首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In wastewater treatment plants based on the rhizosphere zone (rhizoremediation technology), ammonia-oxidizing bacteria (AOB) play an important role in the removal of fixed nitrogen. However, the diversity of these bacteria in rhizoremediation wastewater treatment plants is largely unknown. We employed direct PCR amplification and cloning of 16S rRNA genes to determine the phylogenetic affiliation of AOB occurring in root and soil samples of a wastewater treatment plant (Merzdorf plant, Brandenburg, Germany). 16S rDNA clone libraries were screened by hybridization using an oligonucleotide probe specific for AOB of the beta subclass of proteobacteria. Comparative sequence analysis of all hybridization-positive clones revealed that the majority of rDNA sequences was affiliated to members of the genus Nitrosospira and formed a novel subcluster (SM cluster), whereas only three sequences were most closely related to Nitrosomonas species. Affiliation of the novel Nitrosospira-like sequences with those of isolates from soil and rhizosphere suggests that phylogenetic clusters reflect physiological differences between members of this genus.  相似文献   

2.
The effects of the lengths of aeration and nonaeration periods on nitrogen removal and the nitrifying bacterial community structure were assessed in intermittently aerated (IA) reactors treating digested swine wastewater. Five IA reactors were operated in parallel with different aeration-to-nonaeration time ratios (ANA). Populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were monitored using 16S rRNA slot blot hybridizations. AOB species diversity was assessed using amoA gene denaturant gradient gel electrophoresis. Nitrosomonas and Nitrosococcus mobilis were the dominant AOB and Nitrospira spp. were the dominant NOB in all reactors, although Nitrosospira and Nitrobacter were also detected at lower levels. Reactors operated with the shortest aeration time (30 min) showed the highest Nitrosospira rRNA levels, and reactors operated with the longest anoxic periods (3 and 4 h) showed the lowest levels of Nitrobacter, compared to the other reactors. Nitrosomonas sp. strain Nm107 was detected in all reactors, regardless of the reactor's performance. Close relatives of Nitrosomonas europaea, Nitrosomonas sp. strain ENI-11, and Nitrosospira multiformis were occasionally detected in all reactors. Biomass fractions of AOB and effluent ammonia concentrations were not significantly different among the reactors. NOB were more sensitive than AOB to long nonaeration periods, as nitrite accumulation and lower total NOB rRNA levels were observed for an ANA of 1 h:4 h. The reactor with the longest nonaeration time of 4 h performed partial nitrification, followed by denitrification via nitrite, whereas the other reactors removed nitrogen through traditional nitrification and denitrification via nitrate. Superior ammonia removal efficiencies were not associated with levels of specific AOB species or with higher AOB species diversity.  相似文献   

3.
We investigated the phylogenetic diversity of ammonia-oxidizing bacteria (AOB) in Yellow Sea continental shelf sediment by the cloning and sequencing of PCR-amplified amoA and 16S rRNA genes. Phylogenetic analysis of the amoA-related clones revealed that the diversity of AOB was extremely low at the study site. The majority (92.7%) of amoA clones obtained belonged to a single cluster, environmental amoA cluster-3, the taxonomic position of which was previously unknown. Phylogenetic analysis on AOB-specific 16S rRNA gene sequences also demonstrated a very low diversity. All of the cloned 16S rRNA gene sequences comprised a single phylotype that belonged to the members of uncultured Nitrosospira cluster-1, suggesting that AOB belonging to the uncultured Nitrosospira cluster- 1 could carry amoA sequences of environmental amoA cluster-3.  相似文献   

4.
Use of amoB as a new molecular marker for ammonia-oxidizing bacteria   总被引:3,自引:0,他引:3  
Specific molecular determination and classification of ammonia-oxidizing bacteria have relied on the use of conventional markers such as 16S rDNA. However, this gene does not satisfactorily provide a wide vision of all phylogenetic lineages. Despite the initial expectations, the use of functional genes as for example amoA has only been useful to corroborate the established taxonomy. Ammonia-oxidizing bacteria constitute a physiological group that crosses over principal phylogenetic radiations. Therefore, it is necessary to look for novel functional markers, which are needed for both diversity and taxonomic studies. In this work, the available amoB sequences have been used to design a new degenerate set of primers flanking a ca. 500-bp region. Partial amoB gene sequences of up to 16 AOB strains (5 Nitrosomonas, 10 Nitrosospira, and 1 Nitrosococcus) belonging to both the beta- and the gamma-Proteobacteria have been obtained. Comparison of both DNA and deduced amino acid sequences results in three subgroups, two of them of the beta-Proteobacteria and a third one of the gamma-Proteobacteria displaying 75% and 35% homology in their deduced amino acid sequences, respectively. This gene has proven to be a suitable molecular marker to study AOB, as well as providing a new insight into the classification of this group.  相似文献   

