首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rare earth elements (REEs) and Si in five species of seaweed, ambient surface seawaters, and suspended solid particles in the seawaters were determined separately. Inductively coupled plasma mass spectrometry (ICP-MS) was used for REEs and inductively coupled plasma emission spectrometry (ICP-ES) was used for Si in order to evaluate REEs as a tracer in seaweeds and to understand the source of inorganic elements, especially Si, in seaweeds. Two different REE patterns, one similar to that of the seawater solution and another resembling that of suspended particles, were observed in seaweeds, and the variation of REE patterns seems to show a clear dependence on the abundance of Si. The REE pattern and Si concentration seem to vary depending on the division: green and red algae showed REE patterns similar to that of suspended particles, but brown algae showed patterns closer to that of seawater solutions and relatively lower Si concentration. The possibility of contamination from silicate particles on the surface of seaweeds was ruled out for several reasons. Silicate particles, not dissolved silicate, have been identified as the direct source of REEs and Si in plants ( Fu et al. 1998 ), and seaweeds are no exception. We have to consider that seaweeds can take up Si from suspended particles through their blade or branches. From the appearance of tetrad-effect-like variation of REEs, Si is assumed to enter a dissolved state just before the particles are taken up. From the results of a sonication experiment, REEs, once taken up as silicate particles, seem to be separated from Si in the thallus.  相似文献   

2.
Mathematical modelling is useful in population ecology and resource management. Logistic models have traditionally been applied to unitary organisms, but it is unclear whether they could be used at the frond (ramet) level for clonal seaweeds. This study shows that frond dynamics for the clonal seaweed Mazzaella parksii (=M. cornucopiae) can be described by a discrete-time logistic model. The model is realistic in that it includes density-dependence, which was previously demonstrated experimentally for this species, and only necessitates data on frond density measured at discrete time intervals. This may constitute a useful tool for the management of clonal seaweeds of economic importance that occur in dense stands. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Fronds from crowded stands of clonal seaweeds, particularly those in which holdfasts are mostly perennial and are the major source of new fronds every year, are thought not to undergo self-thinning during the growth season, unlike those from crowded stands of unitary seaweeds. For clonal seaweeds, it is not known, however, what happens at the very end of the growth season, when crowding is highest for the year. By sampling twice more frequently than previously done for similar species, the possible occurrence of frond self-thinning was tested for Mastocarpus papillatus (Rhodophyta, Gigartinales, Petrocelidaceae) from western Canada during the growth season (spring) of 2003. Initially, stand biomass increased together with frond density, as found previously for similar clonal seaweeds. Shortly before stand biomass peaked for the year (June), frond density remained statistically unchanged. Thus, the increased sampling precision of this study confirms that fronds of these clonal seaweeds do not undergo self-thinning, not even shortly before crowding is highest. Frond size inequality for M. papillatus remained statistically similar during the growth season, which is also consistent with a model of no self-thinning. There are similarities in biomass–density dynamics and in size inequality dynamics between clonal seaweeds and clonal vascular plants.  相似文献   

4.
Fronds of clonal seaweeds with extensive holdfasts relative to frond size are known not to self‐thin during growth, even in crowded stands. We tested whether frond self‐thinning would occur for such a seaweed since these traits are more similar to those of unitary seaweeds, which do self‐thin in crowded conditions. We used Sargassum lapazeanum Setch. et N. L. Gardner (Fucales, Phaeophyceae) from the Pacific coast of Mexico, for which we first confirmed its clonal nature by performing a regeneration experiment in culture tanks. During the growth season (winter to late spring), S. lapazeanum stand biomass increased, while frond density and size inequality (Gini coefficient for frond biomass) decreased. These results indicate that self‐thinning occurred at the frond level. We propose a conceptual model for frond dynamics for clonal seaweeds in general. In stands of clonal species with small fronds and relatively extensive holdfasts (particularly when holdfasts are perennial), frond dynamics would be determined mostly by intraclonal regulation, which seems to prevent excessive crowding from occurring. Such species display a positive biomass–density relationship during the growth season. On the contrary, in stands of clonal species with large fronds relative to holdfast size, frond dynamics would be determined mostly by interactions among genets. For such species, self‐thinning may be detected at the frond level in crowded stands, resulting in a negative biomass–density relationship during growth.  相似文献   

