首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Effects of phosphorylation of P-glycoprotein on multidrug resistance   总被引:2,自引:0,他引:2  
Cells expressing elevated levels of the membrane phosphoprotein P-glycoprotein exhibit a multidrug resistance phenotype. Studies involving protein kinase activators and inhibitors have implied that covalent modification of P-glycoprotein by phosphorylation may modulate its biological activity as a multidrug transporter. Most of these reagents, however, have additional mechanisms of action and may alter drug accumulation within multidrug resistant cells independent of, or in addition to their effects on the state of phosphorylation of P-glycoprotein. The protein kinase(s) responsible for P-glycoprotein phosphorylation has(ve) not been unambiguously identified, although several possible candidates have been suggested. Recent biochemical analyses demonstrate that the major sites of phosphorylation are clustered within the linker region that connects the two homologous halves of P-glycoprotein. Mutational analyses have been initiated to confirm this finding. Preliminary data obtained from phosphorylation- and dephosphorylation-defective mutants suggest that phosphorylation of P-glycoprotein is not essential to confer multidrug resistance.  相似文献   

2.
Phosphorylation of the multidrug resistance associated glycoprotein   总被引:5,自引:0,他引:5  
W Mellado  S B Horwitz 《Biochemistry》1987,26(22):6900-6904
Drug-resistant cell lines derived from the mouse macrophage-like cell line J774.2 express the multidrug resistance phenotype which includes the overexpression of a membrane glycoprotein (130-140 kilodaltons). Phosphorylation of this resistant-specific glycoprotein (P-glycoprotein) in intact cells and in cell-free membrane fractions has been studied. The phosphorylated glycoprotein can be immunoprecipitated by a rabbit polyclonal antibody specific for the glycoprotein. Phosphorylation studies done with partially purified membrane fractions derived from colchicine-resistant cells indicated that (a) phosphorylation of the glycoprotein in 1 mM MgCl2 was enhanced a minimum of 2-fold by 10 microM cAMP and (b) the purified catalytic subunit of the cAMP-dependent protein kinase (protein kinase A) phosphorylated partially purified glycoprotein that was not phosphorylated by [gamma-32P]ATP alone, suggesting that autophosphorylation was not involved. These results indicate that the glycoprotein is a phosphoprotein and that at least one of the kinases responsible for its phosphorylation is a membrane-associated protein kinase A. The state of phosphorylation of the glycoprotein, which is a major component of the multidrug resistance phenotype, may be related to the role of the glycoprotein in maintaining drug resistance.  相似文献   

3.
The overexpression of a plasma membrane glycoprotein, P-glycoprotein, is strongly correlated with the expression of multidrug resistance. This phenotype (frequently observed in cell lines selected for resistance to a single drug) is characterized by cross resistance to many drugs, some of which are used in cancer chemotherapy. In the present study we showed that DNA-mediated transformants of mouse LTA cells with DNA from multidrug-resistant hamster cells acquired the multidrug resistance phenotype, that the transformants contained hamster P-glycoprotein DNA sequences, that these sequences were amplified whereas the recipient mouse P-glycoprotein sequences remained at wild-type levels, and that the overexpressed P-glycoprotein in these cells was of hamster origin. Furthermore, we showed that the hamster P-glycoprotein sequences were transfected independently of a group of genes that were originally coamplified and linked within a 1-megabase-pair region in the donor hamster genome. These data indicate that the high expression of P-glycoprotein is the only alteration required to mediate multidrug resistance.  相似文献   

4.
Cells containing increased levels of the membrane phosphoprotein P-glycoprotein exhibit a multidrug-resistant phenotype. In the present study we have analyzed protein kinases capable of phosphorylating P-glycoprotein in membranes of HL60 cells isolated for resistance to vincristine. Analysis of this system demonstrates that in isolated membranes the protein kinase inhibitor staurosporine greatly reduces P-glycoprotein phosphorylation. In contrast, the kinase inhibitor H-7 does not affect this reaction. Fractionation of solubilized membrane proteins from sensitive and resistant cells on DEAE-cellulose reveals a major protein kinase (PK-1) which exhibits optimal activity in the presence of Mn2+ and histone H1. This enzyme fraction does not contain detectable levels of protein kinase C or cAMP-dependent protein kinase. PK-1 phosphorylation of two endogenous proteins is, however, greatly enhanced in the presence of phosphatidylserine or phosphatidyl-inositol. In reaction mixtures containing Mg2+ or Mn2+ in the absence of phospholipid, PK-1 from resistant cells phosphorylates an endogenous protein of 180 kilodaltons (P180), which exhibits an electrophoretic mobility identical to P-glycoprotein. In parallel experiments with PK-1 from sensitive cells there is no detectable phosphorylation of a P180 protein. P180 phosphorylated by PK-1 from resistant cells is immunoprecipitated by antibody against P-glycoprotein. Additional studies demonstrate that PK-1 is capable of phosphorylating specific synthetic peptides which correspond to the sequence of P-glycoprotein. Peptide phosphorylation occurs at both serine and threonine residues. These studies thus identify a novel membrane-associated protein kinase in HL60 cells which is capable of phosphorylating P-glycoprotein. This enzyme may have an important role in regulating levels of multidrug resistance.  相似文献   

