method. The granular‐like BaB2O4:Eu3+ red phosphor prepared by this two‐step method exhibited stronger PL intensity and better red color purity than when prepared by a solid‐state method.  相似文献   

10.
The present communication is strongly focused on the investigation of synthesis, structural and luminescence properties of cerium (Ce3+)- and europium (Eu3+)-activated Zn4Al22O37 phosphors. Ce3+- and Eu3+-doped Zn4Al22O37 novel phosphors were prepared using a solution combustion synthesis route. Structural properties were studied using powder X-ray diffraction and high-resolution transverse electron microscopy. The optical properties were studied using ultraviolet–visible light spectroscopy and Fourier transform infrared spectroscopy; luminescence properties were studied using a photoluminescence (PL) technique. The crystal structure of the prepared Zn4Al22O37 host and Ce3+- and Eu3+-activated Zn4Al22O37 phosphors was investigated and was found to have a hexagonal structure. The measured PL emission spectrum of the Ce3+-doped Zn4Al22O37 phosphor showed an intense and broad emission band centred at 421 nm under a 298 nm excitation wavelength. By contrast, the Eu3+-doped Zn4Al22O37 phosphor exhibited two strong and intense emission bands at approximately 594 nm (orange) and 614 nm (red), which were monitored under 395 nm excitation. The Commission Internationale de l’Eclairage (CIE) colour coordinates of the Ce3+-doped Zn4Al22O37 were investigated and found to be x = 0.1567, y = 0.0637 (blue) at 421 nm and for Eu3+-doped Zn4Al22O37 were x = 0.6018, y = 0.3976 (orange) at 594 nm and x = 0.6779, y = 0.3219 (red) at 614 nm emission. The luminescence behaviour of the synthesized phosphors suggested that these phosphors may be used in lighting applications.  相似文献   

11.
Barium‐gadolinium‐titanate (BaGd2Ti4O12) powder ceramics doped with rare‐earth ions (Eu3+ and Tb3+) were synthesized by a solid‐state reaction method. From the X‐ray diffraction spectrum, it was observed that Eu3+ and Tb3+:BaGd2Ti4O12 powder ceramics are crystallized in the form of an orthorhombic structure. Scanning electron microscopy image shows that the particles are agglomerated and the particle size is about 200 nm. Eu3+‐ and Tb3+‐doped BaGd2Ti4O12 powder ceramics were examined by energy dispersive X‐ray analysis, Fourier transform infrared spectroscopy, photoluminescence and thermoluminescence (TL) spectra. Emission spectra of Eu3+‐doped BaGd2Ti4O12 powder ceramics showed bright red emission at 613 nm (5D07F2) with an excitation wavelength λexci = 408 nm (7F05D3) and Tb3+:BaGd2Ti4O12 ceramic powder has shown green emission at 534 nm (5D47F5) with an excitation wavelength λexci = 331 nm ((7F65D1). TL spectra show that Eu3+ and Tb3+ ions affect TL sensitivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A blue‐emitting phosphor Ca12Al14O32F2:Eu2+ was synthesized using a high‐temperature solid‐state reaction under a reductive atmosphere. The X‐ray diffraction measurements indicate that a pure phase Ca12Al14O32F2:Eu2+ can be obtained for low doping concentration of Eu2+. The phosphor has a strong absorption in the range 270–420 nm with a maximum at ~340 nm and blue emission in the range 400–500 nm with chromatic coordination of (0.152, 0.045). The optimal doping concentration is ~0.24. In addition, the luminescence properties of the as‐synthesized phosphor were evaluated by comparison with those of Ca12Al14O32Cl2:Eu2+ and the commercially available phosphor BaMgAl10O17:Eu2+. The emission intensity of Ca12Al14O32F2:Eu2+ was ~72% that of BaMgAl10O17:Eu2+ under excitation at λ = 375 nm. The results indicate that Ca12Al14O32F2:Eu2+ has potential application as a near‐UV‐convertible blue phosphor for white light‐emitting diodes.  相似文献   

13.
Red‐emitting Mg4Nb2O9:Eu3+ phosphor is synthesized via a solid‐state reaction method in air, and its crystal structure and luminescence are investigated. The phosphor can be excited efficiently by ~ 395 nm light, coupled well with a ~ 395 nm near‐ultraviolet chip and emits red light at ~ 613 nm with sharp spectra due to 5D07 F2 transition of the Eu3+ ion. Mg4Nb2O9:Eu3+ phosphor sintered at 1350 ºC shows Commission international de I'Eclairage (CIE) chromaticity coordinates of x = 0.6354, y = 0.3592, and is a potential red‐emitting phosphor candidate for white light‐emitting diodes (W‐LEDs) under ~ 395 nm near‐ultraviolet LED chip excitation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Rare‐earth ions play an important role in eco‐friendly solid‐state lighting for the lighting industry. In the present study we were interested in Eu3+ ion‐doped inorganic phosphors for near ultraviolet (UV) excited light‐emitting diode (LED) applications. Eu3+ ion‐activated SrYAl3O7 phosphors were prepared using a solution combustion route at 550°C. Photoluminescence characterization of SrYAl3O7:Eu3+ phosphors showed a 612 nm emission peak in the red region of the spectrum due to the 5D07F2 transition of Eu3+ ions under excitation at 395 nm in the near‐UV region and at the 466 nm blue excitation wavelength. These red and blue emissions are supported for white light generation for LED lighting. Structure, bonding between each element of the sample and morphology of the sample were analysed using X‐ray diffraction (XRD) and scanning electron microscopy (SEM), which showed that the samples were crystallized in a well known structure. The phosphor was irradiated with a 60Co‐γ (gamma) source at a dose rate of 7.2 kGy/h. Thermoluminescence (TL) studies of these Eu3+‐doped SrYAl3O7 phosphors were performed using a Nucleonix TL 1009I TL reader. Trapping parameters of this phosphor such as activation energy (E), order of kinetics (b) and frequency factor (s) were calculated using Chen's peak shape method, the initial rise method and Ilich's method.  相似文献   

