首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antarctic seabird populations have been much studied over the last decades as bioindicators of the nature of variability in the Southern Ocean marine ecosystem, and most attention has been focused on the role of food supply and the extent of sea ice. In addition, the rapid spread of tourism and the activities of researchers since the early 1960s have raised questions related to their real and potential impact on bird populations. Our data sets start in 1952 for several species of Antarctic seabirds and this study documents the trends over a 14-year period (1985–1999) in seven species breeding on Pointe Géologie archipelago (Terre Adélie, Antarctica). This is the first study where the direct impact of destruction of breeding sites (for building of an airstrip) is examined and where such long-term populations trends have been assessed in such a number of Antarctic species at one site. Trends from 1985 show that for the whole archipelago and when excluding islands destroyed, Adélie penguins and south polar skuas were the only species to show a significant increase (>3.5% annual change). The others species showed opposite trends, three increasing slightly (southern fulmars +0.4%, cape petrels +2.3%, snow petrels +0.9%) and two decreasing (emperor penguin −0.9%, southern giant petrel −3.9%). Three species particularly affected by the destruction of their breeding habitat (Adélie penguin, cape petrel, snow petrel) showed the capability to restore their populations. The availability of food and nesting sites is discussed in relation to environmental change. Species feeding on krill (Adélie penguins and cape petrels) increased more than other species; however, decrease of ice cover can increase availability of nesting sites. The importance of long-term studies is shown when assessing the role of human activities in Antarctica compared to larger-scale changes. Accepted: 18 September 2000  相似文献   

2.
Adélie penguins (Pygoscelis adeliae) are important predators of krill (Euphausia spp.) and Antarctic silverfish (Pleuragramma antarctica) during summer, are a key indicator of the status of the Southern Ocean ecosystem, and are therefore a focal species for the Committee for the Conservation of Antarctic Marine Living Resources (CCAMLR) Ecosystem Monitoring Program. The ability to monitor the population size of species potentially affected by Southern Ocean fisheries, i.e., the Adélie penguin, is critical for effective management of those resources. However, for several reasons, direct estimates of population size are not possible in many locations around Antarctica. In this study, we combine high-resolution (0.6 m) satellite imagery with spectral analysis in a supervised classification to estimate the sizes of Adélie penguin breeding colonies along Victoria Land in the Ross Sea and on the Antarctic Peninsula. Using satellite images paired with concurrent ground counts, we fit a generalized linear mixed model with Poisson errors to predict the abundance of breeding pairs as a function of the area of current-year guano staining identified in the satellite imagery. Guano-covered area proved to be an effective proxy for the number of penguins residing within. Our model provides a robust, quantitative mechanism for estimating the breeding population size of colonies captured in imagery and identifies terrain slope as a significant component influencing apparent nesting density. While our high-resolution satellite imagery technique was developed for the Adélie penguin, these principles are directly transferrable to other colonially nesting seabirds and other species that aggregate in fixed localities.  相似文献   

3.
Due to its high spatial resolution, broad spatial coverage, and cost-effectiveness, commercial satellite imagery is rapidly becoming a key component of biological monitoring in the Antarctic. While considerable success in surveying emperor penguins (Aptenodytes forsteri) has been facilitated by their large size and the visual simplicity of their habitat, there has been considerably less progress in mapping colonies on the Antarctic Peninsula and associated sub-Antarctic islands where smaller penguin species breed on topographically complex terrain composed of mixed substrates. Here, we demonstrate that Adélie penguin (Pygoscelis adeliae), chinstrap penguin (P. antarcticus), gentoo penguin (P. papua), and macaroni penguin (Eudyptes chrysolophus) colonies can be detected by high-resolution (2-m multispectral, 40–50-cm panchromatic) satellite imagery and that under ideal conditions, such imagery is capable of distinguishing among groups of species where they breed contiguously. To demonstrate the potential for satellite imagery to estimate penguin population abundance, we use satellite imagery of Paulet Island (63°35′S, 55°47′W) to estimate a site-wide population of 115,673 (99,222–127,203) breeding pairs of Adélie penguins.  相似文献   