5.
J Mattern  T Efferth  M Bak  A D Ho  M Volm 《Blut》1989,58(4):215-217
Overexpression of a Mr 170,000 membrane glycoprotein (P-glycoprotein) is consistently associated with multidrug resistance in cell lines. Two monoclonal antibodies (Mab) against P-glycoprotein (265/F4 and C 219) were used to examine tumour samples from patients with leukemias for evidence of P-glycoprotein overexpression. High levels of P-glycoprotein (greater than 5% positive cells) were detected with both antibodies in samples from 3 out of 18 patients suggesting that a multidrug resistant phenotype may also occur in human leukemias.  相似文献   

6.
7.
Using an in situ kinase assay we have identified kinases that are elevated in some multidrug resistant cells. Kinases were detected by measurement of 32P incorporation in proteins that were renatured after being subjected to SDS-polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride membranes [Ferrell and Martin: J Biol Chem 264:20723–20729, 1989; Mol Cell Biol 10:3020–3026, 1990]. Kinases at 79, 84, and 92 kDa showed increased activity in the multidrug resistant human KB-V1 cells as compared to the sensitive parental KB-3-1 cells. The KB-V1 multidrug resistant cell line exhibited a 170 kDa membrane associated kinase activity that was not present in the parental drug sensitive line. The 170 kDa kinase activity was not affected by Ca++, phosphatidylserine, or cAMP, but was diminished after incubation in the presence of the kinase inhibitors staurosporine, K252a and KT5720. The 170 kDa kinase activity phosphorylated mainly threonine, with no evidence of tyrosine phosphorylation, and was not identical to either the multidrug resistance associated P-glycoprotein or the EGF receptor. Other multidrug resistant cell lines also showed elevated 170 kDa kinase activity, such as the human breast cancer MCF-7/AdrR and murine melanoma B16/AdrR. cells, but the activity was not present in murine leukemia P-388 sensitive or multidrug resistant cells.  相似文献   

8.
9.
10.
G Woods  L A Lund  M Naik  V Ling  A Ochi 《FASEB journal》1988,2(12):2791-2796
Multidrug resistance (MDR) refers to a complex phenotype that describes a number of features characterized primarily by resistance to a wide range of structurally unrelated drugs. In this paper we investigated the relationship between drug resistance and resistance to NK-mediated cytotoxicity. Studies with two independently selected multidrug-resistant cell lines indicated that increased drug resistance was associated with both an increased resistance to NK-mediated cytotoxicity and increased levels of membrane P-glycoprotein expression. This resistance to cytotoxicity appears to result partly from an alteration in the membrane structure of the target cells inasmuch as there was a reduction in effector:target cell recognition. Resistance to NK-mediated cytotoxicity should be included with the numerous pleiotropic changes associated with the multidrug resistance phenotype.  相似文献   

11.
微血管内皮细胞层是一层半选择通透性屏障,可以调节血液中的液体、溶质和血浆蛋白进入组织间隙。在炎症刺激作用下,可通过旁细胞途径和跨细胞途径引起内皮通透性上升。旁细胞通路主要由内皮细胞间的紧密连接、黏附连接和细胞与外基质的黏着斑组成。炎症介质,如脂多糖和肿瘤坏死因子α可激活多种蛋白激酶。活化的蛋白激酶主要包括Rho相关的卷曲蛋白激酶、肌球蛋白轻链激酶、蛋白激酶C、酪氨酸激酶和丝裂原活化蛋白激酶等,参与引发内皮屏障生化和结构改变,旁细胞通路开放,导致通透性上升。该文对上述蛋白激酶在微血管通透性中作用机制的研究进展进行综述。  相似文献   