5.
Based on growth patterns, regeneration capabilities and genetic make up, benthic macroalgae include three groups of species. Similar to land plants, they include clonal and aclonal species, and, similar to colonial aquatic animals, seaweeds also include coalescing species, that have the capacity to fuse forming composite (chimeric) entities. Since the awareness of the differences between these three kinds of seaweeds is rather recent, most ecological studies have not discriminated among them. However, ecological models based on one kind of seaweeds will not necessarily apply to all kinds of seaweeds. This study reviews ecological responses of algae at the individual and community levels, and describes similarities and differences among both the three algal groups and with parallel groups in land plants and chimeric marine animals. The ecological responses reviewed are plant sizes and shapes; patterns of resource acquisition; algal life phases, reproduction and dispersal; genetic variability, intraspecific and interspecific competition and herbivory. Analysis of these responses supports the idea in distinguishing among the above three algal group, reveals the need for numerous additional ecological studies and advices on incorporating concepts from the biology of chimeric aquatic animals and from clonal theory of land plants into the study of benthic macroalgae.  相似文献   

6.
Characteristic shape parameters, light intensities and relative water velocities were estimated in thalli of free-moving seaweeds, using threeGracilaria-like species:G. cornea, G. conferta andGracilariopsis lemaneiformis. Relative velocities over the branches were determined mostly by rotation of the algae in the water as opposed to linear translation. The tree major shape parameters of the thallus, weight, volumetric specific weight and areal specific weight, explain the differences in relative velocity. Relative velocities near the center of the thallus were about 50% to 80% of the external velocity. Light intensities at the vicinity of the center ofG. cornea ranged between 60% to 90% of the external light intensity. Light attenuation in the center was proportional to the weight of the thallus. The significance of light and velocity attenuation as a function of shape parameters is discussed.Author for correspondence  相似文献   

7.
Variations in stable carbon isotope discrimination (δ) were investigated across the thalli of several lichen species possessing different photobiont associations. Lichens containing (i) green algae (phycobiont), (ii) green algae in association with cyanobacteria confined in cephalodia, or (iii) cyanobacteria (cyanobiont) as the photobiont partner were studied. Carbon isotope discrimination was analysed in different thallus sections, which varied in distance from the margin and in age. The marginal thallus region is considered to be youngest, while the central region is thought to be oldest. This analysis showed a clear variation in δ across the thallus related to distance from the growing margin. In most of the species examined, the highest δ values were found in marginal regions (younger), while the central and basal regions (older) showed significantly lower δ. To investigate the effects of the historical increase in atmospheric CO2 concentration and the concurrent decrease in the 13C content of atmospheric CO2 on the δ of lichens, experiments were carried out on herbarium samples of Lobaria pulmonaria collected from the mid 19th Century to 1953. The results obtained showed a pattern of variation of δ consistent with that of freshly collected samples; δ decreased substantially with increasing distance from the thallus margin, irrespective of the collection date. Moreover, no consistent variation of discrimination was found among different collection dates. These results demonstrate that the observed variation in δ is caused by age-related changes in the physiological behaviour of different thallus sections, and that the past 150 years of increasing CO2 concentration have not had significant effects on A in L. pulmonaria. Photosynthesis measurements, chlorophyll analysis and observations using optical microscopy, performed on freshly collected lichens, showed significant changes in morphological and physiological characteristics across the thallus. Particularly, remarkable variations in thickness were found across the thallus. These anatomical changes may be responsible for the variation in δ, through variations in CO2 transfer resistance and, consequently, in CO2 availability across the thallus. The lack of age-dependent variation in δ in cyanobiont lichens is possibly attributable to the operation of a CO2-coneentrating mechanism and, therefore, to a more constant CO2 environment across the thallus in this lichen group.  相似文献   

8.
Seaweeds are well known to concentrate metals from seawater and have been employed as monitors of metal pollution in coastal waters and estuaries. However, research showing that various intrinsic and extrinsic factors can influence metal accumulation, raises doubts about the basis for using seaweeds in biomonitoring programmes. The thallus of brown seaweeds of the order Laminariales (kelps) is morphologically complex but there is limited information about the variation in metal accumulation between the different parts, which might result in erroneous conclusions being drawn if not accounted for in the biomonitoring protocol. To assess patterns of individual metals in the differentiated parts of the thallus (blade, stipe, holdfast), concentrations of a wide range of essential and non-essential metals (Fe, Cr, Cu, Zn, Mn, Pb, Cd, Ni and Al) were measured in the kelp Lessonia trabeculata. Seaweeds were collected from three sampling stations located at 5, 30 and 60 m from an illegal sewage outfall close to Ventanas, Chile and from a pristine location at Faro Curaumilla. For the majority of metals the highest concentrations in bottom sediment and seaweed samples were found at the site closest to the outfall, with concentrations decreasing with distance from the outfall and at control stations; the exception was Cd, concentrations of which were higher at control stations. The patterns of metal concentrations in different thallus parts were metal specific and independent of sampling station. These results and the available literature suggest that biomonitoring of metals using seaweeds must take account of differences in the accumulation of metals in thallus parts of complex seaweeds.  相似文献   