4.
Petermann Island (65°10′S, 64°10′W), one of the Antarctic Peninsula’s most frequently visited locations, is at the epicenter of a rapid shift in which an Adélie penguin dominated fauna is becoming gentoo penguin dominated. Over the course of five seasons, the breeding productivity of Adélie and gentoo penguins breeding at Petermann Island were monitored to identify drivers of this rapid community change. The impact of tourist visitation on breeding success was also investigated. Consistent with larger trends in this region, the Adélie penguin population decreased by 29% and the gentoo penguin population increased by 27% between the 2003/2004 and 2007/2008 seasons. Reproductive success among Adélie penguins ranged from 1.09 to 1.32 crèched chicks/nest, which was higher than or comparable to other sites and is an unlikely explanation for the precipitous decline of Adélie penguins at Petermann Island. Whereas gentoo penguin reproductive success was lowest in colonies frequently visited by tourists, Adélie penguin colonies frequently visited by tourists had higher reproductive success than those visited only occasionally. These results are placed in the context of other studies on reproductive success and the impact of tourist visitation on breeding colonies of Adélie and gentoo penguins.  相似文献   

5.
Understanding the scales at which environmental variability affects populations is critical for projecting population dynamics and species distributions in rapidly changing environments. Here we used a multilevel Bayesian analysis of range‐wide survey data for Adélie penguins to characterize multidecadal and annual effects of sea ice on population growth. We found that mean sea ice concentration at breeding colonies (i.e., “prevailing” environmental conditions) had robust nonlinear effects on multidecadal population trends and explained over 85% of the variance in mean population growth rates among sites. In contrast, despite considerable year‐to‐year fluctuations in abundance at most breeding colonies, annual sea ice fluctuations often explained less than 10% of the temporal variance in population growth rates. Our study provides an understanding of the spatially and temporally dynamic environmental factors that define the range limits of Adélie penguins, further establishing this iconic marine predator as a true sea ice obligate and providing a firm basis for projection under scenarios of future climate change. Yet, given the weak effects of annual sea ice relative to the large unexplained variance in year‐to‐year growth rates, the ability to generate useful short‐term forecasts of Adélie penguin breeding abundance will be extremely limited. Our approach provides a powerful framework for linking short‐ and longer term population processes to environmental conditions that can be applied to any species, facilitating a richer understanding of ecological predictability and sensitivity to global change.  相似文献   

6.
To investigate the role of sea ice cover on penguin populations we used principal component analysis to compare population variables of Adélie (Pygoscelis adeliae) and chinstrap (Pygoscelis antarctica) penguins breeding on Signy Island, South Orkney Islands with local (from direct observations) and regional (from remote sensing data) sea ice variables. Throughout the study period, the Adélie penguin population size remained stable, whereas that of chinstrap penguins decreased slightly. For neither species were there significant relationships between population size and breeding success, except for an apparent inverse density-dependent relationship between the number of Adélie breeding pairs and the number of eggs hatching. For both species, no general relationship was found between either population size or breeding success and the local sea ice conditions. However, the regional sea ice extent at a particular time prior to the start of the breeding season was related to the number of birds that arrived to breed. For both species, this period occurred before the sea ice reached its maximum extent and was slightly earlier for Adélie than for chinstrap penguins. These results suggest that sea ice conditions outside the breeding season may play an important role in penguin population processes.  相似文献   

7.
Breeding population sizes of penguins, fulmarine etrels and skuas were estimated for the first time on a major part of the Terre Adélie coast and a section of the King George V Land coast during the 1997/1998 austral summer. We counted 106,400 breeding pairs and 12,400 Adélie penguin (Pygoscelis adeliae) chicks by direct counts, and 6960 breeding pairs from aerial photographs. Minimum breeding populations for other species are (direct counts): Antarctic fulmar (Fulmarus glacialoides) 6861 pairs, Antarctic petrel (Thalassoica antarctica) 4574 pairs, cape petrel (Daption capense) 194 pairs, snow petrel (Pagodroma nivea) 767 pairs, south polar skua (Catharacta maccormicki) 129 pairs and subantarctic skua (Catharacta lonnbergi) 1 breeding bird. We discovered 29 new seabird breeding locations in King George V Land, including 6 Antarctic fulmar, 4 Antarctic petrel, 3 cape petrel, 6 snow petrel and 10 south polar skua colonies. The largest colonies found contained up to 4205 breeding pairs of Antarctic fulmars. Population sizes of all species obtained in this study are higher than those found during previous partial surveys. Although these differences are in great part due to differences in survey methods, they also reflect real population changes. Our minimum population sizes obtained for a small portion of the Antarctic coast (<2%) suggest an underestimation of the estimated world breeding populations for several species of Antarctic seabirds. Accepted: 28 August 1998  相似文献   