12.
The EDR1 gene of Arabidopsis has previously been reported to encode a Raf-like mitogen-activated protein kinase kinase (MAPKK) kinase, and to function as a negative regulator of disease resistance. A phylogenetic analysis of plant and animal protein kinases revealed, however, that plant Raf-like kinases are more closely related to animal mixed lineage kinases (MLKs) than Raf-like kinases, and are deeply divergent from both classes of animal kinases, making inferences of substrate specificity questionable. We, therefore, assayed the kinase activity of recombinant EDR1 protein in vitro. The EDR1 kinase domain displayed autophosphorylation activity and phosphorylated the common MAP kinase substrate myelin basic protein. The EDR1 kinase domain also phosphorylated a kinase-deficient EDR1 protein, indicating that EDR1 autophosphorylation can occur via an intermolecular mechanism. Overexpression of a kinase-deficient full-length EDR1 gene (35S::dnEDR1) in wild-type Arabidopsis plants caused a dominant negative phenotype, conferring resistance to powdery mildew (Erysiphe cichoracearum) and enhancing ethylene-induced senescence. RNA-gel blot analyses showed that the 35S::dnEDR1 transgene was highly transcribed in transgenic plants. Western blot analysis, however, revealed that neither the wild-type nor mutant EDR1 protein could be detected in these lines, indicating that the dominant negative phenotype may be caused by a translational inhibition mechanism rather than by a protein level effect. Overexpression of orthologous dnEDR1 constructs may provide a novel strategy for controlling powdery mildew disease in crops.  相似文献   

13.
Retention of the vital dyes rhodamine 123 (R-123) and hydroethidine (HET) correlates inversely with the multidrug resistant phenotypes of the adriamycin (ADM)-selected variants of a uv-induced murine fibrosarcoma cell line (UV-2237M). The differential affinity of these dyes for specific cellular organelles makes them unique compounds for studies of cellular transport. HET enters viable cells freely, is dehydrogenated to ethidium bromide (EtBr), and is subsequently accumulated in the nucleus. Viable cells are impermeable to extracellular EtBr, facilitating kinetic analysis of the efflux of intracellular EtBr. We found that the metabolite EtBr was rapidly cleared by ADM-resistant but not by ADM-sensitive cells. R-123 has a high affinity to mitochondria. Our results show that ADM-sensitive cells retain R-123 whereas the ADM-resistant cells do not. The clearance of both R-123 and EtBr from these cells was inhibited by verapamil. Therefore, R-123 and HET may be considered MDR-associated compounds useful in studying the MDR phenotype of cancer cells. Previously we reported a direct correlation between the level of activity of the calcium- and phospholipid-dependent protein kinase (protein kinases C) and ADM resistance in UV-2237M variant lines. In this report, we demonstrate a direct correlation between cellular calcium and MDR in these cells. Although chelation of extracellular calcium by EDTA did not alter the fluorescence profile of R-123 of the various cell lines, treating the ADM-resistant variants with verapamil restored cellular calcium to the same level as that of the parental cells and, at the same time, retarded the facilitated efflux of R-123 and EtBr and partially reversed cancer cell resistance to ADM.  相似文献   

14.
Protein tyrosine phosphorylation plays an important role in cell growth, development and oncogenesis. No classical protein tyrosine kinase has hitherto been cloned from plants. Does protein tyrosine kinase exist in plants? To address this, we have performed a genomic survey of protein tyrosine kinase motifs in plants using the delineated tyrosine phosphorylation motifs from the animal system. The Arabidopsis thaliana genome encodes 57 different protein kinases that have tyrosine kinase motifs. Animal non-receptor tyrosine kinases, SRC, ABL, LYN, FES, SEK, KIN and RAS have structural relationship with putative plant tyrosine kinases. In an extended analysis, animal receptor and non-receptor kinases, Raf and Ras kinases, mixed lineage kinases and plant serine/threonine/tyrosine (STY) protein kinases, form a well-supported group sharing a common origin within the superfamily of STY kinases. We report that plants lack bona fide tyrosine kinases, which raise an intriguing possibility that tyrosine phosphorylation is carried out by dual-specificity STY protein kinases in plants. The distribution pattern of STY protein kinase families on Arabidopsis chromosomes indicates that this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. Genome-wide analysis is supported by the functional expression and characterization of At2g24360 and phosphoproteomics of Arabidopsis. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, anti-phosphotyrosine immunoblotting, phosphoamino acid analysis and peptide mass fingerprinting. These results report the first comprehensive survey of genome-wide and tyrosine phosphoproteome analysis of plant STY protein kinases.  相似文献   

15.
Phosphorylation of P-glycoprotein (PGP) by some protein kinases may play an important role in the regulation of its drug transport activity, and may also be important for the development of multidrug resistance (MDR) phenotype. In the present study we investigated the expression of three groups of mitogen-activated protein kinases (MAPKs). The expression of ERKs, SAPK/JNKs and p38-MAPK was studied at the protein level in sensitive (L1210) and multidrug resistant (L1210/VCR) cells. The expression of ERKs in multidrug resistant cells did not differ from those observed in parental sensitive cells. On the other hand, the development of multidrug resistance phenotype in L1210/VCR cells was associated with increased expression of cytosolic p38-MAPK and also proteins of 90 and 130 kDa that react with antibody specific for SAPK/JNKs. The expression of the proteins mentioned was stimulated above all in conditions when vincristine was present in cultivation medium and the stimulation of transport activity of PGP was necessary for the cell survival. The development of multidrug resistance phenotype in L1210/VCR cells was not associated with significant changes in expression of several heat-shock proteins (hsp25, hsp60, hsp70, hsp90). The levels of these proteins were comparable in sensitive L1210 and resistant L1210/VCR cells, and vincristine did not influence the expression of heat-shock proteins in resistant cells.  相似文献   