5.
好氧氨氧化菌的种群生态学研究进展   总被引:20,自引:1,他引:20  
好氧氨氧化菌是一类能够在好氧条件下将NH4^+转化为NO2^-的化能无机自养型细菌,其活动将直接或间接影响土壤养分循环、水体富营养化、温室气体(N2O)和生态系统的功能。现代分子生物学技术的发展促进了人们对好氧氨氧化菌种群生态学的研究。介绍了近年来基于16SrRNA和氨单加氧酶amoA基因序列分析的好氧氨氧化菌的系统发育研究,比较了两种基因序列分析在好氧氨氧化菌遗传多样性研究中存在的差异;概述了环境条件诸如铵浓度、酸度、氧的可利用性、温度、盐度等对好氧氨氧化菌种类、数量及其种群生态分布的影响;阐述了好氧氨氧化菌对铵、氧饥饿的响应特征及其在酸性环境中的生存机制;并对今后好氧氨氧化菌的应用生态学研究及其主要方向进行了展望。  相似文献   

6.
【目的】本研究皆在了解虾养殖底泥中氨氧化细菌与氨氧化古菌群落多态性。【方法】以功能基因为基础,构建氨氧化细菌(AOB)与氨氧化古菌(AOA)的氨单加氧酶α亚基基因(amoA)克隆文库。利用限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP)技术将克隆文库阳性克隆子进行归类分析分成若干个可操作分类单元(Operational Taxa Units,OTUs)。【结果】通过序列多态性分析,表明AOB amoA基因克隆文库中所有序列都属于变形杆菌门β亚纲(β-Proteobacteria)中的亚硝化单细胞菌属(Nitrosomonas)及Nitrosomonas-like,未发现亚硝化螺旋菌属(Nitrosospira)。AOA amoA基因克隆文库中只有一个OTU序列属于未分类的古菌(Unclassified-Archaea),其余序列都属于泉古菌门(Crenarchaeote)。AOA群落结构单一且存在一个绝对优势类群OTU3,其克隆子数目占克隆文库的57.45%。AOB和AOA amoA基因克隆文库分别包括13个OTUs和9个OTUs,其文库覆盖率分别为73.47%和90.43%。AOB amoA基因克隆文库的Shannon-Wiener指数、Evenness指数、Simpson指数、Richness指数均高于AOA。【结论】虾养殖塘底泥中存在氨氧化古菌的amoA基因,且多态性低于氨氧化细菌,表明氨氧化古菌在虾养殖塘底泥的氮循环中可能具有重要的作用。  相似文献   

7.
8.
Temporal and spatial dynamics of ammonia-oxidizing bacteria (AOB) were examined using genes encoding 16S rRNA and ammonia monooxygenase subunit A (AmoA) in Monterey Bay, Calif. Samples were collected from three depths in the water column on four dates at one mid-bay station. Diversity estimators for the two genes showed a strong positive correlation, indicating that overlapping bacterial populations had been sampled by both sets of clone libraries. Some samples that were separated by only 15 m in depth had less genetic similarity than samples that were collected from the same depth months apart. Clone libraries from the Monterey Bay AOB community were dominated by Nitrosospira-like sequences and clearly differentiated from the adjacent AOB community in Elkhorn Slough. Many Monterey Bay clones clustered with previously identified 16S rRNA and amoA groups composed entirely of marine sequences, supporting the hypothesis that these groups are specific to the marine environment and are dominant marine AOB. In addition, novel, phylogenetically distinct groups of AOB sequences were identified and compared to sequences in the database. Only one cluster of gammaproteobacterial AOB was detected using 16S rRNA genes. Although significant genetic variation was detected in AOB populations from both vertical and temporal samples, no significant correlation was detected between diversity and environmental variables or the rate of nitrification.  相似文献   

