首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new toxins have been isolated from the sea anemone Radianthus paumotensis: RpI, RpII, RpIII, and RpIV. They are polypeptides comprised of 48 or 49 amino acids; the sequence of RpII has been determined. Toxicities of these toxins in mice and crabs are similar to those of the other known sea anemone toxins, but they fall into a different immunochemically defined class. The sequence of RpII shows close similarities with the N-terminal end (up to residue 20) of the previously sequenced long sea anemone toxins, but most of the remaining part of the molecule is completely different. Like the other sea anemone toxins, Radianthus toxins are active on sodium channels; they slow down the inactivation process. Through their Na+ channel action, Radianthus toxins stimulate Na+ influx into tetrodotoxin-sensitive neuroblastoma cells and tetrodotoxin-resistant rat skeletal myoblasts. The efficiency of the toxins is similar in the two cellular systems. In that respect, Radianthus toxins behave much more like scorpion neurotoxins than sea anemone toxins from Anemonia sulcata or Anthopleura xanthogrammica. In binding experiments to synaptosomal Na+ channels, Radianthus toxins compete with toxin II from the scorpion Androctonus australis but not with toxins II and V from Anemonia sulcata.  相似文献   

2.
An aqueous exudate collected from frozen and thawed bodies of a Caribbean sea anemone, Stichodactyla (formerly Stoichactis) helianthus, contained a polypeptide neurotoxin (Sh I) selectively toxic to crustaceans. The polypeptide was purified by G-50 Sephadex, phosphocellulose, and sulfopropyl-Sephadex chromatography and shown to have a molecular size of 5200 daltons and a pI of 8.3. The amino acid sequence determined by automatic Edman degradations of whole RCM Sh I and of its clostripain, staphylococcal protease, and cyanogen bromide digest peptides is A1ACKC5DDEGP10DIRTA15PLTGT20VDLGS25CNAGW30EKCAS35YYTII40ADCCR45KKK . Only 33% of this sequence is identical with the sequence of Anemonia sulcata toxin II, a sea anemone toxin isolated from the taxonomic family Actiniidae. The six half-cystines are located in equivalent positions to those of the actiniid toxins and account for nearly half of the residues common to all of the toxins. However, 69% of the Sh I sequence is identical with that of toxin II from Heteractis paumotensis, another sea anemone belonging to the family Stichodactylidae. Stichodactylid toxins lack the initial N-terminal residue of actiniid toxins and possess three consecutive acidic residues at positions 6-8, a single tryptophan at position 30, and four consecutive basic residues at positions 45-48 (C-terminus). A rabbit IgG prepared by Sh I immunization bound Sh I with a K0.5 of 4.7 nM but failed to bind homologous actiniid (Anemonia sulcata II, Condylactis gigantea III) or bolocerid (Bolocera tuedae II) polypeptide neurotoxins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Amino acid sequences of neurotoxins RTX-IV and RTX-V isolated from the sea anemone Radianthus macrodactylus were determined by the automated Edman degradation; their polypeptide chains consist of 48 and 47 amino acid residues, respectively. For identification of tryptophan-30 in toxin RTX-IV, its trypsin and chymotrypsin digests were investigated. Amino acid sequences of the above toxins show that they belong to a new structural class and that C-terminal positive charge and tyrosine-25 are important for toxic activity of sea anemone polypeptides.  相似文献   

