首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Pairs of guard cells form stomatal pores through which gas exchange occurs. Gas exchange includes transpirational water loss, and guard cell signaling in drought response has been studied for decades. Abscisic acid (ABA) is the major hormone that regulates drought responses. ABA and other metabolites can be synthesized in one cell type or subcellular compartment and transported across mem- branes by specific transporters to conduct biological func- tions. Two new papers, both taking advantage of reverse genetic methods, one focusing on a plasma membrane ABA efflux carrier (Zhang et al., 2014) and the other on a putative mitochondrial pyruvate carrier (Li et al., 2014), have recently shown the importance of metabolite trans- porters in ABA function and guard cell response.  相似文献   

2.
Abscisic acid (ABA) regulates numerous physiological and developmental processes in plants. Recent studies identify intracellular ABA receptors, implicating the transport of ABA across cell membranes as crucial for ABA sensing and response. Here, we report that a DTX/Multidrug and Toxic Compound Extrusion (MATE) family member in Arabidopsis thaliana, AtDTX50, functions as an ABA efflux transporter. When expressed heterologously in both an Escherichia coli strain and Xenopus oocyte cells, AtDTX50 was found to facilitate ABA efflux. Furthermore, dtx50 mutant mesophyll cells preloaded with ABA released less ABA compared with the wild-type (WT). The AtDTX50 gene was expressed mainly in the vascular tissues and guard ceils and its expression was strongly up-regulated by exogenous ABA. The AtDTX50::GFP fusion protein was localized predominantly to the plasma membrane. The dtx50 mutant plants were observed to be more sensitive to ABA in growth inhibition. In addition, compared with the WT, dtx50 mutant plants were more tolerant to drought with lower stomatal conductance, consistent with its function as an ABA efflux carrier in guard cells.  相似文献   

3.
Canola (Brassica napus L.) is one of the most important oilseed crops in the world and its seed yield and quality are significantly affected by drought stress. As an innate and adaptive response to water deficit, land plants avoid potential damage by rapid biosynthesis of the phytohormone abscisic acid (ABA), which triggers stomatal closure to reduce transpirational water loss. The ABA-mediated stomatal response is a dosage-dependent process; thus, one genetic engineering approach for achieving drought avoidance could be to sensitize the guard cell's responsiveness to this hormone. Recent genetic studies have pinpointed protein farnesyltransferase as a key negative regulator controlling ABA sensitivity in the guard cells. We have previously shown that down-regulation of the gene encoding Arabidopsis β-subunit of farnesyltransferase (ERA1) enhances the plant's sensitivity to ABA and drought tolerance. Although the β-subunit of famesyltransferase (AtFTA) is also implicated in ABA sensing, the effectiveness of using such a gene target for improving drought tolerance in a crop plant has not been validated. Here, we report the identification and characterization of the promoter of Arabidopsis hydroxypyruvate reductase (AtHPR1), which expresses specifically in the shoot and not in non-photosynthetic tissues such as root. The promoter region of AtHPR1 contains the core motif of the well characterized dehydration-responsive cis-acting element and we have confirmed thatAtHPR1 expression is inducible by drought stress. Conditional and specific down-regulation of FTA in canola using the AtHPR1 promoter driving an RNAi construct resulted in yield protection against drought stress in the field. Using this molecular strategy, we have made significant progress in engineering drought tolerance in this important crop species.  相似文献   

4.
5.
Dear Editor, It has been known since the work of Francis Darwin that, in response to a reduction in atmospheric relative humidity (rh), stomatal aperture decreases. Screening for Arabidopsis mutants compromised in stomatal responses to reduced rh resulted in the identification of two genes, OST1 and ABA2, that are involved in stomatal response to low rh conditions. Interestingly both encode proteins previously known to be involved in ABA signaling (Xie et al., 2006, and references therein). These findings strongly suggested that, at least in part, the stomatal response to low rh is mediated by ABA and the intracellular ABA signaling pathway. Our most recent data show that low rh-induced stomatal closure can pro- ceed by guard cell autonomous ABA synthesis (Bauer et al., 2013),  相似文献   

