首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Woolly apple aphid (WAA; Eriosoma lanigerum Hausm.) can be a major economic problem to apple growers in most parts of the world, and resistance breeding provides a sustainable means to control this pest. We report molecular markers for three genes conferring WAA resistance and placing them on two linkage groups (LG) on the genetic map of apple. The Er1 and Er2 genes derived from ‘Northern Spy’ and ‘Robusta 5,’ respectively, are the two major genes that breeders have used to date to improve the resistance of apple rootstocks to this pest. The gene Er3, from ‘Aotea 1’ (an accession classified as Malus sieboldii), is a new major gene for WAA resistance. Genetic markers linked to the Er1 and Er3 genes were identified by screening random amplification of polymorphic deoxyribonucleic acid (DNA; RAPD) markers across DNA bulks from resistant and susceptible plants from populations segregating for these genes. The closest RAPD markers were converted into sequence-characterized amplified region markers and the genome location of these two genes was assigned to LG 08 by aligning the maps around the genes with a reference map of ‘Discovery’ using microsatellite markers. The Er2 gene was located on LG 17 of ‘Robusta 5’ using a genetic map developed in a M.9 × ‘Robusta 5’ progeny. Markers for each of the genes were validated for their usefulness for marker-assisted selection in separate populations. The potential use of the genetic markers for these genes in the breeding of apple cultivars with durable resistance to WAA is discussed.  相似文献   

2.
Apple scab, caused by the fungus Venturia inaequalis, is the major production constraint in temperate zones with humid springs. Normally, its control relies on frequent and regular fungicide applications. Because this control strategy has come under increasing criticism, major efforts are being directed toward the breeding of scab-resistant apple cultivars. Modern apple breeding programs include the use of molecular markers, making it possible to combine several different scab-resistance genes in 1 apple cultivar (pyramiding) and to speed up the breeding process. The apple scab-resistance gene Vb is derived from the Siberian crab apple 'Hansen's baccata #2', and is 1 of the 6 "historical" major apple scab-resistance genes (Vf, Va, Vr, Vbj, Vm, and Vb). Molecular markers have been published for all these genes, except Vr. In testcross experiments conducted in the 1960s, it was reported that Vb segregated independently from 3 other major resistance genes, including Vf. Recently, however, Vb and Vf have both been mapped on linkage group 1, a result that contrasts with the findings from former testcross experiments. In this study, simple sequence repeat (SSR) markers were used to identify the precise position of Vb in a cross of 'Golden Delicious' (vbvb) and 'Hansen's baccata #2' (Vbvb). A genome scanning approach, a fast method already used to map apple scab-resistance genes Vr2 and Vm, was used, and the Vb locus was identified on linkage group 12, between the SSR markers Hi02d05 and Hi07f01. This finding confirms the independent segregation of Vb from Vf. With the identification of SSR markers linked to Vb, another major apple scab-resistance gene has become available; breeders can use it to develop durable resistant cultivars with several different resistance genes.  相似文献   

3.
RAPD markers linked to the Vf gene for scab resistance in apple   总被引:14,自引:0,他引:14  
Scab (Venturia inaequalis) is one of the most harmful diseases of apple, significantly affecting world apple production. The identification and early selection of resistant genotypes by molecular markers would greatly improve breeding strategies. Bulked segregant analysis was chosen for the identification of RAPD markers linked to the Vf scab resistant gene. Five different RAPD markers, derived from the wild species Malus floribunda. 821, were identified, and their genetic distance from Vf gene was estimated. The markers OPAM192200 and OPAL07580 were found to be very closely linked to the Vf gene. This result was indirectly confirmed by the analysis of resistant genotypes collected from various breeding programmes. Except for cv Murray, which carries the Vm gene, all these resistant genotypes showed the markers OPAM192200 and OPAL07580.  相似文献   