4.
We have isolated a new toxin, calitoxin (CLX), from the sea anemone Calliactis parasitica whose amino acid sequence differs greatly from that of other sea anemone toxins. The polypeptide chain contains 46 amino acid residues, with a molecular mass of 4886 Da and an isoelectric point at pH 5.4. The amino acid sequence determined by Edman degradation of the reduced, S-carboxymethylated polypeptide chain and tryptic and chymotryptic peptides is Ile-Glu-Cys-Lys-Cys-Glu-Gly-Asp-Ala-Pro-Asp-Leu-Ser-His-Met-Thr-Gly-Thr- Val-Tyr - Phe-Ser-Cys-Lys-Gly-Gly-Asp-Gly-Ser-Trp-Ser-Lys-Cys-Asn-Thr-Tyr-Thr-Ala- Val-Ala - Asp-Cys-Cys-His-Glu-Ala. No cysteine residues were present in the peptide. Similarly to other sea anemone toxins, calitoxin interacts, in crustacean nerve muscle preparations, with axonal and not with muscle membranes, inducing a massive release of neurotransmitter that causes a strong muscle contraction. The low homology of CLX with RP II and ATX II toxins has implications regarding the role played by particular amino acid residues.  相似文献   

5.
The binding of 125I-labeled derivatives of scorpion toxin and sea anemone toxin to tetrodotoxin-insensitive sodium channels in cultured rat muscle cells has been studied. Specific binding of 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin was each blocked by either native scorpion toxin or native sea anemone toxin. K0.5 for block of binding by several polypeptide toxins was closely correlated with K0.5 for enhancement of sodium channel activation in rat muscle cells. These results directly demonstrate binding of sea anemone toxin and scorpion toxin to a common receptor site on the sodium channel. Binding of both 125I-labeled toxin derivatives is enhanced by the alkaloids aconitine and batrachotoxin due to a decrease in KD for polypeptide toxin. Enhancement of polypeptide toxin binding by aconitine and batrachotoxin is precisely correlated with persistent activation of sodium channels by the alkaloid toxins consistent with the conclusion that there is allosteric coupling between receptor sites for alkaloid and polypeptide toxins on the sodium channel. The binding of both 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin is reduced by depolarization due to a voltage-dependent increase in KD. Scorpion toxin binding is more voltage-sensitive than sea anemone toxin binding. Our results directly demonstrate voltage-dependent binding of both scorpion toxin and sea anemone toxin to a common receptor site on the sodium channel and introduce the 125I-labeled polypeptide toxin derivatives as specific binding probes of tetrodotoxin-insensitive sodium channels in cultured muscle cells.  相似文献   

6.
Four toxic polypeptides, Toxins I, II, III and IV were isolated in pure form from the sea anemone Condylactis aurantiaca (Actinaria). Toxin isolation was achieved by alcoholic extraction of the homogenised sea anemones, batchwise adsorption onto cation exchangers, gel filtration on Sephadex G-50 and G-25 and ion-exchange chromatography on SP-Sephadex and QAE-Sephadex. Toxins from Condylactis aurantiaca all contain between 49 and 51 amino acids. Their amino acid compositions were compared to those of the Anemonia sulcata toxins. The toxins were tested on the shore crab Carcinus maenas by intramusclar injection. Crabs react highly sensitively to sea anemone toxins with muscle cramps and paralysis. For Condylactis toxins LD100 ranges from 2 to 6.6 mug/kg Carcinus maenas.  相似文献   

7.
Toxin I from Anemonia sulcata, a major component of the sea anemone venom, consists of 46 amino acid residues which are linked by three disulfide bridges. The [14C]carboxymethylated polypeptide was sequenced to position 29 by automated Edman degradation. The remaining sequence was determined from cyanogen bromide peptides and from tryptic peptides of the citraconylated [14C]carboxymethylated toxin. Toxin I is homologous to toxin II from Anemonia sulcata and to anthopleurin A, a toxin from the sea anemone Anthopleura xanthogrammica. These toxins constitute a new class of polypeptide toxins. No significant homologies exist with toxin III from Anemonia sulcata nor with known sequences of neurotoxins or cardiotoxins of various origin.  相似文献   