15.
Ca2Al2O5:Eu3+, Ca2Al2O5:Dy3+ and Ca2Al2O5:Tb3+ phosphors were synthesized using a combustion synthesis method. The prepared phosphors were characterized by X‐ray powder diffraction for phase purity, by scanning electron microscopy for morphology, and by photoluminescence for emission and excitation measurements. The Ca2Al2O5:Eu3+ phosphors could be efficiently excited at 396 nm and showed red emission at 594 nm and 616 nm due to 5D0 → 7F1 and 5D0 → 7F2 transitions. Dy3+‐doped phosphors showed blue emission at 482 nm and yellow emission at 573 nm. Ca2Al2O5:Tb3+ phosphors showed emission at 545 nm when excited at 352 nm. Concentration quenching occurred in both Eu3+ and Dy3+phosphors at 0.5 mol%. Photoluminescence results suggested that the aluminate‐based phosphor could be a potential candidate for application in environmentally friendly based lighting technologies.  相似文献   

16.
The MgO–Ga2O3–SiO2 glasses and glass‐ceramics samples doped with Eu2+/Mn2+/Er3+ and heated in reductive atmosphere were prepared by the sol–gel method. The structure, morphology and the luminescence properties were studied using X‐ray diffraction, high‐resolution transmission electron microscope, fluorescence spectra, and up‐conversion emission. The luminescence characteristics of doped ions could be influenced by temperature and matrix component. The characteristic emission of Mn2+, Eu2+ and Er3+ were seen and the energy transfer efficiency from Eu2+ to Mn2+ was enhanced as Mn2+ concentration was increased. In addition, the two‐photon process was determined for the Er3+‐doped samples.  相似文献   

17.
The new borate phosphor CaB2O4:Eu3+ was synthesized by solid‐state method and their photoluminescence properties were investigated. The results show that the pure phase of CaB2O4 could be available at 900°C, CaB2O4:Eu3+ phosphor could be effectively excited by the near ultraviolet light (NUV) (392 nm), and the luminescent intensity of CaB2O4:Eu3+ phosphor reached to the highest when the doped‐Eu3+ content was 4 mol%. The emission spectra of CaB2O4:Eu3+ phosphor could exhibit red emission at 612 nm and orange emission at 588 nm, which are ascribed to the 5D07F2 and 5D07F1 transitions of Eu3+ ions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Europium trivalent (Eu3+)‐doped Y2O3 nanopowders of different concentrations (0.5, 2.5, 5 or 7 at.%) were synthesized by the sol‐gel method, at different pH values (pH 2, 5 or 8) and annealing temperatures (600°C, 800°C or 1000°C). The nanopowders samples were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), Fourier transform infrared spectroscopy (FT‐IR) and steady state photoluminescence spectroscopy. The effect of pH of solution and annealing temperatures on structural, morphological and photoluminescence properties of Eu3+‐doped Y2O3 were studied and are discussed. It was found that the average crystallite size of the nanopowders increased with increasing pH and annealing temperature values. The Y2O3:Eu3+ material presented different morphology and its evolution depended on the pH value and the annealing temperature. Activation energies at different pH values were determined and are discussed. Under ultraviolet (UV) light excitation, Y2O3:Eu3+ showed narrow emission peaks corresponding to the 5D0–7FJ (J = 0, 1, 2 and 3) transitions of the Eu3+ ion, with the most intense red emission at 611 assigned to forced electric dipole 5D07F2. The emission intensity became more intense with increasing annealing temperature and pH values, related to the improvement of crystalline quality. For the 1000°C annealing temperature, the emission intensity presented a maximum at pH 5 related to the uniform cubic‐shaped particles. It was found that for lower annealing temperatures (small crystallite size) the CTB (charge transfer band) position presented a red shift. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A novel blue green‐emitting phosphor Ba2ZnSi2O7 : Eu2+ was prepared by combustion synthesis method and an efficient bluish green emission under from ultraviolet to visible light was observed. The emission spectrum shows a single intensive band centered at 503 nm, which corresponds to the 4f65d1 → 4f7 transition of Eu2+. The excitation spectrum is a broad band extending from 260 to 465 nm, which matches the emission of ultraviolet light‐emitting diodes (UV‐LEDs). The effect of doped Eu2+ concentration on the emission intensity of Ba2ZnSi2O7 : Eu2+ was also investigated. The result indicates that Ba2ZnSi2O7 : Eu2+ can be potentially useful as a UV radiation‐converting phosphor for white light‐emitting diodes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Eu2+‐activated SrMg2Al16O27 novel phosphor was synthesized by a combustion method (550°C furnace). The prepared phosphor was first characterized by X‐ray diffraction (XRD) for confirmation of phase purity. SEM analysis showed the morphology of the phosphor. The photoluminescence characteristics showed broad‐band excitation at 324 nm, which was monitored at 465 nm emission wavelength. The SrMg2Al16O27:Eu2+ phosphor shows broad blue emission centred at 465 nm, emitting a blue light corresponding to 4f65d1 → 4f7 transition. Here we report the photoluminescence characteristics of the prepared phosphor and compare it with commercial BAM:Eu2+ phosphor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号