首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Clonal seaweeds are capable of regrowing from thallus fragments, whileunitary seaweeds lack this capacity. This capability determines significantdifferences in the farming and harvesting models to be applied to the twotypes of algae. Farming of non-clonal species in general, requires more stepsand a greater diversity of technologies than clonal seaweeds. In addition,clonal seaweeds may exhibit intra-clonal variation, considered here as anadditional source of variation from those known for unitary seaweeds (e.g.intra-individual and inter-population variation). Intra-clonal variation maymodify the efficiency and predictability of strain selection practices basedpurely on intra-individual and inter-population variation. Coalescence andformation of chimeric thalli occurs in many species of economic red algae. Coalescence affects recruitment success, survival and growth rates in manyof these taxa. It is concluded that the farming and harvesting modelsderived from unitary organisms have to be modified when applied toseaweeds with clonal or chimeric-type thallus organization.  相似文献   

2.
Rare earth elements (REEs) and Si in five species of seaweed, ambient surface seawaters, and suspended solid particles in the seawaters were determined separately. Inductively coupled plasma mass spectrometry (ICP-MS) was used for REEs and inductively coupled plasma emission spectrometry (ICP-ES) was used for Si in order to evaluate REEs as a tracer in seaweeds and to understand the source of inorganic elements, especially Si, in seaweeds. Two different REE patterns, one similar to that of the seawater solution and another resembling that of suspended particles, were observed in seaweeds, and the variation of REE patterns seems to show a clear dependence on the abundance of Si. The REE pattern and Si concentration seem to vary depending on the division: green and red algae showed REE patterns similar to that of suspended particles, but brown algae showed patterns closer to that of seawater solutions and relatively lower Si concentration. The possibility of contamination from silicate particles on the surface of seaweeds was ruled out for several reasons. Silicate particles, not dissolved silicate, have been identified as the direct source of REEs and Si in plants ( Fu et al. 1998 ), and seaweeds are no exception. We have to consider that seaweeds can take up Si from suspended particles through their blade or branches. From the appearance of tetrad-effect-like variation of REEs, Si is assumed to enter a dissolved state just before the particles are taken up. From the results of a sonication experiment, REEs, once taken up as silicate particles, seem to be separated from Si in the thallus.  相似文献   

3.
Gaines  S.  & Kinlan  B. 《Journal of phycology》2003,39(S1):18-19
In response to major changes in coastal ecosystems in recent decades, a number of governmental agencies around the world are establishing marine reserves – areas where removal of animals or plants is prohibited. Although marine reserves are touted as an ecosystem based approach to management of marine resources, the vast majority of attention on reserve design and impact focuses solely on fish. Although a few species of algae are commercially harvested, most are not. As a result, they will receive little direct benefit from protection by reserves aside from habitat protection. From the perspective of a seaweed, the primary impacts of marine reserves will therefore be indirect through species interactions. We examine the rapidly growing theoretical and empirical literature on marine reserves to anticipate the likely responses of seaweeds to exclusion of fishing. The key issues that emerge are: the trophic level of prior fishing and the dispersal scales of seaweeds relative to their competitors and consumers. The latter issue is poorly understood and poses a key challenge to phycologists if we are to effectively incorporate seaweeds into future marine reserve design.  相似文献   

4.
5.
ABSTRACT

Cellulose is one of the major constituents of seaweeds, but reports of mechanisms in microbial seaweed degradation in marine environment are limited, in contrast to the multitude of reports for lignocellulose degradation in terrestrial environment. We studied the biochemical characteristics for marine cellulolytic bacterium Gilvimarinus japonicas 12-2T in seaweed degradation. The bacterial strain was found to degrade green and red algae, but not brown algae. It was shown that the bacterial strain employs various polysaccharide hydrolases (endocellulase, agarase, carrageenanase, xylanase, and laminarinase) to degrade seaweed polysaccharides. Electrophoretic analysis and peptide sequencing showed that the major protein bands on the electrophoresis gel were homologous to known glucanases and glycoside hydrolases. A seaweed hydrolysate harvested from the bacterial culture was found useful as a substrate for yeasts to produce ethanol. These findings will provide insights into possible seaweed decomposition mechanisms of Gilvimarinus, and its biotechnological potential for ethanol production from inedible seaweeds.  相似文献   