8.
Climate warming and associated sea ice reductions in Antarctica have modified habitat conditions for some species. These include the congeneric Adélie, chinstrap and gentoo penguins, which now demonstrate remarkable population responses to regional warming. However, inconsistencies in the direction of population changes between species at different study sites complicate the understanding of causal processes. Here, we show that at the South Orkney Islands where the three species breed sympatrically, the less ice‐adapted gentoo penguins increased significantly in numbers over the last 26 years, whereas chinstrap and Adélie penguins both declined. These trends occurred in parallel with regional long‐term warming and significant reduction in sea ice extent. Periodical warm events, with teleconnections to the tropical Pacific, caused cycles in sea ice leading to reduced prey biomass, and simultaneous interannual population decreases in the three penguin species. With the loss of sea ice, Adélie penguins were less buffered against the environment, their numbers fluctuated greatly and their population response was strong and linear. Chinstrap penguins, considered to be better adapted to ice‐free conditions, were affected by discrete events of locally increased ice cover, but showed less variable, nonlinear responses to sea ice loss. Gentoo penguins were temporarily affected by negative anomalies in regional sea ice, but persistent sea ice reductions were likely to increase their available niche, which is likely to be substantially segregated from that of their more abundant congeners. Thus, the regional consequences of global climate perturbations on the sea ice phenology affect the marine ecosystem, with repercussions for penguin food supply and competition for resources. Ultimately, variability in penguin populations with warming reflects the local balance between penguin adaptation to ice conditions and trophic‐mediated changes cascading from global climate forcing.  相似文献   

9.
Eva Banda  Guillermo Blanco 《Oikos》2009,118(7):991-1000
Nest‐site limitation may have different implications in the spatial distribution of breeding pairs depending on the availability of suitable habitat and the types of nest‐sites. Distribution of cavities suitable as nest sites may allow circumstantial aggregation or active choice of colonial nesting, which may have different implications on breeding performance through effects on breeding density, with variable costs and benefits depending on the consequences of intraspecific competition, social interactions and predation. We evaluated the effects of breeding density derived from nesting site limitation on breeding performance and predation at different spatial scales and considering multiple social, population and environmental limiting factors in the red‐billed chough Pyrrhocorax pyrrhocorax. The results indicate that variable breeding density may arise within the population depending on the availability and spatial distribution of nest‐sites. Nest‐site availability and distribution may also determine social breeding systems (isolated or aggregated) at variable densities, thus resembling differences found at different spatially distant populations under contrasting environmental conditions. Breeding performance was related to density‐dependent processes of population regulation, especially density‐dependent nest predation due to predator attraction to nest clusters. Results also indicate that predation pressure depend on density patterns at large scales. This suggest that predation may have important consequences on population dynamics of spatially structured populations depending on the strength of this kind of density dependence, which in turn may depend on habitat features affecting the prey but also the spatially variable guild of predators. Because habitat and nesting site availability may vary spatially depending on multiple human influences, understanding the strength and form in which breeding density and nest predation at different spatial scales may influence the size and persistence of populations can help to manage them more adequately.  相似文献   

10.
Emmerson L  Southwell C 《Oecologia》2011,167(4):951-965
The driving factors of survival, a key demographic process, have been particularly challenging to study, especially for winter migratory species such as the Adélie penguin (Pygoscelis adeliae). While winter environmental conditions clearly influence Antarctic seabird survival, it has been unclear to which environmental features they are most likely to respond. Here, we examine the influence of environmental fluctuations, broad climatic conditions and the success of the breeding season prior to winter on annual survival of an Adélie penguin population using mark–recapture models based on penguin tag and resight data over a 16-year period. This analysis required an extension to the basic Cormack–Jolly–Seber model by incorporating age structure in recapture and survival sub-models. By including model covariates, we show that survival of older penguins is primarily related to the amount and concentration of ice present in their winter foraging grounds. In contrast, fledgling and yearling survival depended on other factors in addition to the physical marine environment and outcomes of the previous breeding season, but we were unable to determine what these were. The relationship between sea-ice and survival differed with penguin age: extensive ice during the return journey to breeding colonies was detrimental to survival for the younger penguins, whereas either too little or too much ice (between 15 and 80% cover) in the winter foraging grounds was detrimental for adults. Our results demonstrate that predictions of Adélie penguin survival can be improved by taking into account penguin age, prior breeding conditions and environmental features.  相似文献   