4.
为筛选出适用于重庆加工型辣椒疫病抗性鉴定的分子标记,以63份重庆加工型辣椒种质资源为材料,研究了12个辣椒疫病抗性相关分子标记的筛选效率。结果表明,7个分子标记在种质间无差异条带,2个分子标记的扩增结果不稳定,只有ZL6203、ZL6726和E73等3个分子标记在种质间能扩增出差异条带。ZL6203筛选高抗、抗性和中抗材料的效率分别为87.50%、77.78%和63.64%;ZL6726筛选抗性和感病材料的效率分别为100.00%和66.67%;E73筛选抗性和高抗材料的效率分别为77.78%和62.50%。因此,同一辣椒抗疫病分子标记对不同抗性材料筛选效率存在较大差异,ZL6203、ZL6726和E73适用于重庆地区加工型辣椒抗疫病材料的鉴定。  相似文献   

5.
We have identified AFLP markers tightly linked to the locus conferring resistance to the leaf rust Melampsora larici-populina in Populus. The study was carried out using a hybrid progeny derived from an inter-specific, controlled cross between a resistant Populus deltoides female and a susceptible P. nigra male. The segregation ratio of resistant to susceptible plants suggested that a single, dominant locus defined this resistance. This locus, which we have designated Melampsora resistance (Mer), confers resistance against E1, E2, and E3, three different races of Melampsora larici-populina. In order to identify molecular markers linked to the Mer locus we decided to combine two different techniques: (1) the high-density marker technology, AFLP, which allows the analysis of thousands of markers in a relatively short time, and (2) the Bulked Segregant Analysis (BSA), a method which facilitates the identification of markers that are tightly linked to the locus of interest. We analyzed approximately 11,500 selectively amplified DNA fragments using 144 primer combinations and identified three markers tightly linked to the Mer locus. The markers can be useful in current breeding programs and are the basis for future cloning of the resistance gene.  相似文献   

6.
A detailed genetic map has been constructed in apple (Malus x domestica Borkh.) in the region of the v f gene. This gene confers resistance to the apple scab fungus Venturia inaequalis (Cooke) Wint. Linkage data on four RAPD (random amplified polymorphic DNA) markers and the isoenzyme marker PGM-1, previously reported to be linked to the v f gene, are integrated using two populations segregating for resistance to apple scab. Two new RAPD markers linked to v f (identified by bulked segregant analysis) and a third marker previously reported as being present in several cultivars containing v f are also placed on the map. The map around v f now contains eight genetic markers spread over approximately 28 cM, with markers on both sides of the resistance gene. The study indicates that RAPD markers in the region of crab apple DNA introgressed with resistance are often transportable between apple clones carrying resistance from the same source. Analysis of co-segregation of the resistance classes 3A (weakly resistant) and 3B (weakly susceptible) with the linked set of genetic markers demonstrates that progeny of both classes carry the resistance gene.This work was supported in part by grants from the New Zealand Foundation for Research Science and Technology (FoRST) Programme 94-HRT-07-366 and ENZA New Zealand (International)  相似文献   

7.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

8.
Pi-z is a disease resistance gene that has been effectively used to combat a broad-spectrum of races of the rice blast fungus Magnaporthe grisea. Although DNA markers have been reported for selection of the Pi2(t) and Pi-z resistance genes at the Pi-z locus, markers that are more tightly linked to the Pi-z locus would benefit rapid and effective cultivar development. Analysis of the publicly available genome sequence of Nipponbare near the Pi-z locus revealed numerous SSRs that could be converted into markers. Three SSRs on rice PAC AP005659 were found to be very tightly linked to the Pi-z locus, with one marker, AP5659-3, co-segregating with the Pi-z resistance reaction. The Pi-z factor conferring resistance to two races of blast was mapped to a 57 kb region on the physical map of Nipponbare in a location where the Pi2(t) gene was physically mapped. Two SSR marker haplotypes were unique for cultivars carrying the Pi-z gene, which indicates these markers are useful for selection of resistance genes at the Pi-z locus in rice germplasm.  相似文献   

9.
The existence of different levels of susceptibility to fire blight (Erwinia amylovora) in European pear (Pyrus communis L.) cultivars suggests that it is possible to identify QTLs related to resistance in pear germplasm. Given the polygenic nature of this trait, we designed two genetic maps of the parental lines 'Passe Crassane' (susceptible) and 'Harrow Sweet' (resistant) using SSRs, MFLPs, AFLPs, RGAs and AFLP-RGAs markers. RGA-related markers should theoretically map in chromosome regions coding for resistance genes. The 'Passe Crassane' map includes 155 loci, for a total length of 912 cM organised in 18 linkage groups, and the 'Harrow Sweet' map 156 loci, for a total length of 930 cM divided in 19 linkage groups; both maps have a good genome coverage when compared to the more detailed apple maps. Four putative QTLs related to fire blight resistance were identified in the map. A suite of molecular markers, including two AFLP-RGAs, capable of defining resistant and susceptible haplotypes in the analysed population was developed.  相似文献   