16.
Li L  Pan Q  Sun M  Lu Q  Hu X 《Life sciences》2007,80(8):741-748
We recently reported that dibenzocyclooctadiene lignans were a novel class of P-glycoprotein (P-gp) inhibitors. In this study, we demonstrated that the lignans of this class were also effective inhibitors of multidrug resistance-associated protein 1 (MRP1). The activities of 5 dibenzocyclooctadiene lignans (schisandrin A, schisandrin B, schisantherin A, schisandrol A, and schisandrol B) to reverse MRP1-mediated drug resistance were tested using HL60/Adriamycin (ADR) and HL60/Multidrug resistance-associated protein (MRP), two human promyelocytic leukemia cell lines with overexpression of MRP1 but not P-gp. The five lignans could effectively reverse drug resistance of the two cell lines to vincristine, daunorubicin, and VP-16. This study, together with our previous reports, proves that dibenzocyclooctadiene lignans have multiple activities against cancer multidrug resistance, including inhibition of P-gp and MRP1, and enhancement of apoptosis. Considering that cancer multidrug resistance (MDR) is multifactorial, agents with broad activities are preferable to the use of combination of several specific modulators to prevent drug-drug interaction and cumulative toxicity.  相似文献   

17.
植物在遭受外界逆境胁迫时,体内的信号传导系统能够感知、传递逆境胁迫信号,并引起各种生理生化反应以适应环境。植物蛋白激酶在信号感知、传导以及基因的表达调控中起重要的作用。蛋白激酶在信号传导过程的功能是磷酸化修饰目的蛋白,而磷酸化的实现需要蛋白质之间相互作用。本文从植物蛋白激酶的结构、分类、与激素信号传导之间的关系等方面进行了系统的阐述,对蛋白激酶介导的植物抗性与发育的最新研究进展进行了系统的总结,为解析蛋白激酶在植物生长发育中的抗逆机理提供依据。  相似文献   

18.
A series of CCRF-CEM sublines selected for extreme resistance to methotrexate has been shown previously to exhibit cross resistance to a number of agents belonging to the multidrug resistance phenotype (J.Natl.Cancer Inst.1989; 81, 1250-1254). The role of the mdr1 gene and its product (P-glycoprotein) in this atypical pattern of multidrug resistance has now been investigated. Southern and Northern analyses failed to demonstrate any amplification, rearrangement or over-expression of the mdr1 gene in the drug-resistant cells. Similarly, monoclonal antibodies MRK16 and JSB1 revealed no increase in the amount of P-glycoprotein present. By contrast, monoclonal antibody C219 detected a 170 kDa protein in all sublines, and in highest concentration in the most resistant cells. The results raise the possibility that a novel, C219-reactive protein may mediate resistance to both methotrexate and members of the multidrug resistance family.  相似文献   

19.
The MDR1 multidrug resistance gene encodes a high molecular weight membrane-spanning cell surface protein, P-glycoprotein, that confers multidrug resistance by pumping various cytotoxic drugs, including vinblastine, doxorubicin or paclitaxel, out of cells. Overexpression of P-glycoprotein in human tumors has been recognized as a major obstacle for successful chemotherapy of cancer. Thus, P-glycoprotein represents an important drug target for pharmacological chemosensitizers. Initially, cell culture models to study the multidrug resistance phenotype were established by selecting drug-sensitive cells in step-wise increasing, sublethal concentrations of chemotherapy agents. P-glycoprotein was found to be overexpressed in many of these models. Multidrug resistant cells can also be generated by transfection of cultured cells with the MDR1 gene, followed by selection with cytotoxic drug at a concentration that kills all untransfected host cells. Transfectants expressing wild-type or mutant recombinant P-glycoprotein have significantly contributed to our understanding of the structure of P-glycoprotein and its molecular and cellular functions. Additionally, the MDR1 gene has also been used as a selectable marker for the transfer and coexpression of non-selectable genes. This article details means for detection of P-glycoprotein in DNA-transfected or retrovirally transduced, cultured cells. Different experimental approaches are described that make use of specific antibodies for detection of P-glycoprotein. Strategies to visualize P-glycoprotein include metabolic labeling using 35S-methionine, labeling with a radioactive photoaffinity analog, and non-radioactive immunostaining after Western blotting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号