11.
The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher‐order predators. Here, we compare the long‐term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundance and distribution of seabirds and marine mammals, and place these into context with palaeoclimate records in order to identify key environmental drivers associated with population changes. Our synthesis revealed two key factors underlying Southern Ocean predator population changes; (i) the availability of ice‐free ground for breeding and (ii) access to productive foraging grounds. The processes of glaciation and sea ice fluctuation were key; the distributions and abundances of elephant seals, snow petrels, gentoo, chinstrap and Adélie penguins all responded strongly to the emergence of new breeding habitat coincident with deglaciation and reductions in sea ice. Access to productive foraging grounds was another limiting factor, with snow petrels, king and emperor penguins all affected by reduced prey availability in the past. Several species were isolated in glacial refugia and there is evidence that refuge populations were supported by polynyas. While the underlying drivers of population change were similar across most Southern Ocean predators, the individual responses of species to environmental change varied because of species specific factors such as dispersal ability and environmental sensitivity. Such interspecific differences are likely to affect the future climate change responses of Southern Ocean marine predators and should be considered in conservation plans. Comparative palaeoecological studies are a valuable source of long‐term data on species’ responses to environmental change that can provide important insights into future climate change responses. This synthesis highlights the importance of protecting productive foraging grounds proximate to breeding locations, as well as the potential role of polynyas as future Southern Ocean refugia.  相似文献   

12.
Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin (Aptenodytes forsteri). We present a population projection for the emperor penguin population of Terre Adélie, Antarctica, by linking demographic models (stage‐structured, seasonal, nonlinear, two‐sex matrix population models) to sea ice forecasts from an ensemble of IPCC climate models. Based on maximum likelihood capture‐mark‐recapture analysis, we find that seasonal sea ice concentration anomalies (SICa) affect adult survival and breeding success. Demographic models show that both deterministic and stochastic population growth rates are maximized at intermediate values of annual SICa, because neither the complete absence of sea ice, nor heavy and persistent sea ice, would provide satisfactory conditions for the emperor penguin. We show that under some conditions the stochastic growth rate is positively affected by the variance in SICa. We identify an ensemble of five general circulation climate models whose output closely matches the historical record of sea ice concentration in Terre Adélie. The output of this ensemble is used to produce stochastic forecasts of SICa, which in turn drive the population model. Uncertainty is included by incorporating multiple climate models and by a parametric bootstrap procedure that includes parameter uncertainty due to both model selection and estimation error. The median of these simulations predicts a decline of the Terre Adélie emperor penguin population of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90% or more. The uncertainty in population projections reflects large differences among climate models in their forecasts of future sea ice conditions. One such model predicts population increases over much of the century, but overall, the ensemble of models predicts that population declines are far more likely than population increases. We conclude that climate change is a significant risk for the emperor penguin. Our analytical approach, in which demographic models are linked to IPCC climate models, is powerful and generally applicable to other species and systems.  相似文献   