10.
The rosy apple aphid (Dysaphis plantaginea), the leaf-curling aphid (Dysaphis cf. devecta) and the green apple aphid (Aphis pomi) are widespread pest insects that reduce growth of leaves, fruits and shoots in apple (Malus × domestica). Aphid control in apple orchards is generally achieved by insecticides, but alternative management options like growing resistant cultivars are needed for a more sustainable integrated pest management (IPM). A linkage map available for a segregating F1-cross of the apple cultivars ‘Fiesta’ and ‘Discovery’ was used to investigate the genetic basis of resistance to aphids. Aphid infestation and plant growth characteristics were repeatedly assessed for the same 160 apple genotypes in three different environments and 2 consecutive years. We identified amplified fragment length polymorphism (AFLP) markers linked to quantitative trait loci (QTLs) for resistance to D. plantaginea (‘Fiesta’ linkage group 17, locus 57.7, marker E33M35–0269; heritability: 28.3%), and to D. cf. devecta (‘Fiesta’ linkage group 7, locus 4.5, marker E32M39–0195; heritability: 50.2%). Interactions between aphid species, differences in climatic conditions and the spatial distribution of aphid infestation were identified as possible factors impeding the detection of QTLs. A pedigree analysis of simple sequence repeat (SSR) marker alleles closely associated with the QTL markers revealed the presence of the alleles in other apple cultivars with reported aphid resistance (‘Wagener’, ‘Cox’s Orange Pippin’), highlighting the genetic basis and also the potential for gene pyramiding of aphid resistance in apple. Finally, significant QTLs for shoot length and stem diameter were identified, while there was no relationship between aphid resistance and plant trait QTLs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The giant-embryo character is useful for quality improvement in rice. Three alleles controlling embryo size have been reported at the ge locus. Based on trisomic analysis, this locus is known to reside on chromosome 7. The objective of the present study was to identify linkage between molecular markers and the ge s gene using an existing molecular map of rice and an F2 population derived from Hwacheongbyeo-ge s (super-giant embryo)/Milyang 23. The bulked-segregant method was used to screen 38 RFLPs and two microsatellite markers from rice chromosome 7. RZ395 and CDO497 flanked the ge s gene, at 2.4 cM and 3.4 cM, respectively. The two microsatellite markers, RM18 and RM10, were linked with ge s at 7.7 cM and 9.6 cM, respectively. The availability of molecular markers will facilitate selection of this grain character in a breeding program and provide the foundation for map-based gene isolation.  相似文献   

12.
A population of diploid potato (Solanum tuberosum) was used for the genetic analysis and mapping of a locus for resistance to the potato cyst nematode Globodera rostochiensis, introgressed from the wild potato species Solanum vernei. Resistance tests of 108 genotypes of a F1 population revealed the presence of a single locus with a dominant allele for resistance to G. rostochiensis pathotype Ro1. This locus, designated GroV1, was located on chromosome 5 with RFLP markers. Fine-mapping was performed with RAPD and SCAR markers. The GroV1 locus was found in the same region of the potato genome as the S. tuberosum ssp. andigena H1 nematode resistance locus. Both resistance loci could not excluded to be allelic. The identification of markers flanking the GroV1 locus offers a valuable strategy for marker-assisted selection for introgression of this nematode resistance.Abbreviations BSA bulked segregant analysis - RAPD random-amplified polymorphic DNA - RFLP restriction fragment length polymorphism - SCAR sequence-characterized amplified region  相似文献   

13.
Large-scale marker-assisted selection requires highly reproducible, consistent and simple markers. The use of genetic markers is important in woody plant breeding in general, and in apple in particular, because of the high level of heterozygosity present in Malus species. We present here the transformation of two RAPD markers, which we found previously to be linked to the major scab resistance gene Vf, into more reliable and reproducible markers that can be applied directly to apple breeding. We give an example of how the use of such markers can speed up selection for the introduction of scab resistance genes into the same plant, reducing labour and avoiding time-consuming test crosses. We discuss the nature and relationship of the scab resistance gene Vf to the one present in Nova Easygro, thought to be Vr.  相似文献   