9.
We studied the changes in the rate of dark respiration (DR) and structure of the cells in Ascophyllum nodosum and Fucus vesiculosus thalli during the incubation at 40, 34, 20, 10, and 2 salinity for 14 days. The changes in salinity affected the rate of DR and the structure of the thallus apical cells: the organelles swollen and were destroyed later. The effect of hyposalinity on the algae was more pronounced as compared to hypersalinity. The stress intensity directly increased with the degree of desalination. Further adaptation of the algae to low salinity enhanced DR and, hence, was an energy-dependent process. Despite higher DR rates (during the stress and adaptation) in F. vesiculosus as compared to A. nodosum, the seaweeds had similar pattern of adaptation to the variation of salinity. Different primary response of the seaweeds to 20 salinity was an important exception; apparently, the salinity around 20 is the limit of these species distribution in desalination zones.  相似文献   

10.
Several species of algae have been commercially harvested in New Zealand, mainly for extraction of agar and alginates. In the past, the harvest was comprised mostly of shore-cast plants. There has been more recent interest, however, in harvesting attached plants of Pterocladia spp., Porphyra spp., Gracilaria sordida, Durvillaea spp., Macrocystis pyrifera, and Ecklonia radiata. The ecological effects of harvesting attached algae depend largely on the sizes of plants, the season of removal, the patch size of clearances, and the proximity and identity of mature plants. These have not been well-studied for seaweeds in New Zealand, but population and life history studies indicate that harvesting methods affect the continuity of algal resources, at least on a local scale, and are crucial factors in their management.  相似文献   

11.
12.
Ecological models relating biomass and density are relatively simple to calculate and offer information on, for example, the interactions among organisms and size constraints. Biomass‐density relationships have mostly been studied for terrestrial plants, but recently they have also been increasingly investigated for seaweeds. Unfortunately, a number of misconceptions have limited the overall contribution of algal studies to biomass‐density theory in general. Aiming to improve this situation, the present paper first summarizes the current knowledge on biomass‐density theory, particularly focusing on the main concepts that, with varying degrees of validity, exist in the published literature: the self‐thinning rule (in its boundary and dynamic interpretations), the interspecific biomass‐density relationship, and the ultimate biomass‐density line. Afterwards, the present paper provides a critical review of past biomass‐density studies on seaweeds. The main contributions of studies on clonal and unitary species are discussed, while the misconceptions that persist to these days are identified in order to help future studies to be based on solid grounds.  相似文献   

13.
Increase of phenolic secondary metabolites, phlorotannins, in brown algae due to gastropod grazing has been interpreted as an anti-herbivore adaptation. Here we tested whether such a response could be due to changes in truly available resources for the alga, not by the grazing activity of snails as such. We allowed two species of snails, Theodoxus fluviatilis and Physa fontinalis to graze on Fucus vesiculosus . These species feed on epibiota and particulate matter on the thallus but do not eat the thallus of F. vesiculosus . We further simulated snail grazing by nutrient enhancement, removal of epibiota and by a combination of the two. Manipulations of nutrient and light availability revealed the crucial role of epibiota in mediating resource availability for F. vesiculosus . Nutrient enhancement alone increased epibiota and decreased phlorotannins. Cleaning the thallus resulted in increased growth, and together with nutrient enhancement also in a trade-off with phlorotannins. Presence of T. fluviatilis on the thallus induced phlorotannin production, a response differing from the simulations of snail grazing. However, we suggest that the increase in phlorotannins may not be an induced defense but rather a consequence of a specific way of resource manipulation by this snail species. T. fluviatilis removes hyaline hairs that facilitate nutrient uptake. P. fontinalis did not remove hyaline hairs and the response of the alga to its grazing was similar to the treatment where we mechanically removed epibiota suggesting that cleaning of the thallus is the major mechanism how this snail species affects F. vesiculosus . Genetic variation in phlorotannin concentrations highly exceeded the induced responses of simulated or real snail grazing. This casts doubt for the efficiency of induced phlorotannin production to act as a defense, but is not contradictory with the interpretation of phlorotannins responding to variation in resource availability.  相似文献   