13.
Seabird life history is typified by low fecundity, high adult survival rates, and relatively long lives. Such traits act as buffers, enabling persistence of populations under variable environmental conditions. Numerous studies, however, have suggested strong sensitivity of seabirds to environmental variability. In the Antarctic Peninsula region, for example, Adélie penguin (Pygoscelis adeliae) populations have declined during the last three decades, attributed largely to rapid changes in environmental conditions and food availability. We use 30 years of mark-recapture data from known-age individuals in the South Shetland Islands and capture-mark-recapture models to estimate survival rates with respect to such environmental variation. We investigated specifically whether negative trends in survival rates were evident and whether indices of global, regional, and local environmental conditions considered important for Adélie penguin survival explained the variability in survival rates. Overall, negative trends in juvenile survival were evident, but adult survival rates exhibited high interannual variability. Indices of sea ice extent had the strongest correlations with survival rates, particularly Weddell Sea ice extent during spring among adults (r = 0.62) and during winter for juveniles (r = 0.46). An analysis of deviance, however, suggested that single environmental covariates explained <30 % of the observed variation in the full mark-recapture models. Despite positive effects of sea ice extent on survival rates of Adélie penguins, limited explanatory power of several environmental conditions previously identified as important for Adélie penguin survival underscores the difficulty of predicting future population responses in this region of rapid environmental change.  相似文献   

14.
The consequences of warming for Antarctic long‐lived organisms depend on their ability to survive changing patterns of climate and environmental variation. Among birds and mammals of different Antarctic regions, including emperor penguins, snow petrels, southern fulmars, Antarctic fur seals and Weddell seals, we found strong support for selection of life history traits that reduce interannual variation in fitness. These species maximize fitness by keeping a low interannual variance in the survival of adults and in their propensity to breed annually, which are the vital rates that influence most the variability in population growth rate (λ). All these species have been able to buffer these rates against the effects of recent climate‐driven habitat changes except for Antarctic fur seals, in the Southwest Atlantic. In this region of the Southern Ocean, the rapid increase in ecosystem fluctuation, associated with increasing climate variability observed since 1990, has limited and rendered less predictable the main fur seal food supply, Antarctic krill. This has increased the fitness costs of breeding for females, causing significant short‐term changes in population structure through mortality and low breeding output. Changes occur now with a frequency higher than the mean female fur seal generation time, and therefore are likely to limit their adaptive response. Fur seals are more likely to rely on phenotypic plasticity to cope with short‐term changes in order to maximize individual fitness. With more frequent extreme climatic events driving more frequent ecosystem fluctuation, the repercussions for life histories in many Antarctic birds and mammals are likely to increase, particularly at regional scales. In species with less flexible life histories that are more constrained by fluctuation in their critical habitats, like sea‐ice, this may cause demographic changes, population compensation and changes in distribution, as already observed in penguin species living in the Antarctic Peninsula and adjacent islands.  相似文献   

15.
Land-breeding marine animals such as penguins, flying seabirds and pinnipeds are important components of marine ecosystems, and their abundance has been used extensively as an indication of ecosystem status and change. Until recently, many efforts to measure and monitor abundance of these species’ groups have focussed on smaller populations and spatial scales, and efforts to account for perception bias and availability bias have been variable and often ad hoc. We describe a suite of new methods, technologies and estimation procedures for cost-effective, large-scale abundance estimation within a general estimation framework and illustrate their application on large Adélie penguin populations in two regions of East Antarctica. The methods include photographic sample counts, automated cameras for collecting availability data, and bootstrap estimation to adjust counts for the sampling fraction, perception bias, and availability bias, and are applicable for a range of land-breeding marine species. The methods will improve our ability to obtain population data over large spatial and population scales within tight logistic, environmental and time constraints. This first application of the methods has given new insights into the biases and uncertainties in abundance estimation for penguins and other land-breeding marine species. We provide guidelines for applying the methods in future surveys.  相似文献   

16.
Seabirds are considered to be useful and practical indicators of the state of marine ecosystems because they integrate across changes in the lower trophic levels and the physical environment. Signals from this key group of species can indicate broad scale impacts or response to environmental change. Recent studies of penguin populations, the most commonly abundant Antarctic seabirds in the west Antarctic Peninsula and western Ross Sea, have demonstrated that physical changes in Antarctic marine environments have profound effects on biota at high trophic levels. Large populations of the circumpolar-breeding Adélie penguin occur in East Antarctica, but direct, standardized population data across much of this vast coastline have been more limited than in other Antarctic regions. We combine extensive new population survey data, new population estimation methods, and re-interpreted historical survey data to assess decadal-scale change in East Antarctic Adélie penguin breeding populations. We show that, in contrast to the west Antarctic Peninsula and western Ross Sea where breeding populations have decreased or shown variable trends over the last 30 years, East Antarctic regional populations have almost doubled in abundance since the 1980’s and have been increasing since the earliest counts in the 1960’s. The population changes are associated with five-year lagged changes in the physical environment, suggesting that the changing environment impacts primarily on the pre-breeding age classes. East Antarctic marine ecosystems have been subject to a number of changes over the last 50 years which may have influenced Adélie penguin population growth, including decadal-scale climate variation, an inferred mid-20th century sea-ice contraction, and early-to-mid 20th century exploitation of fish and whale populations.  相似文献   