9.
A quantitative real-time PCR (QPCR) assay with the TaqMan system was used to quantify 16S rRNA genes of β-proteobacterial ammonia-oxidizing bacteria (AOB) in a batch nitrification bioreactor. Five different sets of primers, together with a TaqMan probe, were used to quantify the 16S rRNA genes of β-proteobacterial AOB belonging to the Nitrosomonas europaea, Nitrosococcus mobilis, Nitrosomonas nitrosa, and Nitrosomonas cryotolerans clusters, and the genus Nitrosospira. We also used PCR followed by denaturing gradient gel electrophoresis (DGGE), cloning, and sequencing of their 16S rRNA genes to identify the AOB species. Seed sludge from an industrial wastewater treatment process controlling high-strength nitrogen wastewater (500 mg/L NH4 +–N) was used as the inoculum for subsequent batch experiment. The Nitrosomonas nitrosa cluster was the predominant AOB (2.3 × 105 copies/mL) in the start-up period of the batch experiment. However, from the exponential growth period, the Nitrosomonas europaea cluster was the most abundant AOB, and its 16S rRNA gene copy number increased to 8.9 × 106 copies/mL. The competitive dominance between the two AOB clusters is consistent with observed differences in ammonia tolerance and substrate affinity. Analysis of the DGGE results indicated the presence of Nitrosomonas europaea ATCC19718 and Nitrosomonas nitrosa Nm90, consistent with the QPCR results.  相似文献   

10.
The impact of soil management practices on ammonia oxidizer diversity and spatial heterogeneity was determined in improved (addition of N fertilizer), unimproved (no additions), and semi-improved (intermediate management) grassland pastures at the Sourhope Research Station in Scotland. Ammonia oxidizer diversity within each grassland soil was assessed by PCR amplification of microbial community DNA with both ammonia oxidizer-specific, 16S rRNA gene (rDNA) and functional, amoA, gene primers. PCR products were analysed by denaturing gradient gel electrophoresis, phylogenetic analysis of partial 16S rDNA and amoA sequences, and hybridization with ammonia oxidizer-specific oligonucleotide probes. Ammonia oxidizer populations in unimproved soils were more diverse than those in improved soils and were dominated by organisms representing Nitrosospira clusters 1 and 3 and Nitrosomonas cluster 7 (closely related phylogenetically to Nitrosomonas europaea). Improved soils were only dominated by Nitrosospira cluster 3 and Nitrosomonas cluster 7. These differences were also reflected in functional gene (amoA) diversity, with amoA gene sequences of both Nitrosomonas and Nitrosospira species detected. Replicate 0.5-g samples of unimproved soil demonstrated significant spatial heterogeneity in 16S rDNA-defined ammonia oxidizer clusters, which was reflected in heterogeneity in ammonium concentration and pH. Heterogeneity in soil characteristics and ammonia oxidizer diversity were lower in improved soils. The results therefore demonstrate significant effects of soil management on diversity and heterogeneity of ammonia oxidizer populations that are related to similar changes in relevant soil characteristics.  相似文献   

11.
Nitrification and anammox with urea as the energy source   总被引:6,自引:0,他引:6  
Urea is present in many ecosystems and can be used as an energy source by chemolithotrophic aerobic ammonia oxidizing bacteria (AOB). Thus the utilization of urea in comparison to ammonia, by AOB as well as anaerobic ammonia oxidizing (Anammox) bacteria was investigated, using enrichments cultures, inoculated with activated sludge, and molecular ecological methods. In batch enrichment cultures grown with ammonia a population established in 2 weeks, which was dominated by halophilic and halotolerant AOB as determined by fluorescence in situ hybridization (FISH) experiments, with the 16S rRNA targeting oligonucleotide probe NEU. In other batch enrichment cultures using urea, the AOB population was assessed by PCR amplification, cloning and phylogenetic analysis of amoA and ribosomal 16S rRNA genes. While only one of the 48 16S rRNA gene clones could be identified as AOB (Nitrosomonas oligotropha), the amoA approach revealed two more AOB, Nitrosomonas europaea and Nitrosomonas nitrosa to be present in the enrichment. FISH analysis of the enrichment with probe NEU and newly designed probes for a specific detection of N. oligotropha and N. nitrosa related organisms, respectively, showed that N. oligotropha-like AOB formed about 50% of the total bacterial population. Also N. nitrosa (about 15% of the total population) and N. europaea (about 5% of the total population) were relatively abundant. Additionally, continuous enrichments were performed under oxygen limitation. When ammonia was the energy source, the community in this reactor consisted of Anammox bacteria and AOB hybridizing with probe NEU. As the substrate was changed to urea, AOB related to N. oligotropha became the dominant AOB in this oxygen limited consortium. This resulted in a direct conversion of urea to dinitrogen gas, without the addition of organic carbon.  相似文献   