14.
蓖麻根腐病是茄腐镰孢菌(Fusarium solani)引起的根部病害,严重影响蓖麻产量。抗源缺乏制约了抗病品种的选育。为寻找抗病种质、建立抗性分子标记,该研究对252份蓖麻材料的抗性进行了表型和分子标记鉴定。结果表明:(1)浓度为1×106个·mL-1的孢子悬浮液灌根是一种有效的接种方法; 以接种后枯萎天数为基础的5级评价法,可作为鉴定标准。(2)鉴定出130份抗病材料,其中高抗为105份。(3)野生材料中抗病材料比率(66%)远高于栽培材料(35%),建议将野生材料,尤其是中国华南野生材料的研究利用作为今后抗病育种的重要方向。(4)初步建立了8个与抗性关联的SSR标记。该研究结果提供了有效的根腐病抗性鉴定方法和评价标准,筛选出了一批育种迫切需要的抗病基因资源,初步建立了可用于辅助选择的SSR标记,为蓖麻抗根腐病育种奠定了重要基础。  相似文献   

15.
Meloidogynejavanica is the most widely spread nematode pest on soybean in SouthAfrica. Only a few registered commercial South African cultivars are poor hostsof this nematode species and there is an urgent need for an efficient breedingprogramme for resistant cultivars of all maturity groups. However, breeding ishampered by laborious screening procedures for selection of poor host cultivarsand/or lines. The objective of this study was to develop an economically viablemolecular marker system for application in selection procedures. BothRestriction Fragment Length Polymorphism (RFLP) and Amplified Fragment LengthPolymorphism (AFLP) screening techniques identified markers linked togall-indexvariation in a segregating population of 60 F2 progeny from a crossbetween a resistant cultivar (Gazelle) and a highly susceptible variety(Prima).A codominant RFLP marker( B212) was linked significantly to M.javanica resistance and explained 62% of the variation ingall-index.Seven AFLP markers were linked significantly to the resistance trait, of whichfour were linked in repulsion phase and three in coupling phase. All seven AFLPmarkers mapped to LG-F (Linkage Group F) on the public soybean molecular map.The major quantitative trait locus (QTL) for resistance mapped between markersE-ACC/M-CTC2(SOJA6) (linked in coupling phase), B212 and E-AAC/M-CAT1(SOJA7)(linked in repulsion phase). These two AFLP markers bracketing the majorresistance QTL were successfully converted to SCARs (Sequence CharacterizedAmplified Regions). Marker E-ACC/M-CTC2 was converted to a codominant SCARmarker SOJA6, which accounted for 41% of variation in gall-index in the mappingpopulation. Marker E-AAC/M-CAT1 was converted to a dominant SCAR marker (SOJA7)and explained 42% of gall-index variation in the mapping population. These twomarkers mapped approximately 3.8 cM and 2.4 cMrespectively from the resistance QTL. This study represents the first report ofthe development of PCR-based sequence specific markers linked to M.javanica resistance in soybean.  相似文献   

16.
Practically no molecular tools have been developed so far for safflower (Carthamus tinctorius L.) breeding. The objective of the present research was to develop molecular markers for the closely linked genes Li, controlling very high linoleic acid content, and Ms, controlling nuclear male sterility (NMS). A mapping population of 162 individuals was developed from the NMS line CL1 (64–79% linoleic acid) and the line CR-142 (84–90%), and phenotyped in the F2 and F3 generations. Bulked segregant analysis with random amplified polymorphic (RAPD) markers revealed linkage of five RAPD bands to the Li and Ms genes. RAPD fragments were converted into sequence-characterized amplified region (SCAR) markers. A linkage map including the five SCAR markers and the Li and Ms genes was constructed. SCAR markers flanked both loci at minimum distances of 15.7 cM from the Li locus and 3.7 cM from the Ms locus. These are the first molecular markers developed for trait selection in safflower.  相似文献   