14.
Plasticity gives plants the ability to adapt their morphology and growth to various environments. Environmental factors can lead to changes in the growth forms of algae. Halimeda opuntia was used as a model organism to determine the effects of highly irradiated and shade conditions in the field and its responses to low light conditions in the laboratory, which are known to be some of the main factors driving its morphological plasticity. To investigate the morphological and anatomical characteristics of the species, a total of 61 characteristics and 54 samples from Thailand, Japan and Indonesia were examined. In addition, we also tested the response under different light conditions in the laboratory. A phylogenetic tree was constructed using the tufA marker to confirm the species identification. We found that the thallus forms, branching patterns and segment shapes and sizes responded to the different light conditions. A brittle thallus network was found under shade conditions with low light intensity, while a compact thallus form was found under highly irradiated conditions. The H. opuntia segment shape was reniform under highly irradiated conditions, but its segments were adapted to be deeply trilobed in the lower thallus and tripartite shape in the upper thallus under shade conditions. The segment size also adapted; the segments in shaded areas were longer than those in sunny areas, which might have helped them increase their thallus height to ensure exposure to the high light habitat. This morphological variation and plasticity expanded our understanding of the range of H. opuntia plasticity present in the field and could help explain why this species is common and successfully colonizes various habitats worldwide.  相似文献   

15.
Abstract

Macroalgae have played an important role in coastal communities for centuries. In the past, they have been harvested and gathered from shorelines around the world for traditional uses such as food, animal feed and a crude fertilizer (marine manure). Today, seaweeds are used in a multitude of applications with expanding global industries based on hydrocolloids, cosmetics and food supplements, and also as a potential biofuel source. However, of the approximately 10?000 algal species reported to exist, only a small number are commercially utilized. While representing only a small fraction of total global seaweed production, harvesting and gathering ‘wild’ seaweeds has had, and continues to have, an integral role in many coastal societies, often being intrinsically linked to the cultural identity of those coastal communities. Today, 32 countries actively harvest seaweeds from wild stocks, with over 800?000 t harvested annually from natural beds. It is vitally important that seaweeds are utilized sustainably and that natural resources are effectively managed by coastal communities with vested interests around the world. As the popularity of seaweeds increases and the use of less traditional species with novel applications comes to the fore, it is critically important to make certain that the sustainability of the resource is ensured given the increased pressures of harvesting. Issues exist regarding ownership of the resource and its over-exploitation, and the implementation of environmentally damaging harvesting techniques must be avoided. Resource scientists, managers, conservationists, governments, and other stakeholders need to be proactive in the sustainable management of these vulnerable, yet valuable, resources.  相似文献   

16.
Optimal defence theory (ODT) attempts to explain variation in plant secondary compounds between different species, different growth conditions and different parts of individual plants. The theory is widely applied to vascular plants and more recently also to seaweeds. Surprisingly, ODT has gained little attention as potential explanation on the distribution of lichen secondary metabolites. In the present study, we analysed intrathalline variation in total phenol content and phenol spectra between reproductive and somatic structures of three foliose lichens, Xanthoria parietina , Vulpicida pinastri and Hypogymnia physodes . The results showed that the concentration of phenolic compounds is higher in sorediate than in non-sorediate lobe ends of V. pinastri and H. physodes as well as in apothecia of X. parietina compared to other parts of the thallus. These results were in accordance with ODT predicting higher allocation of phenols in structures that are most important for the fitness of an individual genet or ramet. This pattern was parallel in all species regardless whether the compounds originate from either acetate-mevalonate or shikimic acid pathways. Moreover, both sexual ( X. parietina apothecia) and asexual (soralia of V. pinastri and H. physodes ) reproductive structures were higher in phenols compared to somatic tissue.  相似文献   