6.
Based on growth patterns, regeneration capabilities and genetic make up, benthic macroalgae include three groups of species. Similar to land plants, they include clonal and aclonal species, and, similar to colonial aquatic animals, seaweeds also include coalescing species, that have the capacity to fuse forming composite (chimeric) entities. Since the awareness of the differences between these three kinds of seaweeds is rather recent, most ecological studies have not discriminated among them. However, ecological models based on one kind of seaweeds will not necessarily apply to all kinds of seaweeds. This study reviews ecological responses of algae at the individual and community levels, and describes similarities and differences among both the three algal groups and with parallel groups in land plants and chimeric marine animals. The ecological responses reviewed are plant sizes and shapes; patterns of resource acquisition; algal life phases, reproduction and dispersal; genetic variability, intraspecific and interspecific competition and herbivory. Analysis of these responses supports the idea in distinguishing among the above three algal group, reveals the need for numerous additional ecological studies and advices on incorporating concepts from the biology of chimeric aquatic animals and from clonal theory of land plants into the study of benthic macroalgae.  相似文献   

7.
Little is known about the bulk hydrogen stable isotope composition (δ2H) of seaweeds. This study investigated the bulk δ2H in several different seaweed species collected from three different beaches in Brazil, Australia, and Argentina. Here, we show that Ulvophyceae (a group of green algae) had lower δ2H values (between ?94‰ and ?130‰) than red algae (Florideophyceae), brown algae (Phaeophyceae), and species from the class Bryopsidophyceae (another group of green algae). Overall the latter three groups of seaweeds had δ2H values between ?50‰ and ?90‰. These findings were similar at the three different geographic locations. Observed differences in δ2H values were probably related to differences in hydrogen (H) metabolism among algal groups, also observed in the δ2H values of their lipids. The marked difference between the δ2H values of Ulvophyecae and those of the other groups could be useful to trace the food source of food webs in coastal rocky shores, to assess the impacts of green tides on coastal ecosystems, and to help clarify aspects of their phylogeny. However, reference materials for seaweed δ2H are required before the full potential of using the δ2H of seaweeds for ecological studies can be exploited.  相似文献   

8.
海藻中的肽类化合物具有显著的生物活性和药理作用,对其氨基酸序列及活性作用的研究已经取得了一些重要进展。发现的海藻肽类化合物并确定其化学结构式的主要有二肽、环肽和脂肽,这些肽类化合物具有抗肿瘤、降血压、降血脂、抗凝血、促进神经细胞分化、抗氧化、抗菌和抗病毒等生物活性。预测海藻肽类化合物在疑难病症的治疗上将发挥重要作用。  相似文献   

9.
Vietnamese edible marine macro-algae (seaweed) are of interest because of their value in nutrition and medicine. Vietnamese living in the coastal have traditionally utilized seaweeds species as food supplement and herbal medicine. They consumed seaweed as food in various forms: raw as salad and vegetable, pickle with sauce or with vinegar, relish or sweetened jellies and also cooked for vegetable soup. As herbal medicine, seaweed is usually used for traditional comestics, treatments for cough, asthma, hemorrhoid, boils, goitres, stomach ailments, urinary diseases, reduce the incidence of tumors, ulcers and headaches. Although Vietnam has an abundance of algae floral with total number of species is estimated to be nearly 1000 spp. in which there are 638 species of marine algae identified. However, there have been no intense study regarding to changes in marine algal chemistry. The fifteen species of edible seaweeds studied in this paper include green, brown and red algae. The proximate compositions as ash, protein, lipid, carbohydrate, fatty acids, vitamins, pigments, macro and micro-elements were compared among different species examined and the genetic relationships among them by analyzing the species-specific differences in nucleotide sequences of ITS-1 region of the ribosomal DNA was identified.  相似文献   