8.
Eight different polypeptide toxins from sea anemones of four different origins (Anemonia sulcata, Anthopleura xanthogrammica, Stoichactis giganteus, and Actinodendron plumosum) have been studied. Three of these toxins are new; the purification procedure for the five other ones has been improved. Sea anemone toxins were assayed (i) for their toxicity to crabs and mice, (ii) for their affinity for the specific sea anemone toxin receptor situated on the Na+ channels of rat brain synaptosomes, and (iii) for their capacity to increase, in synergy with veratridine, the rate of 22Na+ entry into neuroblastoma cells via the Na+ channel. Some of the toxins are more active on crustaceans, whereas others are more toxic to mammals. A very good correlation exists between the toxic activity to mice, the affinity of the toxin for the Na+ channel in rat brain synaptosomes, and the stimulating effect on 22 Na+ uptake by neuroblastoma cells. The observation has also been made that the most cationic toxins are also the most active on mammals and the least active on crustaceans. Toxicities (LD50) to mice of the most active sea anemone toxins and of the most active scorpion toxins are similar, and sea anemone toxins at high enough concentrations prevent binding of scorpion toxins to their receptor. However, scorpion toxins have affinities for the Na+ channel which are approximately 60 times higher than those found for the most active sea anemone toxins. Three sea anemone toxins appear to be more interesting than toxin II from A. sulcata (the "classical" sea anemone toxin) for studies of the Na+ channel structure and mechanism when the source of the channel is of a mammalian origin. Two of these three toxins can be radiolabeled with iodine while retaining their toxic activity; they appear to be useful tools for future biochemical studies of the Na+ channel.  相似文献   

9.
Toxin III (ATX III) of the sea anemone (Anemonia sulcata) is a polypeptide containing 27 amino acid residues. It has no sequence similarity with other toxins (ATX I and II) from the same species, or with scorpion toxins, although they apparently act in a similar manner by prolonging action potentials. The specificity of ATX III antibodies was characterized using ATX III, ATX I, native and chemically modified ATX II, and scorpion alpha-toxins. The results obtained suggest that a region of ATX III, partially or totally overlapping the pharmacological site shared with ATX I and ATX II, is immunogenic. It includes a guanidino and at least two carboxylate groups. The corresponding region is not immunogenic in ATX I and ATX II. Anti-(ATX III) antibodies recognize the similar regions of ATX I and ATX II and apparently do not recognize scorpion toxins.  相似文献   

10.
Two new polypeptide components which exhibited an analgesic effect in experiments on mice were isolated from the Heteractis crispa sea tropical anemone by the combination of chromatographic methods. The APHC2 and APHC3 new polypeptides consisted of 56 amino acid residues and contained six cysteine residues. Their complete amino acid sequence was determined by the methods of Edman sequencing, mass spectrometry, and peptide mapping. An analysis of the primary structure of the new peptides allowed for their attribution to a large group of trypsin inhibitors of the Kunitz type. An interesting biological function of the new polypeptides was their analgesic effect on mammals, which is possibly realized via the modulation of the activity of the TRPV1 receptor and was not associated with the residual inhibiting activity towards trypsin and chymotrypsin. The analgesic activity of the APHC3 polypeptide was measured on the hot plate model of acute pain and was significantly higher than that of APHC2. Methods of preparation of the recombinant analogues were created for both polypeptides.  相似文献   

11.
The amino acid sequence of the sodium channel toxin RpIII from the sea anemone Radianthus paumotensis has been determined. The protein is homologous with five analogous toxins from three anemone species, and is most similar to a less toxic protein, RpII, from the same organism. Twelve residues are conserved in all six toxins, one of which is an arginine residue thought to be essential for toxicity. The others (Cys, Gly, Pro and Trp) tend to be conserved in other sets of homologous proteins to maintain functional folds. Comparisons of the sequences suggest the existence of two separate but related classes of toxins cumon the three species of anemone.  相似文献   