12.
Communities of ammonia-oxidizing bacteria (AOB) were characterized in two acidic soil sites experimentally subjected to varying levels of nitrogen and sulphur deposition. The sites were an acidic spruce forest soil in Deepsyke, Southern Scotland, with low background deposition, and a nitrogen-saturated upland grass heath in Pwllpeiran, North Wales. Betaproteobacterial ammonia-oxidizer 16S rRNA and ammonia monooxygenase (amoA) genes were analysed by cloning, sequencing and denaturing gradient gel electrophoresis (DGGE). DGGE profiles of amoA and 16S rRNA gene fragments from Deepsyke soil in 2002 indicated no effect of nitrogen deposition on AOB communities, which contained both Nitrosomonas europaea and Nitrosospira. In 2003, only Nitrosospira could be detected, and no amoA sequences could be retrieved. These results indicate a decrease in the relative abundance of AOB from the year 2002 to 2003 in Deepsyke soil, which may be the result of the exceptionally low rainfall in spring 2003. Nitrosospira-related sequences from Deepsyke soil grouped in all clusters, including cluster 1, which typically contains only sequences from marine environments. In Pwllpeiran soil, 16S rRNA gene libraries were dominated by nonammonia oxidizers and no amoA sequences were detectable. This indicates that autotrophic AOB play only a minor role in these soils even at high nitrogen deposition.  相似文献   

13.
太湖竺山湾沉积物中氨氧化原核生物的垂直分布与多样性   总被引:8,自引:0,他引:8  
原核生物驱动的氨氧化过程对于富营养化湖泊的氮循环具有重要意义。为了解太湖藻型湖区沉积物中氨氧化原核生物的垂直分布和多样性特征,采用分子生态学方法,对竺山湾沉积物剖面中氨单加氧酶基因(amoA)或16S rRNA基因等特征分子标记的变化和序列特征进行了分析。结果表明,氨氧化细菌(ammonia-oxidizing bacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)共存于沉积物各层。AOB的优势种在5cm深度以下发生明显改变,这可能与沉积物氧化还原电位及铵态氮的变化有关;所有细菌amoA序列均属亚硝化单胞菌(Nitrosomonas)。AOA群落结构自表层至7cm深度变化不大,所有古菌amoA序列分属泉古菌CG1.1b和CG1.1a两大类群,这可能与太湖形成历史上的海陆交替过程有关。此外,沉积物各层均未发现典型厌氧氨氧化(anaerobic ammonium oxidation,anammox)细菌16S rRNA基因序列。这些发现丰富了对太湖藻型湖区氨氧化原核生物分布、多样性及环境调控原理的认识,对理解富营养化湖泊氨氧化规律、认识湖泊生态系统氮循环功能具有借鉴意义。  相似文献   