6.
7.
Drought tolerance is a comprehensive quantitative trait that is being understood further at the molecular genetic level. Abscisic acid (ABA) is the main drought-induced hormone that regulates the expression of many genes related to drought responses. 9-cis-epoxycarotenoid dioxygenase (NCED3) is thought to be a key enzyme in ABA biosynthesis. In this paper, we measured the ABA content increase under drought stress, and sequenced and compared the sequence of AtNCED3 among 22 Arabidopsis thaliana accessions. The results showed that the fold of ABA content increase under drought stress was highly variable among these accessions. High density single nucleotide polymorphism (SNP) and insertion/deletion (indel) were found in the AtNCED3 region, on average one SNP per 87.4 bp and one indel per 502 bp. Nucleotide diversity was significantly lower in the coding region than that in non-coding regions. The results of an association study with ANOVA analysis suggested that the 274th site (P←→S) and the 327th site (P←→R) amino acid variations might be the cause of ABA content increase of 163av accession under drought stress.  相似文献   

8.
The KNAT1 gene is a member of the Class I KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana. Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1 homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques, and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Mlcroarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.  相似文献   

9.
Most plant cells contain a large central vacuole that is essential to maintain cellular turgor. We report a new mutant allele of VTI11 that implicates the SNARE protein VTI11 in homotypic fusion of protein storage and lytic vacuoles. Fusion of the multiple vacuoles present in vtill mutants could be induced by treatment with Wortmannin and LY294002, which are inhibitors of Phosphatidylinositol 3-Kinase (PI3K). We provide evidence that Phosphatidylinositol 3-Phosphate (Ptdlns(3)P) regulates vacuole fusion in vtill mutants, and that fusion of these vacuoles requires intact microtubules and actin filaments. Finally, we show that Wortmannin also induced the fusion of guard cell vacuoles in fava beans, where vacuoles are naturally fragmented after ABA-induced stomata closure. These results suggest a ubiquitous role of phosphoinositides in vacuole fusion, both during the development of the large central vacuole and during the dynamic vacuole remodeling that occurs as part of stomata movements.  相似文献   

10.
Early embryogenesis is the most fundamental developmental process in biology.Screening of ethyl methanesulfonate(EMS)-mutagenized populations of Arabidopsis thaliana led to the identification of a zygote-lethal mutant embryonic factor 19(fac19)in which embryo development was arrested at the elongated zygote to octant stage.The number of endosperm nuclei decreased significantly in fac19 embryos.Genetic analysis showed fac19 was caused by a single recessive mutation with typical mendelian segregation,suggesting equal maternal and paternal contributions of FAC19 towards zygotic embryogenesis.Positional cloning showed that FAC19 encodes a putative mitochondrial protein with 16 conserved pentatricopeptide repeat(PPR)motifs.The fac19 mutation caused a conversion from hydrophilic serine located in a previously unknown domain to hydrophobic leucine.Crosses between FAC19/fac19 and the T-DNA insertion mutants in the same gene failed to complement the fac19 defects,confirming the identity of the gene.This study revealed the critical importance of a PPR protein-mediated mitochondrial function in early embryogenesis.  相似文献   

11.
Compelling evidences from transgenic mice, immunoprecipitation data, gene expression analysis, and functional heterologous expression studies supported the role of Kv channel interacting proteins (KChIPs) as modulators of Kv4 (Shal) channels underlying the cardiac transient outward current and neuronal A-type current. Till now, there are four members (KChIP1-4) identified in this family. KChIP1 is expressed predominantly in brain, with relative abundance in Purkinje cells of cerebellum, the reticular thalamic nuclei, the medial habenular nuclei, the hippocampus, and striaturn. Our results from in situ hybridization and immunostaining assay revealed that KChIP1 was expressed in a subpopulation of parvalbumin-positive neurons suggesting its functional relationship with the GABAergic inhibitory neurons. Moreover, results obtained from KChIP1-deficient mice showed that KChIP1 mutation did not impair survival or alter the overall brain architecture, arguing against its essential function in brain development. However, the mice bearing KChIP1 deletion showed increased susceptibility to anti-GABAergic convulsive drug pentylenetetrazole-induced seizure, indicating that KChIP1 might play pivotal roles in the GABAergic inhibitory system.  相似文献   