17.
Recent research has clearly shown that the fear of predation, i.e. aversion to taking risks, among mesopredators or grazers, and not merely flight from an apex predator to avoid predation, is an important aspect of ecosystem structuring. In only a few, though well-documented cases, however, has this been considered in the marine environment. Herein, we review studies that have quantified behavioral responses of Adélie penguins Pygoscelis adeliae and emperor penguins Aptenodytes forsteri to the direct presence of predators, and question why the penguins avoid entering or exiting the water at night. We also show, through literature review and new analyses of Adélie penguin diving data, that Antarctic penguins are capable of successful prey capture in the dark (defined here as <3.4 lux). Finally, we summarize extensive data on seasonal migration relative to darkness and prey availability. On the basis of our findings, we propose that penguins’ avoidance of foraging at night is due to fear of predation, and not to an inability to operate effectively in darkness. We further propose that, at polar latitudes where darkness is more a seasonal than a year-round, daily feature, this “risk aversion” affects migratory movements in both species, consistent with the “trade-off” hypothesis seen in other marine vertebrates weighing foraging success against predation risk in their choice of foraging habitat. Such non-consumptive, behavioral aspects of species interactions have yet to be considered as important in Southern Ocean food webs, but may help to explain enigmatic movement patterns and choice of foraging grounds in these penguin species.  相似文献   

18.
Each summer Adélie penguins breed in large disjunct colonies on ice-free areas around the Antarctic continent. Comprising > 10 million birds, this species represents a dominant feature of the Antarctic ecosystem. The patchy distribution within a large geographical range, natal philopatry and a probable history of refugia, suggest that this species is likely to exhibit significant genetic differentiation within and among colonies. We present data from seven microsatellite DNA loci for 442 individuals from 13 locations around the Antarctic continent. With the exception of one locus, there was no significant genic or genotypic heterogeneity across populations. Pairwise FST values were low with no value > 0.02. When all colonies were compared in a single analysis, the overall FST value was 0.0007. Moreover, assignment tests were relatively ineffective at correctly placing individuals into their respective collection sites. These data reveal a lack of genetic differentiation between Adélie penguin colonies around the Antarctic continent, despite substantial levels of genetic variation. We consider this homogeneity in terms of the dispersal of individuals among colonies and the size of breeding groups and discuss our results in terms of the glacial history of Antarctica.  相似文献   

19.
The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.  相似文献   

20.
The population dynamics of Antarctic seabirds are influenced by variations in winter sea ice extent and persistence; however, the type of relationship differs according to the region and the demographic parameter considered. We used annual presence/absence data obtained from 1,138 individually marked birds to study the influence of environmental and individual characteristics on the survival of Adélie penguins Pygoscelis adeliae at Edmonson Point (Ross Sea, Antarctica) between 1994 and 2005. About 25% of 600 birds marked as chicks were reobserved at the natal colony. The capture and survival rates of Adélie penguins at this colony increased with the age of individuals, and five age classes were identified for both parameters. Mean adult survival was 0.85 (SE = 0.01), and no effect of sex on survival was evident. Breeding propensity, as measured by adult capture rates, was close to one, indicating a constant breeding effort through time. Temporal variations in survival were best explained by a quadratic relationship with winter sea ice extent anomalies in the Ross Sea, suggesting that for this region optimal conditions are intermediate between too much and too little winter sea ice. This is likely the result of a balance between suitable wintering habitat and food availability. Survival rates were not correlated with the Southern Oscillation Index. Low adult survival after a season characterized by severe environmental conditions at breeding but favorable conditions during winter suggested an additional mortality mediated by the reproductive effort. Adélie penguins are sensitive indicators of environmental changes in the Antarctic, and the results from this study provide insights into regional responses of this species to variability in winter sea ice habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号