14.
To determine whether the distribution of estuarine ammonia-oxidizing bacteria (AOB) was influenced by salinity, the community structure of betaproteobacterial ammonia oxidizers (AOB) was characterized along a salinity gradient in sediments of the Ythan estuary, on the east coast of Scotland, UK, by denaturant gradient gel electrophoresis (DGGE), cloning and sequencing of 16S rRNA gene fragments. Ammonia-oxidizing bacteria communities at sampling sites with strongest marine influence were dominated by Nitrosospira cluster 1-like sequences and those with strongest freshwater influence were dominated by Nitrosomonas oligotropha-like sequences. Nitrosomonas sp. Nm143 was the prevailing sequence type in communities at intermediate brackish sites. Diversity indices of AOB communities were similar at marine- and freshwater-influenced sites and did not indicate lower species diversity at intermediate brackish sites. The presence of sequences highly similar to the halophilic Nitrosomonas marina and the freshwater strain Nitrosomonas oligotropha at identical sampling sites indicates that AOB communities in the estuary are adapted to a range of salinities, while individual strains may be active at different salinities. Ammonia-oxidizing bacteria communities that were dominated by Nitrosospira cluster 1 sequence types, for which no cultured representative exists, were subjected to stable isotope probing (SIP) with 13C-HCO3-, to label the nucleic acids of active autotrophic nitrifiers. Analysis of 13C-associated 16S rRNA gene fragments, following CsCl density centrifugation, by cloning and DGGE indicated sequences highly similar to the AOB Nitrosomonas sp. Nm143 and Nitrosomonas cryotolerans and to the nitrite oxidizer Nitrospira marina. No sequence with similarity to the Nitrosospira cluster 1 clade was recovered during SIP analysis. The potential role of Nitrosospira cluster 1 in autotrophic ammonia oxidation therefore remains uncertain.  相似文献   

15.
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae's potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities on three species of macroalgae, Osmundaria volubilis, Phyllophora crispa, and Laminaria rodriguezii, from the Balearic Islands (western Mediterranean Sea). Quantitative PCR of bacterial and archaeal 16S rRNA and amoA genes was performed. In contrast to what has been shown for most other marine environments, the macroalgae's surfaces were dominated by bacterial amoA genes rather than those from the archaeal counterpart. On the basis of the sequences retrieved from AOB and AOA amoA gene clone libraries from each algal species, the bacterial ammonia-oxidizing communities were related to Nitrosospira spp. and to Nitrosomonas europaea and only 6 out of 15 operational taxonomic units (OTUs) were specific for the host species. Conversely, the AOA diversity was higher (43 OTUs) and algal species specific, with 17 OTUs specific for L. rodriguezii, 3 for O. volubilis, and 9 for P. crispa. Altogether, the results suggest that marine macroalgae may exert an ecological niche for AOB in marine environments, potentially through specific microbe-host interactions.  相似文献   

16.
A fragment of the ammonia monooxygenase gene (amoA) from 31 strains of ammonia-oxidizing bacteria (AOB) was sequenced and analysed phylogenetically. The results were compared with the phylogeny of 16S rDNA from AOB. For most groups of AOB we found a high consistency between the phylogenetic trees based on the 16S rDNA and amoA sequences. Although it is not a phylogenetic marker, using the amoA as a probe when studying microbial diversity will probably reduce the amount of non-AOB detected, compared to using rDNA based probes. The data presented in this paper extend and improve the basis for application of amoA in studies of AOB in the environment.  相似文献   

17.
In this study, dideoxy sequencing and 454 high-throughput sequencing were used to analyze diversities of the ammonia monooxygenase (amoA) genes and the 16S rRNA genes of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in six municipal wastewater treatment plants. The results showed that AOB amoA genes were quite diverse in different wastewater treatment plants while the 16S rRNA genes were relatively conserved. Based on the observed complexity of amoA and 16S rRNA genes, most of the AOB can be assigned to the Nitrosomonas genus, with Nitrosomonas ureae, Nitrosomonas oligotropha, Nitrosomonas marina, and Nitrosomonas aestuarii being the four most dominant species. From the sequences of the AOA amoA genes, most AOA observed in this study belong to the CGI.1b group, i.e., the soil lineage. The AOB amoA and 16S rRNA genes were quantified by quantitative PCR and 454 high-throughput pyrosequencing, respectively. Although the results from the two approaches show some disconcordance, they both indicated that the abundance of AOB in activated sludge was very low.  相似文献   

