首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The maize transposable element Activator (Ac) carries subterminal CpG-rich sequences which are essential for the transposition of the element. It has previously been shown that the methylation of certain sequences contained in this region can alter their ability to interact with the Ac-encoded protein. The novel hypothesis that the methylation of subterminal Ac sequences is required for transposition was tested. Approximately 150 bp of the 5' subterminal region of the Ac element was examined for the presence of 5-methylcytosines by the ligation-mediated polymerase chain reaction (LMPCR)-aided genomic sequencing method. The methylation status of 22 and 39 cytosines on either strand of the DNA were analysed in each of five different transgenic tobacco cultures carrying transposable Ac sequences. Ten micrograms of tobacco DNA were used for each base-specific cleavage reaction before amplification by LMPCR. All but one of the cytosines were unmethylated. Only a minor fraction of the Ac molecules was methylated at one cytosine residue. It is concluded that DNA methylation at the tested Ac sequences is not required for the transposability of Ac or Ds elements in tobacco cells.  相似文献   

4.
In maize, the P1-vv allele specifies variegated pericarp and cob pigmentation, and contains an Ac transposable element inserted in the second intron of the P1-rr gene. Starting from P1-vv, we recovered a new allele, called P1-vv5145, which gives an extremely light variegated pericarp and cob phenotype. The P1-vv5145 allele contains an Ac element ( Ac5145) at the same position and in the same orientation as in the progenitor P1-vv allele; however, the P1-vv5145 allele has a 2-bp deletion which removes the last nucleotide (A) from the 3' end of the Ac element, and an adjacent flanking nucleotide (C) from the p1 intron. In crosses with a Ds tester stock, P1-vv5145 shows a normal ability to induce Ds transposition; however, Ac excision from P1-vv5145 is 3800-fold less frequent than from the progenitor P1-vv allele. Our results demonstrate that the alteration of the 3' terminal base strongly impairs Ac transposition. The P1-vv5145 allele thus provides a relatively stable source of Ac transposase for controlling Ds transposition in genetic experiments. In addition, we describe two further alleles ( P1-ww7B8, P1-ww9A146-3) that contain deletions of Ac and flanking p1 gene sequences. These latter deletions are larger and involve the 5' end of the the Ac element. A model is proposed to explain the formation of one-sided deletions as a consequence of Ac transposition during replication of the element.  相似文献   

5.
6.
Fragaria vesca was transformed with a transposon tagging construct harbouring amino terminally deleted maize transposase and EGFP (Ac element), NPTII, CaMV 35S promoter (P35S) driving transposase and mannopine synthase promoter (Pmas) driving EGFP (Ds element). Of 180 primary transgenics, 48 were potential launch pads, 72 were multiple insertions or chimaeras, and 60 exhibited somatic transposition. T(1) progeny of 32 putative launch pads were screened by multiplex PCR for transposition. Evidence of germ-line transposition occurred in 13 putative launch pads; however, the transposition frequency was too low in three for efficient recovery of transposants. The transposition frequency in the remaining launch pads ranged from 16% to 40%. After self-pollination of the T(0) launch pads, putative transposants in the T(1) generation were identified by multiplex PCR. Sequencing of hiTAIL-PCR products derived from nested primers within the Ds end sequences (either P35S at the left border or the inverted repeat at the right border) of T(1) plants revealed transposition of the Ds element to distant sites in the strawberry genome. From more than 2400 T(1) plants screened, 103 unique transposants have been identified, among which 17 were somatic transpositions observed in the T(0) generation. Ds insertion sites were dispersed among various gene elements [exons (15%), introns (23%), promoters (30%), 3' UTRs (17%) as well as intergenically (15%)]. Three-primer (one on either side of the Ds insertion and one within the Ds T-DNA) PCR could be used to identify homozygous T(2) transposon-tagged plants. The mutant collection has been catalogued in an on-line database.  相似文献   

7.
利用本实验室构建的转Ac(Ac TPase)及Ds(Dissociation)的水稻(Oryza sativa L.)转化群体,配置了Ae×Ds的杂交组合354个。检测了转基因植株的T-DNA插入位点右侧旁邻序列,研究了Ac/Ds转座系统在水稻转化群体中的转座活性。结果表明,有些转化植株T-DNA插入位点相同或相距很近,插入位点互不相同的占65.4%。检测到T-DNA可插入到编码蛋白的基因中。在Ac×Ds的F2代中,Ds因子的转座频率为22.7%。对Ac×Ds杂交子代中Ds因子旁侧序列的分析,进一步表明了Ds因子在水稻基因组中的转座活性,除了从原插入位点解离并转座到新的位点之外,还有复制——转座和小完全切离等现象。获得的旁侧序列中,有些序列与GenBank中的数据没有同源性,目前有2个DNA片段在GenBank登录。探讨了构建转座子水稻突变体库进行水稻功能基因组学研究的策略。  相似文献   