17.
TheRpg1 gene in barley has provided satisfactory levels of stem rust resistance for the last 50 years. The appearance of a new race of stem rust that is virulent toRpg1 has resulted in efforts to incorporate new stem rust resistance genes into barley. Marker-assisted selection may provide the only means of combining this useful gene with resistance genes for which no virulent races have been identified. Several RFLP markers have been identified as linked to theRpg1 locus. One of these, ABG704 was converted into a post-amplification restriction polymorphism. To generate a specific PCR-amplifiable polymorphism the sequence of the ABG704 locus from four barley cultivars was determined. Primers were developed that can detect a single-base difference between resistant and susceptible cultivars. The successful conversion of an RFLP marker to an allele-specific PCR-based marker not only demonstrates that this type of conversion is possible for cereals, but also results in an immediately useful marker for application to plant breeding programmes.  相似文献   

18.
The R1 allele confers on potato a race-specific resistance to Phytophthora infestans. The corresponding genetic locus maps on chromosome V in a region in which several other resistance genes are also located. As part of a strategy for cloning R1, a high-resolution genetic map was constructed for the segment of chromosome V that is bordered by the RFLP loci GP21 and GP179 and includes the R1 locus. Bulked segregant analysis and markers based on amplified fragment length polymorphisms (AFLP markers) were used to select molecular markers closely linked to R1. Twenty-nine of approximately 3200 informative AFLP loci displayed linkage to the R1 locus. Based on the genotypic analysis of 461 gametes, eight loci mapped within the GP21–GP179 interval. Two of those could not be seperated from R1 by recombination. For genotyping large numbers of plants with respect to the flanking markers GP21 and GP179 PCR based assays were also developed which allowed marker-assisted selection of plants with genotypes Rr and rr and of recombinant plants.  相似文献   

19.
Rice blast, caused byPyricularia grisea, is a major production constraint in many parts of the world. The Korean rice variety Tongil showed high levels of resistance for about six years when widely planted under highly disease-conducive conditions, before becoming susceptible. Tongil was found to carry a single dominant gene, designatedPi-10t, conferring resistance to isolate 106 of the blast pathogen from the Philippines. We report here the use of bulked segregant RAPD analysis for rapid identification of DNA markers linked toPi-10t. Pooled DNA extracts from five homozygous blast-resistant (RR) and five susceptible (rr) BC3F2 plants, derived from a CO39 × Tongil cross, were analyzed by RFLP using 83 polymorphic probes and by RAPD using 468 random oligomers. We identified two RAPD markers linked to thePi-10t locus: RRF6 (3.8 ± 1.2 cM) and RRH18 (2.9 ± 0.9 cM). Linkage of these markers withPi-10t was verified using an F2 population segregating forPi-10t. The two linked RAPD markers mapped 7 cM apart on chromosome 5. Chromosomal regions surrounding thePi-10t gene were examined with additional RFLP markers to define the segment introgressed from the donor genome.Pi-10t is likely to be a new blast-resistance locus, because no other known resistance gene has been mapped on chromosome 5. These tightly linked RAPD markers could facilitate early selection of thePi-10t locus in rice breeding programmes.  相似文献   

20.
Identification and mapping of the novel apple scab resistance gene Vd3   总被引:1,自引:0,他引:1  
Apple scab, caused by the fungal pathogen Venturia inaequalis, is one of the most devastating diseases for the apple growing in temperate zones with humid springs and summers. Breeding programs around the world have been able to identify several sources of resistance, the Vf from Malus floribunda 821 being the most frequently used. The appearance of two new races of V. inaequalis (races 6 and 7) in several European countries that are able to overcome the resistance of the Vf gene put in evidence the necessity of the combination of different resistance genes in the same genotype (pyramiding). Here, we report the identification and mapping of a new apple scab resistance gene (Vd3) from the resistant selection “1980-015-25” of the apple breeding program at Plant Research International, The Netherlands. This selection contains also the Vf gene and the novel V25 gene for apple scab resistance. We mapped Vd3 on linkage group 1, 1 cM to the south of Vf in repulsion phase to it. Based on pedigree analysis and resistance tests, it could be deduced that 1980-015-25 had inherited Vd3 from the founder “D3.” This gene provides resistance to the highly virulent EU-NL-24 strain of race 7 of V. inaequalis capable of overcoming the resistance from Vf and Vg. JMS and SGJ contributed equally to this work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号