18.
【背景】对于环境样品中氨氧化古菌(Ammonia-oxidizing archaea,AOA)多样性的研究,利用amoA功能基因作为分子标记会比16SrRNA基因有更强的特异性和更高的分辨率,能更准确地反映环境样品中氨氧化古菌的种群结构和分布特征。然而,目前对amoA基因扩增子高通量测序的分析存在两大限制因素:一是缺乏相应的amoA基因参考数据库;二是AOA amoA基因在种水平上的相似性阈值未知,分析过程中没有明确的划分种水平操作分类单元(Operational taxonomic unit,OTU)的阈值。【目的】构建基于amoA功能基因序列分析氨氧化古菌多样性的方法,为基于高通量测序的功能微生物多样性分析提供参考。【方法】基于目前已通过分离纯化或富集培养获得的34株氨氧化古菌及功能基因数据库中收录的环境样品amoA基因序列,构建氨氧化古菌amoA基因参考数据库。通过菌株间两两比对获得的amoA基因相似度与16SrRNA基因相似度的相关性分析,确定amoA基因在种水平上的相似性阈值。基于MOTHUR软件平台,利用建立的参考数据库和确定的阈值对南海一个垂直水体剖面样品的amoA基因序列进行多样性分析。【结果】构建了含有26 091条序列信息的古菌amoA基因参考数据库,确定了89%作为分析过程中古菌amoA基因划分种水平OTU的阈值,对南海水体样品氨氧化古菌的多样性分析结果很好地显示了南海不同深度水层水体中氨氧化古菌的种群结构和系统发育关系,有效揭示了南海氨氧化古菌的垂直分布差异。【结论】建立了基于amoA基因高通量测序的氨氧化古菌多样性分析方法,此方法可以有效分析环境样品中氨氧化古菌的多样性。  相似文献   

19.
Use of quantitative real-time PCR (QPCR) with TaqMan probes is increasingly popular in various environmental works to detect and quantify a specific microorganism or a group of target microorganism. Although many aspects of conducting a QPCR assay have become very easy to perform, a proper design of oligonucleotide sequences comprising primers and a probe is still considered as one of the most important aspects of a QPCR application. This work was conducted to design group specific primer and probe sets for the detection of ammonia oxidizing bacteria (AOB) using a real-time PCR with a TaqMan system. The genera Nitrosomonas and Nitrosospira were grouped into five clusters based on similarity of their 16S rRNA gene sequences. Five group-specific AOB primer and probe sets were designed. These sets separately detect four subgroups of Nitrosomonas (Nitrosomonas europaea-, Nitrosococcus mobilis-, Nitrosomonas nitrosa-, and Nitrosomonas cryotolerans-clusters) along with the genus Nitrosospira. Target-group specificity of each primer and probe set was initially investigated by analyzing potential false results in silico, followed by a series of experimental tests for QPCR efficiency and detection limit. In general, each primer and probe set was very specific to the target group and sensitive to detect target DNA as low as two 16S rRNA gene copies per reaction mixture. QPCR efficiency, higher than 93.5%, could be achieved for all primer and probe sets. The primer and probe sets designed in this study can be used to detect and quantify the beta-proteobacterial AOB in biological nitrification processes and various environments.  相似文献   

20.
The functional gene amoA was used to compare the diversity of ammonia-oxidizing bacteria (AOB) in the water column and sediment-water interface of the two freshwater lakes Plusssee and Sch?hsee and the Baltic Sea. Nested amplifications were used to increase the sensitivity of amoA detection, and to amplify a 789-bp fragment from which clone libraries were prepared. The larger part of the sequences was only distantly related to any of the cultured AOB and is considered to represent new clusters of AOB within the Nitrosomonas/Nitrosospira group. Almost all sequences from the water column of the Baltic Sea and from 1-m depth of Sch?hsee were related to different Nitrosospira clusters 0 and 2, respectively. The majority of sequences from Plusssee and Sch?hsee were associated with sequences from Chesapeake Bay, from a previous study of Plusssee and from rice roots in Nitrosospira-like cluster A, which lacks sequences from Baltic Sea. Two groups of sequences from Baltic Sea sediment were related to clonal sequences from other brackish/marine habitats in the purely environmental Nitrosospira-like cluster B and the Nitrosomonas-like cluster. This confirms previous results from 16S rRNA gene libraries that indicated the existence of hitherto uncultivated AOB in lake and Baltic Sea samples, and showed a differential distribution of AOB along the water column and sediment of these environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号