10.
The use of nitrogen‐to‐protein conversion factors (N‐Prot factors) is the most practical way of determining protein content. The accuracy of protein determination by this method depends on the establishment of N‐Prot factors specific to individual species. Experimental data are needed to allow the use of this methodology with seaweeds. The present study was designed to characterize the amino acid composition and to establish specific N‐Prot factors for six green, four brown and nine red marine algae. Mean values for individual amino acids tended to be similar among the three groups, but some differences were found. Green algae tended to show lower percentages of both aspartic acid and glutamic acid than the other two groups of algae. The percentages of both lysine and arginine were higher in red algae, while brown algae tended to show more methionine than green and red algae. The actual protein content of the species, based on the sum of amino acid residues, varied from 10.8% (Chnoospora minima, brown algae) to 23.1% (Aglaothamnion uru‐guayense, red algae) of the dry weight. Nitrogen‐to‐protein conversion factors were established for the species studied, based on the ratio of amino acid residues to total nitrogen, with values ranging from 3.75 (Cryptonemia seminervis, red algae) to 5.72 (Padina gymnospora, brown algae). The relative importance of non‐protein nitrogen is greater in red algae, and consequently lower N‐Prot factors were calculated for these species (average value 4.59). Conversely, protein nitrogen content in both green and brown algae tends to be higher, and average N‐Prot factors were 5.13 and 5.38, respectively. An overall average N‐Prot factor for all species studied of 4.92 ± 0.59 (n = 57) was established. This study confirms that the use of the traditional factor 6.25 is unsuitable for seaweeds, and the use of the N‐Prot factors proposed here is recommended.  相似文献   

11.
Heliobacterium and the origin of chrysoplasts   总被引:1,自引:0,他引:1  
L Margulis  R Obar 《Bio Systems》1985,17(4):317-325
Chrysoplasts, golden-yellow and brown photosynthetic membrane-bounded plastids, photosynthetic organelles of algae such as phaeophytes (brown seaweeds), bacillariophytes (diatoms) and chrysophytes (golden-yellow algae including silicoflagellates), are hypothesized to have originated from brownish photoheterotrophic bacteria such as the newly discovered anaerobic nitrogen-fixing Heliobacterium. The consequences of this hypothesis as well as the data required to verify or disprove it are presented.  相似文献   

12.
189 species of seaweeds have been recorded for the Atlantic archipelago of the Azores (114 Rhodophyceae, 41 Phaeophyceae and 34 Chlorophyceae). Ten of these have been described as endemic algae. The taxonomic status of these “endemics” is far from clear, however. Studies on the relatedness of this seaweed flora to seaweed floras of surrounding areas using clustering methods indicate its intermediary position between the seaweed floras of the subtropical Macaronesian Islands (Canaries Madeira and Salvages) on the one side and those of the warm temperate Eurafrican coasts on the other side. The geographic position of the Azores is NW of the other Macaronesian Archipelagos and thus nearer to the American coast. The Gulf stream may easily transport seaweeds from the Carribean to the Azores. Nevertheless, the number of species of these islands in common with the American Atlantic coast is much lower than with, for example, the W. Mediterranean. Of one group of seaweeds, viz. algae with a strictly warm temperature distribution, not a single species occurs likewise on American coasts. This absence is probably explicable because of the narrow temperature range for survival of these seaweeds. Temperatures of surface waters around the Azores during pleistocene glaciations were not much lower than they are at present. Nevertheless, it can be supposed that a number of seaweeds now occurring in the Azores have become extinct during the last glaciation. Paper presented at the XIV International Botanical Congress (Berlin, 24 July–1 August, 1987), Symposium 6-15, “Biogeography of marine benthic algae”. CANCAP-project. Contributions to the zoology, botany and paleontology of the Canarian-Cape Verdean region of the North Atlantic Ocean. No. 67.  相似文献   