12.
Summary The effects of scorpion and sea anemone polypeptide toxins on partially purified veratridine (VER)-activated Na channels from rat brain were studied at the single-channel level in planar lipid bilayers. The probability of the VER-activated channel being open (P o ) increased with depolarization;P o was 0.5 at –40 to –50 mV. Saxitoxin (STX) blocked VER-activated channels with an apparent dissociation constant of about 1nm at –45 mV. The apparent single-channel conductance was approximately 9 pS, similar to that seen in VER-activated Na channels from skeletal muscle transverse tubules. Addition of sea anemone or scorpion polypeptide toxins to VER-activated Na channels resulted in a 19% increase in apparent single-channel conductance and a hyperpolarizing shift in theP o vs. V m relation such that the channels were more likely to be open at potentials <40 mV. These effects of the polypeptide toxins on the single-channel properties of VER-activated Na channels may account for the previously described potentiation of VER action by polypeptide toxins.  相似文献   

13.
Polyclonal antibodies to neurotoxin Rm-III from sea anemone Radianthus macrodactylus have been obtained. Constants of inhibition of the Rm-III binding to its antibodies by the homologous toxins have been determined. Antigenic activity of the second type toxins is shown to depend not only on the degree of homology but also no the type of substitution in the amino acid sequence. As shown by the calculation methods, the antigenic determinants of all the homologues have similar positions. Amino acid residues at positions 2, 11, 20, 28, and 46-48 seem to be included into the antigenic sites of the toxins studied.  相似文献   

14.
A polypeptide toxin ??-AnmTX Hcr 1b-1 with a molecular mass of 4537 Da was isolated from the whole extract of the sea anemone Heteractis crispa by multistage liquid chromatography. According to a homology search using the BLAST algorithm, the novel toxin was referred to the group of the known sea anemone toxins BDS and APETx with the homology of the amino acid sequence not exceeding 50%. In electrophysiological studies on the receptors expressed in Xenopus laevis oocytes the toxin inhibited the amplitude of the fast component of the integral ASIC3 current. The calculated IC50 value was 5.5 ± 1.0 ??M. Among the known polypeptide blockers of ASIC3 channels the ??-AnmTX Hcr 1b-1 toxin was the least potent inhibitor, which can be explained, in our opinion, by a small amount of charged amino acid residues in its structure.  相似文献   

15.
Moran Y  Cohen L  Kahn R  Karbat I  Gordon D  Gurevitz M 《Biochemistry》2006,45(29):8864-8873
Type I sea anemone toxins are highly potent modulators of voltage-gated Na-channels (Na(v)s) and compete with the structurally dissimilar scorpion alpha-toxins on binding to receptor site-3. Although these features provide two structurally different probes for studying receptor site-3 and channel fast inactivation, the bioactive surface of sea anemone toxins has not been fully resolved. We established an efficient expression system for Av2 (known as ATX II), a highly insecticidal sea anemone toxin from Anemonia viridis (previously named A. sulcata), and mutagenized it throughout. Each toxin mutant was analyzed in toxicity and binding assays as well as by circular dichroism spectroscopy to discern the effects derived from structural perturbation from those related to bioactivity. Six residues were found to constitute the anti-insect bioactive surface of Av2 (Val-2, Leu-5, Asn-16, Leu-18, and Ile-41). Further analysis of nine Av2 mutants on the human heart channel Na(v)1.5 expressed in Xenopus oocytes indicated that the bioactive surfaces toward insects and mammals practically coincide but differ from the bioactive surface of a structurally similar sea anemone toxin, Anthopleurin B, from Anthopleura xanthogrammica. Hence, our results not only demonstrate clear differences in the bioactive surfaces of Av2 and scorpion alpha-toxins but also indicate that despite the general conservation in structure and importance of the Arg-14 loop and its flanking residues Gly-10 and Gly-20 for function, the surface of interaction between different sea anemone toxins and Na(v)s varies.  相似文献   