8.
The nucleotide sequence of the maize controlling element Activator   总被引:35,自引:0,他引:35  
R F Pohlman  N V Fedoroff  J Messing 《Cell》1984,37(2):635-643
  相似文献   

9.
10.
利用本实验室构建的转Ac(AcTPase)及Ds(Dissociation)的水稻(Oryza sativa L.)转化群体,配置了Ac×Ds的杂交组合354个.检测了转基因植株的T-DNA插入位点右侧旁邻序列,研究了Ac/Ds转座系统在水稻转化群体中的转座活性.结果表明,有些转化植株T-DNA插入位点相同或相距很近,插入位点互不相同的占65.4%.检测到T-DNA可插入到编码蛋白的基因中.在Ac×Ds的F2代中,Ds因子的转座频率为22.7%.对Ac×Ds杂交子代中Ds因子旁侧序列的分析,进一步表明了Ds因子在水稻基因组中的转座活性,除了从原插入位点解离并转座到新的位点之外,还有复制--转座和不完全切离等现象.获得的旁侧序列中,有些序列与GenBank中的数据没有同源性,目前有2个DNA片段在GenBank登录.探讨了构建转座子水稻突变体库进行水稻功能基因组学研究的策略.  相似文献   

11.
12.
J. Healy  C. Corr  J. DeYoung    B. Baker 《Genetics》1993,134(2):571-584
We have introduced a genetically marked Dissociation transposable element (Ds(neo)) into tomato. In the presence of Ac transposase, Ds(neo) excised from an integrated T-DNA and reinserted at numerous new sites in the tomato genome. The marker genes of Ds(neo) (NPTII) and the T-DNA (HPT) facilitated identification of plants bearing transposon excisions and insertions. To explore the feasibility of gene tagging strategies in tomato using Ds(neo), we examined the genomic distribution of Ds(neo) receptor sites, relative to the location of the donor T-DNA locus. Restriction fragment length polymorphism mapping of transposed Ds(neo) elements was conducted in two tomato families, derived from independent primary transformants each bearing Ds(neo) within a T-DNA at a unique position in the genome. Transposition of Ds(neo) generated clusters of insertions that were positioned on several different tomato chromosomes. Ds(neo) insertions were often located on the same chromosome as the T-DNA donor site. However, no insertion showed tight linkage to the T-DNA. We consider the frequency and distance of Ds(neo) transposition observed in tomato to be well suited for transposon mutagenesis. Our study made use of a novel, stable allele of Ac (Ac3) that we discovered in transgenic tomato. We determined that the Ac3 element bears a deletion of the outermost 5 base pairs of the 5'-terminal inverted repeat. Though incapable of transposition itself, Ac3 retained the ability to mobilize Ds(neo). We conclude that a dual element system, composed of the stable Ac3 trans-activator in combination with Ds(neo), is an effective tool for transposon tagging experiments in tomato.  相似文献   

13.
To assess the potential advantages of a transposon-tagging system based on gametophyte-specific transposition a fusion between the anther-specific Arabidopsis thaliana apg promoter and the maize Ac transposase gene was constructed and introduced into tobacco. The ability of this transposase source to activate Ds transposition in a developmentally controlled manner was monitored by crossing to plants harbouring the cell autonomous excision marker gene construct, Ds —SPT. A number of fully green, streptomycin-resistant seedlings resulting from germinal transposition events were observed in the progeny of apg -TPase x Ds —SPT F1 plants. Streptomycin-resistant sectors were not observed in either F1 seedlings or F2 progeny, indicating a complete lack of somatic excision. Further crosses of apg —TPase sources to plants containing Ds—bar herbicide selection excision marker constructs gave reproducible gametophytic excision frequencies of up to 0.3%. Sequencing of Ds excision sites from F2 seedlings derived from single F1 plants revealed various sequence alterations in the original Ds insertion 'footprint' indicative of independent Ds excision events. Independent re-insertion was confirmed by Southern analysis of F2 siblings. It is concluded that apg -controlled Ac transposase expression activates male gametophyte-specific Ds transposition.  相似文献   