12.
目的:探讨他莫昔芬对人胶质瘤细胞SHG-44生长的作用及其机制。方法:SHG-44细胞PKC和雌激素受体(E11)的表达用免疫组化,细胞活性分析用四唑盐比色试验,细胞增殖和凋亡通过流氏细胞仪检测,氯通道电流的记录应用全细胞膜片钳技术。结果:细胞PKC表达阳性,ER表达阴性,加入他莫昔芬后,SHG-44细胞变老、脱落,细胞总数减少,G2/M期细胞增多,凋亡细胞比例增加,氯离子通道电流受到抑制。结论:他莫昔芬对人胶质瘤细胞SHG--44有明显的抑制作用,其机制可能是通过对PKC及氯通道的抑制。  相似文献   

13.
Anion transporters in plants play a fundamental role in volume regulation and signaling. Currently, two plasma membrane-located anion channel familiesmSLAC/SLAH and ALMTmare known. Among the ALMT family, the root-expressed ALuminium-activated Malate Transporter 1 was identified by comparison of aluminum-tolerant and Al3+-sensitive wheat cultivars and was subsequently shown to mediate voltage-independent malate currents. In con- trast, ALMT12/QUAC1 (QUickly activating Anion Channel1) is expressed in guard cells transporting malate in an Al3+- insensitive and highly voltage-dependent manner. So far, no information is available about the structure and mechanism of voltage-dependent gating with the QUAC1 channel protein. Here, we analyzed gating of QUACl-type currents in the plasma membrane of guard cells and QUACl-expressing oocytes revealing similar voltage dependencies and activation- deactivation kinetics. In the heterologous expression system, QUAC1 was electrophysiologically characterized at increas- ing extra- and intracellular malate concentrations. Thereby, malate additively stimulated the voltage-dependent QUAC1 activity. In search of structural determinants of the gating process, we could not identify transmembrane domains com- mon for voltage-sensitive channels. However, site-directed mutations and deletions at the C-terminus of QUAC1 resulted in altered voltage-dependent channel activity. Interestingly, the replacement of a single glutamate residue, which is con- served in ALMT channels from different clades, by an alanine disrupted QUAC1 activity. Together with C- and N-terminal tagging, these results indicate that the cytosolic C-terminus is involved in the voltage-dependent gating mechanism of QUAC1.  相似文献   

14.
Gao Q  Yuan XG  Li XY  Lu Y  Xia Q 《中国应用生理学杂志》2010,26(4):450-2, 480
目的:观察降钙素基因相关肽(CGRP)在离体大鼠心肌缺血后处理保护中的作用。方法:采用离体大鼠全心停灌心肌缺血复灌模型。测定心室动力学指标、复灌各时间点冠脉流出液中乳酸脱氢酶(LDH)含量和心肌组织formazan含量的变化。结果:与缺血/复灌组相比,缺血后处理组明显增加心脏formazan含量,降低冠脉流出液中LDH含量,促进左室发展压、左室做功和冠脉流量的恢复。CGRP受体阻断剂CGRP-(8-37)和线粒体ATP敏感性钾通道阻断剂5-HD均减弱了缺血后处理的作用,且CGRP-(8-37)阻断了线粒体ATP敏感性钾通道开放剂Diaz的心肌保护作用。结论:缺血后处理可能通过促进线粒体ATP敏感性钾通道的开放,引起内源性降钙素基因相关肽的释放发挥心肌保护作用。  相似文献   

15.
Neurotoxins and alterations in Ca2+ homeostasis have been associated with Parkinson's disease (PD), but the role of store-operated Ca2+ entry channels is not well understood. Previous studies have shown the neurotoxicity of salsolinol and 1-methyl-4-phenylpyridinium ion on SH-SY5Y cells and cytoprotection induced by transient receptor potential protein 1 (TRPC1). In the present study, N-methyl-(R)-salsolinol was tested for its cellular toxicity and effects on TRPC1 expression. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-dipbenyl- tetrazolium bromide) assays, DAPI (4',6-diamidino-2-pheny- lindole), fluorescein isothiocyanate-Annexin-V/propidium iodide, western blot analysis, and JC-1 labeling revealed that the three indicated drugs could induce caspase-dependent, mitochondrial-mediated apoptosis. Exposure of SH-SY5Y cells to the indicated drugs resulted in a significant decrease in thapsigargin-mediated Ca2+ influx and TRPC1 expression. Immnnocytochemistry experiments revealed that neurotoxins treatment induced TRPC1 translocation to the cytoplasm. Taken together, our results indicate that treatment with neurotoxins may alter Ca2+ homeostasis and induce mitochondrial-mediated caspase-dependent cytotoxicity, an important characteristic of PD.  相似文献   