16.
Amino acid sequence of neurotoxin II isolated from the sea anemone Radianthus macrodactylus was determined by analysis of peptides obtained after its digestion with trypsin and staphylococcal proteinase. It is shown that the polypeptide chain of the toxin consists of 48 amino acid residues, including six cysteines.  相似文献   

17.
The genes of four novel neurotoxins, named Hk2a, Hk7a, Hk8a, and Hk16a, were obtained from sea anemone Anthopleura sp. All four neurotoxins were composed of 47 amino acid residues and the variable residues among them were found in positions 14, 22, 25, and 37. To study their activities, the four toxins fused to the Escherichia coli thioredoxin were overexpressed by BL21 (DE3), cleaved off from the fusion partner, purified, and characterized with MALDI-TOF and CD assays. Contractile force studies of isolated SD atria indicated that rHk2a had the strongest and rHk7a the longest heart stimulation effect. Consequently, the Arg14, a highly conserved residue in various sea anemone neurotoxins, can be inferred to contribute to the duration but not the intensity of contraction-stimulating activity. Our work renders useful information to studies of sea anemone neurotoxins, especially to the clarification of the function of the disputative Arg14.  相似文献   

18.
《FEBS letters》1998,427(1):149-151
A potassium channel toxin (AeK) was isolated from the sea anemone Actinia equina by gel filtration on Sephadex G-50 and reverse-phase HPLC on TSKgel ODS-120T. AeK and α-dendrotoxin inhibited the binding of 125I-α-dendrotoxin to rat synaptosomal membranes with IC50 of 22 and 0.34 nM, respectively, indicating that AeK is about sixty-five times less toxic than α-dendrotoxin. The complete amino acid sequence of AeK was elucidated; it is composed of 36 amino acid residues including six half-Cys residues. The determined sequence showed that AeK is analogous to the three potassium channel toxins from sea anemones (BgK from Bunodosoma granulifera, ShK from Stichodactyla helianthus and AsKS from Anemonia sulcata), with an especially high sequence homology (86%) with AsKS.  相似文献   

19.
The membrane effects of 4 sea anemone and 6 scorpion toxins have been studied under current clamp and voltage clamp conditions. Micromolar concentrations of the purified toxins were applied externally on single giant axons of the american cockroach. Periplaneta americana in a double oil-gap arrangement and the effects on the resting potential, action potential and underlying currents analysed. The 4 sea anemone toxins (Condylactis toxin, Anemonia toxin 2, Anthopleurin toxin A and Parasicyonis toxin) were found to considerably prolong the action potential. This effect is frequency dependent and long plateau spikes (100-500 ms in duration) are consistently seen for frequencies lower than 0.2 Hz. This effect is due to a considerable delay in the turning-off of the sodium current during square membrane depolarizations associated, for large concentrations, with a decrease in the potassium conductance. Toxin effects on the sodium current are not prevented by pretreatment with STX. From the 4 purified toxins extracted from the venom of the scorpion, Androctonus australis Hector, 3 (Mammal toxins 1 and 2 and crustacean toxin) were found to have sea anemone toxin like effects and to induce long duration plateau action potentials. As for sea anemone toxins, this effect is due to a lengthening of the falling phase of the sodium current associated with a small decrease in the potassium conductance. The 4th toxin (insect toxin or ITAaH) depolarizes the membrane and induces repetitive firing of short action potentials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
1. Venom from the sea anemone Actinia cari was obtained by the "milking" method. Two lethal and hemolytic polypeptide toxins, caritoxins I (CTX I) and II (CTX II), were isolated with gel and ion exchange chromatography. 2. The mol. wt of the pure toxin was 19,800. The isoelectric points of CTX I and II were 9.45 and 10.0, respectively. The toxins had similar amino acid compositions lacking cysteine. 3. The intravenous CTX I and CTX II lethal dose (LD50) in mice was found to be 54 +/- 25 and 90 +/- 1 micrograms/kg, respectively. Their hemolytic activity was inhibited by sphingomyelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号