13.
《Journal of phycology》2001,37(Z3):49-49
Toth, G. & Pavia, H. Göteborg University, Tjärnö Marine Biological Laboratory, SE-452 96 Strömstad, Sweden It is well established that water-borne chemical cues from predators or predator-wounded conspecifics can induce defensive changes of aquatic prey animals, but few examples of such inducible defenses have been reported for aquatic algae. We have found that water-borne cues from actively feeding gastropods (Littorina obtusata) can induce increased concentrations of phlorotannins in the intertidal brown seaweed Ascophyllum nodosum. Elicited A. nodosum plants are also less susceptible to further grazing bygastropods compared to undamaged plants. Since seaweeds have poorly developed internal transport systems and may not be able to elicit systemic induced chemical defenses through conveyance of internal signals, induction through water-borne cues ensures that seaweeds can anticipate future periwinkle attacks without receiving direct damage by herbivores. We have also found that water-borne cues from a parasite (Parvilucifera infectans), can serve as signals to induce morphological defence in a toxic dinoflagellate (Alexandrium ostenfeldii). The dinoflagellates formed temporary cysts when exposed to filtrates from cultures with infected conspecifics. The effect of the filtrate disappeared after 8 h, indicating that the chemical cues are short-lived. Furthermore, the cysts were resistant to parasite infections for several weeks after exposure to direct parasite contact, indicating that they are an effective defense. We suggest that induction of defenses in marine algae through water-borne cues may be a common phenomenon and that more examples will be revealed as this field of science progresses.  相似文献   

14.
ABSTRACT

The use of seaweeds has a long history, as does the cultivation of a select and relatively small group of species. This review presents several aspects of seaweed production, such as an update on the volumes of seaweeds produced globally by both extraction from natural beds and cultivation. We discuss uses, production trends and economic analysis. We also focus on what is viewed as the huge potential for growing industrial-scale volumes of seaweeds to provide sufficient, sustainable biomass to be processed into a multitude of products to benefit humankind. The biorefinery approach is proposed as a sustainable strategy to achieve this goal. There are many different technologies available to produce seaweed, but optimization and more efficient developments are still required. We conclude that there are some fundamental and very significant hurdles yet to overcome in order to achieve the potential contributions that seaweed cultivation may provide the world. There are critical aspects, such as improving the value of seaweed biomass, along with a proper consideration of the ecosystem services that seaweed farming can provide, e.g. a reduction in coastal nutrient loads. Additional considerations are environmental risks associated with climate change, pathogens, epibionts and grazers, as well as the preservation of the genetic diversity of cultivated seaweeds. Importantly, we provide an outline for future needs in the anticipation that phycologists around the world will rise to the challenge, such that the potential to be derived from seaweed biomass becomes a reality.  相似文献   

15.
An inositol-containing sphingophospholipid ceramidephosphoinositol (CPI) found for the first time in red macrophytic algae proved to be typical of the Rhodophyta. The CPI content varied among the algal species from trace amounts to 15.7% of the total phospholipids and depended on season. Red seaweeds provide a more convenient source of ceramidephosphoinositol than other organisms.  相似文献   

16.
Climate change and disease: bleaching of a chemically defended seaweed   总被引:2,自引:0,他引:2  
Disease is emerging as an important impact of global climate change, due to the effects of environmental change on host organisms and their pathogens. Climate‐mediated disease can have severe consequences in natural systems, particularly when ecosystem engineers, such as habitat‐formers or top predators are affected, as any impacts can cascade throughout entire food webs. In temperate marine ecosystems, seaweeds are the dominant habitat‐formers on rocky reefs. We investigated a putative bleaching disease affecting Delisea pulchra, a chemically defended seaweed that occurs within a global warming ‘hot‐spot’ and assessed how patterns of this phenomenon were influenced by ocean temperature, solar radiation, algal chemical defences and microbial pathogens. Warmer waters were consistently and positively correlated with higher frequencies of bleaching in seaweed populations, but patterns of bleaching were not consistently influenced by light levels. Bleached thalli had low levels of antibacterial chemical defences relative to healthy conspecifics and this was observed across entire thalli of partially bleached algae. Microbial communities associated with bleached algae were distinct from those on the surfaces of healthy seaweeds. Direct testing of the importance of algal chemical defences, done here for the first time in the field, demonstrated that they protected the seaweed from bleaching. Treatment of algal thalli with antibiotics reduced the severity of bleaching in experimental algae, especially at high water temperatures. These results indicate that bleaching in D. pulchra is the result of temperature‐mediated bacterial infections and highlight the potential for warming to influence disease dynamics by stressing hosts. Understanding the complex ways in which global change may affect important organisms such as habitat‐forming seaweeds, is essential for the management and conservation of natural resources.  相似文献   