16.
目的:探讨高脂膳食和耐力运动联合作用对大鼠心肌抗超氧阴离子自由基和钙调神经磷酸酶(CaN)活力的影响。方法:32只SD大鼠随机分为4组(n=8,);普通膳食对照组(C)和普通膳食耐力训练组(E),高脂膳食对照组(H)和高脂膳食耐力训练组(R)。E、R组每天进行30~60min低强度(≤16.7m/min)的持续跑台运动;每周训练6d,训练8周。最后一次训练结束后的24—48h内取左心室肌,比色法检测CaN和抗超氧阴离子自由基的活力。结果:高脂膳食诱导心肌抗超氧阴离子自由基活力显著升高(P〈0.05)及CaN活力显著下降(P〈0.05)。耐力训练诱导心肌CaN活力显著下降(P〈0.05),而抗超氧阴离子自由基活力无显著变化。与高脂对照组相比,高脂膳食与耐力训练联合作用诱导心肌抗超氧阴离子自由基及CaN活力显著升高(P〈0.05)。结论:高脂膳食和耐力训练在提高心肌抗超氧阴离子自由基的活性方面可能有正协同作用,但在抑制CaN活性方面则可能存在有负协同作用。  相似文献   

17.
D-xylose is a necessary sugar for animals. The xylanase from a mollusk, Ampullaria crossean, was previously reported by our laboratory. This xylanase can degrade the xylan into D-xylose. But there is still a gap in our knowledge on its metabolic pathway. The question is how does the xylose enter the pentose pathway? With the help of genomic databases and bioinformatic tools, we found that some animals, such as bacteria, have a highly conserved D-xylose isomerase (EC 5.3.1.5). The xyiose isomerase from a sea squirt, Ciona intestinali, was heterogeneously expressed in Escherichia coli and purified to confirm its function. The recombinant enzyme had good thermal stability in the presence of Mg^2+. At the optimum temperature and optimum pH environment, its specific activity on D-xylose was 0.331 μmol/mg/min. This enzyme exists broadly in many animals, but it disappeared in the genome of Amphibia-like Xenopus laevis. Its sequence was highly conserved. The xylose isomerases from animals are very interesting proteins for the study of evolution.  相似文献   

18.
Chlorophyll (Chl) degradation causes leaf yellowing during senescence or under stress conditions. For Chl breakdown, STAY-GREEN1 (SGR1) interacts with Chl catabolic enzymes (CCEs) and light-harvesting complex II (LHCII) at the thylakoid membrane, possibly to allow metabolic channeling of potentially phototoxic Chl breakdown intermediates. Among these Chl catabolic components, SGR1 acts as a key regulator of leaf yellowing. In addition to SGR1 (At4g22920), the Arabidopsis thaliana genome contains an additional homolog, SGR2 (At4g11910), whose biological function remains elusive. Under senescence-inducing conditions, SGR2 expression is highly up-regulated, similarly to SGR1 expression. Here we show that SGR2 function counteracts SGR1 activity in leaf Chl degradation; SGR2-overexpressing plants stayed green and the sgr2-1 knockout mutant exhibited early leaf yellowing under age-, dark-, and stress-induced senescence conditions. Like SGR1, SGR2 interacted with LHCII but, in contrast to SGR1, SGR2 interactions with CCEs were very limited. Furthermore, SGR1 and SGR2 formed homo- or heterodimers, strongly suggesting a role for SGR2 in negatively regulat- ing Chl degradation by possibly interfering with the proposed CCE-recruiting function of SGR1. Our data indicate an antagonistic evolution of the functions of SGR1 and SGR2 in Arabidopsis to balance Chl catabolism in chloroplasts with the dismantling and remobilizing of other cellular components in senescing leaf cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号