17.
Studies on the ecological impacts of non‐timber forest products (NTFP) harvest reveal that plants are often more resilient to fruit and seed harvest than to bark and root harvest. Several studies indicate that sustainable fruit harvesting limits can be set very high (>80% fruit harvesting intensity). For species with clonal and sexual reproduction, understanding how fruit harvest affects clonal reproduction can shed light on the genetic risks and sustainability of NTFP harvest. We studied 18 populations of a gallery forest tree, Pentadesma butyracea (Clusiaceae), to test the impact of fruits harvest, climate and habitat size (gallery forest width) on the frequency of sexual or clonal recruitment in Benin, West Africa. We sampled populations in two ecological regions (Sudanian and Sudano‐Guinean) and in each region, we selected sites with low, moderate and high fruit harvesting intensities. These populations were selected in gallery forests with varying width to sample the natural variation in P. butyracea habitat size. Heavily harvested populations produced significantly less seedlings but had the highest density and proportion of clonal offspring. Our study suggests that for plant species with dual reproductive strategy (via seeds and clonal), fruit harvesting and associated disturbances that come with it can lead to an increase in the proportion of clonal offspring. This raises the issue that excessive fruit harvest by increasing the proportion of clonal offspring to the detriment of seed originated offspring may lead to a reduction in genetic diversity with consequence on harvested species capability to withstand environmental stochasticity.  相似文献   

18.
We examined 22 species of algae and two species of seagrasses from coral reef habitats around Guam to determine if they possessed chemical defenses against the acanthurid Naso lituratus. Whole plants (18 species) were offered to determine whether they were preferred or avoided by N. lituratus in the laboratory. Organic extracts of 15 algae and one seagrass were applied to palatable seaweeds and offered to N. lituratus in the laboratory to determine if the seaweeds were chemically defended. Extracts that deterred feeding were further fractionated if sufficient amounts were available, and the fractions and associated pure compounds were tested in similar feeding assays. N. lituratus was significantly deterred from feeding by crude extracts from five different species of algae: Avrainvillea obscura, Bryopsis pennata, grazed Halimeda macroloba, Neomeris annulata, and Portieria (=Desmia) hornemannii. The pure compounds avrainvilleol from A. obseura, ochtodene from P. hornemannii, one fraction and one brominated sesquiterpene from N. annulata, and two fractions from T. expeditionis also deterred feeding. These results, together with previous work, suggest that tropical herbivorous fishes differ in their responses to plant chemistry, and this variability precludes broad generalization about the effects of marine plant secondary metabolites on herbivorous fishes.  相似文献   

19.
Prasiolales are characterized by high morphological plasticity. This problem in taxonomic delimitation of the species may be a result of environment heterogeneity. Habitat characteristics and morphological variation of P. mexicana and P. nevadensis, two species of freshwater leaf-like thallus green algae, were investigated in five sites in central México where the morphological traits of these species overlap. Comparisons were made between habitat characteristics among streams and transects with and without Prasiola samples. Although no consistent correlation was found between environmental variables and morphological traits, a significantly wider range of habitat characteristics of current velocity and irradiance and morphometric variation (lamina length, lamina diameter, cell length, surface of the thallus, thickness and number of layers) suggested that P. mexicana was more plastic than P. nevadensis in its physicochemical requirements. Our results suggest that small variation of microhabitat conditions in P. nevadensis (irradiance and current velocity) could explain its very restricted geographic range in streams in central Mexico.  相似文献   

20.
Life strategy, ecophysiology and ecology of seaweeds in polar waters   总被引:1,自引:0,他引:1  
Polar seaweeds are strongly adapted to the low temperatures of their environment, Antarctic species more strongly than Arctic species due to the longer cold water history of the Antarctic region. By reason of the strong isolation of the Southern Ocean the Antarctic marine flora is characterized by a high degree of endemism, whereas in the Arctic only few endemic species have been found so far. All polar species are strongly shade adapted and their phenology is finely tuned to the strong seasonal changes of the light conditions. The paper summarises the present knowledge of seaweeds from both polar regions with regard to the following topics: the history of seaweed research in polar regions; the environment of seaweeds in polar waters; biodiversity, biogeographical relationships and vertical distribution of Arctic and Antarctic seaweeds; life histories and physiological thallus anatomy; temperature demands and geographical distribution; light demands and depth zonation; the effect of salinity, temperature and desiccation on supra-and eulittoral seaweeds; seasonality of reproduction and the physiological characteristics of microscopic developmental stages; seasonal growth and photosynthesis; elemental and nutritional contents and chemical and physical defences against herbivory. We present evidence to show that specific characteristics and adaptations in polar seaweeds help to explain their ecological success under environmentally extreme conditions. In conclusion, as a perspective and guide for future research we draw attention to many remaining gaps in knowledge. Dedicated to Prof. Dr. Gunter O. Kirst and to Prof. Dr. Klaus Lüning on occasion of their retirement 28. Februar 2006 and 31. March 2006, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号