17.
Brown algae (Phaeophyceae) are habitat-forming species in coastal ecosystems and include kelp forests and seaweed beds that support a wide diversity of marine life. Host-associated microbial communities are an integral part of phaeophyte biology, and whereas the bacterial microbial partners have received considerable attention, the microbial eukaryotes associated with brown algae have hardly been studied. Here, we used broadly targeted “pan-eukaryotic” primers (metabarcoding) to investigate brown algal-associated eukaryotes (the eukaryome). Using this approach, we aimed to investigate the eukaryome of seven large brown algae that are important and common species in coastal ecosystems. We also aimed to assess whether these macroalgae harbor novel eukaryotic diversity and to ascribe putative functional roles to the host-associated eukaryome based on taxonomic affiliation and phylogenetic placement. We detected a significant diversity of microeukaryotic and algal lineages associated with the brown algal species investigated. The operational taxonomic units (OTUs) were taxonomically assigned to 10 of the eukaryotic major supergroups, including taxonomic groups known to be associated with seaweeds as epibionts, endobionts, parasites, and commensals. Additionally, we revealed previously unrecorded sequence types, including novel phaeophyte OTUs, particularly in the Fucus spp. samples, that may represent fucoid genomic variants, sequencing artifacts, or undescribed epi-/endophytes. Our results provide baseline data and technical insights that will be useful for more comprehensive seaweed eukaryome studies investigating the evidently lineage-rich and functionally diverse symbionts of brown algae.  相似文献   

18.
19.
利用大型褐藻转化生产的第三代燃料乙醇已受到研究者的广泛关注。我国拥有丰富的褐藻资源,具备了褐藻生物乙醇转化的有利条件。为了实现工业化生产,还需要通过筛选分离和基因工程手段获得高效发酵褐藻的优良菌株及优化预处理、发酵条件等。主要介绍了我国褐藻资源概况、预处理方法和微生物发酵褐藻不同组分生产乙醇的研究进展,提出了当前褐藻乙醇转化中存在的问题,展望了褐藻乙醇的发展方向。  相似文献   

20.
On Caribbean coral reefs, high rates of grazing by herbivorous fishes are thought to benefit corals because fishes consume competing seaweeds. We conducted field experiments in the Florida Keys, USA, to examine the effects of grazing fishes on coral/seaweed competition. Initially, fragments of Porites divaracata from an inshore habitat were transplanted into full-cage, half-cage, and no-cage treatments on a fore-reef. Within 48 h, 56% of the unprotected corals in half-cage and no-cage treatments (62 of 111) were completely consumed. Stoplight parrotfish (Sparisoma viride) were the major coral predators, with redband parrotfish (S. aurofrenatum) also commonly attacking this coral. Next, we transplanted fragments of P. porites collected from the fore-reef habitat where our caging experiments were being conducted into the three cage treatments, half in the presence of transplanted seaweeds, and half onto initially clean substrates. The corals were allowed to grow in these conditions, with concurrent development of competing seaweeds, for 14 weeks. Although seaweed cover and biomass were both significantly greater in the full-cage treatment, coral growth did not differ significantly between cage treatments even though corals placed with pre-planted seaweeds grew significantly less than corals placed on initially clean substrate. This surprising result occurred because parrotfishes not only grazed algae from accessible treatments, but also fed directly on our coral transplants. Parrotfish feeding scars were significantly more abundant on P. porites from the half and no-cage treatments than on corals in the full cages. On this Florida reef, direct fish predation on some coral species (P. divaracata) can exclude them from fore-reef areas, as has previously been shown for certain seaweeds and sponges. For other corals that live on the fore-reef (P. porites), the benefits of fishes removing seaweeds can be counterbalanced by the detrimental effects of fishes directly consuming corals. Received: 31 May 1997 / Accepted: 2 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号