14.
M J Frank  D Liu  Y F Tsay  C Ustach    N M Crawford 《The Plant cell》1997,9(10):1745-1756
Tag1 is a transposable element first identified as an insertion in the CHL1 gene of Arabidopsis. The chl1::Tag1 mutant originated from a plant (ecotype Landsberg erecta) that had been transformed with the maize transposon Activator (Ac), which is distantly related to Tag1. Genomic analysis of untransformed Landsberg erecta plants demonstrated that two identical Tag1 elements are present in the Landsberg erecta genome. To determine what provides transposase function for Tag1 transposition, we examined Tag1 excision in different genetic backgrounds. First, the chl1::Tag1 mutant was backcrossed to untransformed wild-type Arabidopsis plants to remove the Ac element(s) from the genome. F2 progeny that had no Ac elements but still retained Tag1 in the CHL1 gene were identified. Tag1 still excised in these Ac-minus progeny producing CHL1 revertants; therefore, Ac is not required for Tag1 excision. Next, Tag1 was inserted between a cauliflower mosaic virus 35S promoter and a beta-glucuronidase (GUS) marker gene and transformed into tobacco. Transformants showed blue-staining sectors indicative of Tag1 excision. Transgenic tobacco containing a defective Tag1 element, which was constructed in vitro by deleting an internal 1.4-kb EcoRI fragment, did not show blue-staining sectors. We conclude that Tag1 is an autonomous element capable of independent excision. The 35S-GUS::Tag1 construct was then introduced into Arabidopsis. Blue-staining sectors were found in cotyledons, leaves, and roots, showing that Tag1 undergoes somatic excision during vegetative development in its native host.  相似文献   

15.
16.
Conrad LJ  Brutnell TP 《Genetics》2005,171(4):1999-2012
We have identified and characterized a novel Activator (Ac) element that is incapable of excision yet contributes to the canonical negative dosage effect of Ac. Cloning and sequence analysis of this immobilized Ac (Ac-im) revealed that it is identical to Ac with the exception of a 10-bp deletion of sequences at the left end of the element. In screens of approximately 6800 seeds, no germinal transpositions of Ac-im were detected. Importantly, Ac-im catalyzes germinal excisions of a Ds element resident at the r1 locus resulting in the recovery of independent transposed Ds insertions in approximately 4.5% of progeny kernels. Many of these transposition events occur during gametophytic development. Furthermore, we demonstrate that Ac-im transactivates multiple Ds insertions in somatic tissues including those in reporter alleles at bronze1, anthocyaninless1, and anthocyaninless2. We propose a model for the generation of Ac-im as an aberrant transposition event that failed to generate an 8-bp target site duplication and resulted in the deletion of Ac end sequences. We also discuss the utility of Ac-im in two-component Ac/Ds gene-tagging programs in maize.  相似文献   

17.
The development of a barley ( Hordeurn vulgare L.) transformation system made it possible to consider the use of maize Activator/Dissociation ( Ac/Ds ) transposable elements for gene tagging in transgenic barley plants. However, barley transformation is time-consuming, and therefore a simple transient assay for Ac/Ds activity in intact barley tissues was developed to test the components of a proposed gene tagging system, prior to their stable introduction into plants. In this assay, barley scutellar tissue is co-transformed with constructs containing the maize Ac transposase gene and an Escherichia coli uid A reporter gene ( Gus ), the expression of which is interrupted by a maize Ds element. In transformed barley scutellar cells, Ac transposase-mediated excision of the Ds element generates a functional Gus gene, leading to histochemically detectable GUS activity. Characterization of the excision products showed that they had a pattern of nucleotide deletions and/or transversions similar to that found in maize and other heterologous plant systems. In addition, although contrary to the situation observed in heterologous dicot systems, efficient Ds excision in barley, a heterologous monocot system, appears to be inversely associated with Ac copy number, a finding similar to the Ac dosage effects observed in maize. The transient assay was used to demonstrate functional transposase activity in barley callus lines stably transformed with an Ac transposase gene.  相似文献   

18.
Ros F  Kunze R 《Genetics》2001,157(4):1723-1733
In maize the transposable elements Activator/Dissociation (Ac/Ds) transpose shortly after replication from one of the two resulting chromatids ("chromatid selectivity"). A model has been suggested that explains this phenomenon as a consequence of different affinity for Ac transposase binding to holo-, hemi-, and unmethylated transposon ends. Here we demonstrate that in petunia cells a holomethylated Ds is unable to excise from a nonreplicating vector and that replication restores excision. A Ds element hemi-methylated on one DNA strand transposes in the absence of replication, whereas hemi-methylation of the complementary strand causes a >6.3-fold inhibition of Ds excision. Consistently in the active hemi-methylated state, the Ds ends have a high binding affinity for the transposase, whereas binding to inactive ends is strongly reduced. These results provide strong evidence for the above-mentioned model. Moreover, in the absence of DNA methylation, replication enhances Ds transposition in petunia protoplasts >8-fold and promotes formation of a predominant excision footprint. Accordingly, replication also has a methylation-independent regulatory effect on transposition.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号